Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
TitleGroningen, PED North
Stor-Elvdal, Campus Evenstad
Kifissia, Energy community
Bærum, Eiksveien 116
Riga, Ķīpsala, RTU smart student city
Salzburg, Gneis district
Amsterdam, Buiksloterham PED
Findhorn, the Park
Roubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’Oran
Lund, Brunnshög district
Izmir, District of Karşıyaka
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthStor-Elvdal, Campus EvenstadKifissia, Energy communityBærum, Eiksveien 116Riga, Ķīpsala, RTU smart student citySalzburg, Gneis districtAmsterdam, Buiksloterham PEDFindhorn, the ParkRoubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’OranLund, Brunnshög districtIzmir, District of Karşıyaka
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonononoyesyesyesyesnoyesyes
PED relevant case studynoyesyesyesnonononoyesnono
PED Lab.yesnononononononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesnoyesyesyesyesyesyesyesyes
Annual energy surplusyesyesnononoyesyesyesyesyesyes
Energy communityyesnoyesnoyesyesyesyesnoyesno
Circularityyesnononononoyesyesnoyesno
Air quality and urban comfortnonoyesnonoyesnonoyesyesyes
Electrificationnonoyesyesnonoyesyesnoyesno
Net-zero energy costnononoyesnonononononoyes
Net-zero emissionyesnonoyesnonoyesyesnoyesno
Self-sufficiency (energy autonomous)nonononoyesnononononono
Maximise self-sufficiencynonononoyesnonoyesnonoyes
Othernoyesnononononononoyesno
Other (A1P004)Energy-flexibilityHolistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseIn operationPlanning PhaseCompletedPlanning PhaseCompletedImplementation PhaseIn operationCompletedIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date12/1801/1301/1801/2401/2011/1901/6201/22201510/22
A1P007: End Date
A1P007: End date12/2312/2406/2312/2601/2410/2501/24204010/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • Meteorological open data
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts
A1P009: Otherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/GIS open dataset is under constructionOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
          A1P011: Geographic coordinates
          X Coordinate (longitude):6.53512111.07877077353174623.81458810.533324.0816833913.0412164.9041-3.60993.165113.23246940076959927.110049
          Y Coordinate (latitude):53.23484661.4260442039911238.07734959.910056.9524595647.77101952.367657.653050.693755.7198979220719338.496054
          A1P012: Country
          A1P012: CountryNetherlandsNorwayGreeceNorwayLatviaAustriaNetherlandsUnited KingdomFranceSwedenTurkey
          A1P013: City
          A1P013: CityGroningenEvenstad, Stor-Elvdal municipalityMunicipality of KifissiaBærumRigaSalzburgAmsterdamFindhornRoubaixLundİzmir
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CfaDwcCsaDfbCfbDfbCfbDwcCfbDfbCsa
          A1P015: District boundary
          A1P015: District boundaryFunctionalGeographicVirtualOtherGeographicGeographicFunctionalGeographicOtherGeographicGeographic
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodBuildingPEB
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedPublicPublicPublicMixedMixedMixedPrivatePublicPrivate
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED7221151760160120021