Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Uncompare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Uncompare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Stor-Elvdal, Campus Evenstad
Innsbruck, Campagne-Areal
Bologna, Pilastro-Roveri district
Zaragoza, Actur
Leipzig, Baumwollspinnerei district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthStor-Elvdal, Campus EvenstadInnsbruck, Campagne-ArealBologna, Pilastro-Roveri districtZaragoza, ActurLeipzig, Baumwollspinnerei district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononononoyes
PED relevant case studynoyesyesyesyesno
PED Lab.yesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyes
Annual energy surplusyesyesnonoyesno
Energy communityyesnonoyesnono
Circularityyesnonononono
Air quality and urban comfortnononononoyes
Electrificationnonononoyesyes
Net-zero energy costnononononono
Net-zero emissionyesnoyesnoyesno
Self-sufficiency (energy autonomous)nononononono
Maximise self-sufficiencynononononono
Othernoyesnononoyes
Other (A1P004)Energy-flexibilityNet-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseIn operationCompletedPlanning PhasePlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date12/1801/1304/1609/1901/23
A1P007: End Date
A1P007: End date12/2312/2404/2210/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
  • Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190,
  • Barroco Fontes Cunha F., Carani C., Nucci C.A., Castro C., Santana Silva M., Andrade Torres E. (2021) Transitioning to a low carbon society through energy communities: Lessons learned from Brazil and Italy, ENERGY RESEARCH & SOCIAL SCIENCE, 2021, 75, 1-19.,
  • GRETA Project, Pilastro-Roveri case study. Available at: https://projectgreta.eu/case-study/renewable-energy-district/
    A1P011: Geographic coordinates
    X Coordinate (longitude):6.53512111.07877077353174611.42434673814025611.397323-0.889112.318458
    Y Coordinate (latitude):53.23484661.4260442039911247.27147078672910444.50710641.648851.326492
    A1P012: Country
    A1P012: CountryNetherlandsNorwayAustriaItalySpainGermany
    A1P013: City
    A1P013: CityGroningenEvenstad, Stor-Elvdal municipalityInnsbruckBolognaZaragozaLeipzig
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).CfaDwcDfbCfaBSkDfb
    A1P015: District boundary
    A1P015: District boundaryFunctionalGeographicGeographicGeographicGeographicFunctional
    OtherGeographic
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:MixedPublicMixedMixedPublic
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED7224196262
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]1.01100002227717000
    A1P020: Total ground area
    A1P020: Total ground area [m²]17.13211351780000030000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area002001
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estateyesnonononono
    A1P022a: Add the value in EUR if available [EUR]
    A1P022b: Financing - PRIVATE - ESCO schemenononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Otheryesnonononono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnononononono
    A1P022d: Add the value in EUR if available [EUR]
    A1P022e: Financing - PUBLIC - National fundingyesyesnoyesnono
    A1P022e: Add the value in EUR if available [EUR]
    A1P022f: Financing - PUBLIC - Regional fundingnononoyesnono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingyesnonoyesnono
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUyesnonoyesnono
    A1P022i: Add the value in EUR if available [EUR]
    A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesyesnonono
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononoyesnono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: Other
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Job creation,
    • Other
    • Job creation,
    • Positive externalities,
    • Boosting local businesses
    A1P023: OtherCreate affordable appartments for the citizensSustainable and replicable business models regarding renewable energy systems
    A1P024: More comments:
    A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2The Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190]
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
    Contact person for general enquiries
    A1P026: NameJasper Tonen, Elisabeth KoopsÅse Lekang SørensenGeorgios DermentzisProf. Danila LongoClara LorenteSimon Baum
    A1P027: OrganizationMunicipality of GroningenSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesUniversity of InnsbruckUniversity of Bologna - Architecture DepartmentCIRCECENERO Energy GmbH
    A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityOther
    A1P028: OtherCENERO Energy GmbH
    A1P029: EmailJasper.tonen@groningen.nlase.sorensen@sintef.noGeorgios.Dermentzis@uibk.ac.atCLORENTEM@FCIRCE.COMsib@cenero.de
    Contact person for other special topics
    A1P030: NameSimon Baum
    A1P031: Emailsib@cenero.de
    Pursuant to the General Data Protection RegulationYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Waste management
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Construction materials
    • Energy efficiency,
    • Energy production,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Waste management
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production
    A2P001: Other
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.Energy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulation
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoNoNoYes
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceNoYesYesNo
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoYesNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.30.770.391.65
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.760.655
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]00
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVnoyesyesyesnoyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.0650.42
    A2P011: Windnononononono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydronononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnoyesnononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
    A2P011: Biomass_peat_elnononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnononononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalyesnonononono
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Solar Thermalyesyesnoyesnono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
    A2P012: Biomass_heatyesyesnoyesnono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.10.35
    A2P012: Waste heat+HPyesnonononono
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_peat_heatnononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thyesnonononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersListed values are measurements from 2018. Renewable energy share is increasing.
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]1.5000.962.421
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]1-2
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnononononono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Coalnononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Oilnononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Othernononononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnononononono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnononononono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydronononononono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnononononono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernononononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnononononono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnononononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernononononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary000000
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Security
    A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
    A2P022: Education
    A2P022: Mobility
    A2P022: EnergySpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.apply
    A2P022: Water
    A2P022: Economic development
    A2P022: Housing and Community
    A2P022: Waste
    A2P022: Other
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesyesno
    A2P023: Solar thermal collectorsyesyesnoyesnono
    A2P023: Wind Turbinesnononononono
    A2P023: Geothermal energy systemyesnonoyesyesno
    A2P023: Waste heat recoveryyesnonononono
    A2P023: Waste to energyyesnonoyesnono
    A2P023: Polygenerationnononononono
    A2P023: Co-generationnoyesnoyesnono
    A2P023: Heat Pumpyesnoyesyesyesno
    A2P023: Hydrogennononononono
    A2P023: Hydropower plantnononononono
    A2P023: Biomassnoyesnononono
    A2P023: Biogasnononononono
    A2P023: OtherThe Co-generation is biomass based.
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnoyesnono
    A2P024: Energy management systemyesyesnonoyesno
    A2P024: Demand-side managementyesyesnononono
    A2P024: Smart electricity gridnononononono
    A2P024: Thermal Storageyesyesyesnonono
    A2P024: Electric Storageyesyesnoyesnono
    A2P024: District Heating and Coolingyesyesyesyesnono
    A2P024: Smart metering and demand-responsive control systemsyesyesnononono
    A2P024: P2P – buildingsnonoyesnonono
    A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnononoyesnono
    A2P025: Energy efficiency measures in historic buildingsyesnonononono
    A2P025: High-performance new buildingsyesyesyesyesnono
    A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonoyesnono
    A2P025: Urban data platformsyesnonononono
    A2P025: Mobile applications for citizensnononoyesnono
    A2P025: Building services (HVAC & Lighting)nonoyesyesnono
    A2P025: Smart irrigationnononononono
    A2P025: Digital tracking for waste disposalnononoyesnono
    A2P025: Smart surveillancenononoyesnono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)nononoyesnono
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnono
    A2P026: e-Mobilityyesyesnoyesyesno
    A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnono
    A2P026: Car-free areanononononono
    A2P026: Other
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesYesYesYes
    A2P028: If yes, please specify and/or enter notesEnergy Performance CertificatePassive house (2 buildings, 4 200 m2, from 2015)Two buildings are certified "Passive House new build"Energy Performance Certificate for each dwelling
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesYesNoNo
    A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Promotion of energy communities (REC/CEC),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyCity level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal;
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    • Electrification of Heating System based on Heat Pumps,
    • Other
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods
    • Electrification of Heating System based on Heat Pumps
    • Biogas
    A3P003: OtherDistrict heating based mainly on heat pumps and renewable sources
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.Bologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Bologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Innovative business models,
    • Blockchain
    • Innovative business models,
    • PPP models,
    • Circular economy models,
    • Demand management Living Lab,
    • Existing incentives
    • Innovative business models,
    • Other
    A3P006: Otheroperational savings through efficiency measures
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Citizen Social Research,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    • Behavioural Change / End-users engagement,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
    • Other
    • Co-creation / Citizen engagement strategies,
    • Social incentives,
    • Affordability,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Affordability,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Behavioural Change / End-users engagement
    A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • City Vision 2050,
    • SECAP Updates,
    • Building / district Certification
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Energy Neutral
    • Low Emission Zone
    • Energy Neutral,
    • Low Emission Zone
    • Energy Neutral,
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Pollutants Reduction,
    • Greening strategies
    • Other
    A3P009: OtherPositive Energy Balance for the demo site
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.PEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionThe biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.Pilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentIn line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.Pilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaRuralUrban areaUrban areaUrban area
    B1P004: Type of district
    B2P004: Type of district
    • New construction,
    • Renovation
    • New construction
    • Renovation
    • Renovation
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Retrofitting Area
    • Re-use / Transformation Area,
    • New Development
    • Retrofitting Area
    • Retrofitting Area
    • Preservation Area
    B1P006: Year of construction
    B1P006: Year of construction2022
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential780
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P011: Population density before intervention
    B1P011: Population density before intervention000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention000.068716412650868000
    B1P013: Building and Land Use before intervention
    B1P013: Residentialnononoyesnono
    B1P013 - Residential: Specify the sqm [m²]
    B1P013: Officenononoyesnono
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilitynononoyesnono
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnononoyesnono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnononoyesnono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnononoyesnono
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalnononoyesnono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnononoyesnono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernononononono
    B1P013 - Other: Specify the sqm [m²]
    B1P014: Building and Land Use after intervention
    B1P014: Residentialnonoyesyesnono
    B1P014 - Residential: Specify the sqm [m²]
    B1P014: Officenononoyesnono
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynononoyesnono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnonoyesyesnono
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnonoyesyesnono
    B1P014 - Institutional: Specify the sqm [m²]
    B1P014: Natural areasnononoyesnono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnonoyesyesnono
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnononoyesnono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernononononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
    B2P002: Installation life time
    B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
    B2P003: Scale of action
    B2P003: ScaleDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?No
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Civic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipality
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Other
    B2P009: Otherresearch companies, monitoring company, ict company
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Demand-side management,
    • Energy storage,
    • Energy networks,
    • Waste management,
    • Lighting,
    • E-mobility,
    • Information and Communication Technologies (ICT),
    • Social interactions,
    • Business models
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Tools for prototyping and modelling
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    • Execution plan,
    • Available data,
    • Type of measured data,
    • Equipment,
    • Level of access
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy,
    • Social,
    • Economical / Financial
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    • Energy modelling,
    • Social models,
    • Business and financial models
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important5 - Very important2 - Slightly important4 - Important1 - Unimportant
    C1P001: Energy Communities, P2P, Prosumers concepts4 - Important5 - Very important3 - Moderately important5 - Very important2 - Slightly important
    C1P001: Storage systems and E-mobility market penetration4 - Important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant
    C1P001: Decreasing costs of innovative materials5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important
    C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
    C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important2 - Slightly important5 - Very important4 - Important
    C1P001: Social acceptance (top-down)3 - Moderately important4 - Important4 - Important3 - Moderately important5 - Very important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important4 - Important3 - Moderately important4 - Important4 - Important
    C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important
    C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important
    C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important3 - Moderately important4 - Important5 - Very important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need2 - Slightly important3 - Moderately important5 - Very important4 - Important5 - Very important
    C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important4 - Important5 - Very important5 - Very important
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P002: Urban re-development of existing built environment4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important
    C1P002: Economic growth need2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
    C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
    C1P002: Energy autonomy/independence2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant
    C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important1 - Unimportant2 - Slightly important4 - Important5 - Very important
    C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important4 - Important
    C1P003: Lack of public participation1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
    C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
    C1P003:Long and complex procedures for authorization of project activities4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
    C1P003: Complicated and non-comprehensive public procurement3 - Moderately important2 - Slightly important1 - Unimportant4 - Important4 - Important
    C1P003: Fragmented and or complex ownership structure4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
    C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important
    C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
    C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important
    C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important5 - Very important1 - Unimportant4 - Important2 - Slightly important
    C1P005: Regulatory instability3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P005: Non-effective regulations3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
    C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
    C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Insufficient or insecure financial incentives3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant
    C1P007: Deficient planning2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important4 - Important
    C1P007: Lack of well-defined process3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important4 - Important
    C1P007: Inaccuracy in energy modelling and simulation4 - Important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important
    C1P007: Lack/cost of computational scalability1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
    C1P007: Grid congestion, grid instability4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant
    C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
    C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
    C1P007: Any other Thecnical BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
    C1P008: Social and Cultural barriers
    C1P008: Inertia2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
    C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P008: Low acceptance of new projects and technologies2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
    C1P008: Lack of trust beyond social network4 - Important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
    C1P008: Rebound effect2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
    C1P008: Exclusion of socially disadvantaged groups5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
    C1P008: Non-energy issues are more important and urgent for actors4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
    C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
    C1P009: Lack of awareness among authorities2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
    C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important5 - Very important4 - Important5 - Very important
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
    C1P010: Financial barriers
    C1P010: Hidden costs2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant
    C1P010: Insufficient external financial support and funding for project activities3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant
    C1P010: Economic crisis1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
    C1P010: Risk and uncertainty3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
    C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant
    C1P010: Limited access to capital and cost disincentives2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P011: Energy price distortion4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    C1P012: Financial/Funding
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    • Planning/leading,
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Business process management
    • Planning/leading
    • Planning/leading
    • None
    C1P012: Urban Services providers
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation
    C1P012: Real Estate developers
    • Construction/implementation
    • Planning/leading,
    • Monitoring/operation/management
    • Planning/leading
    • None
    C1P012: Design/Construction companies
    • Construction/implementation
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • None
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Social/Civil Society/NGOs
    • Planning/leading,
    • Design/demand aggregation
    • None
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)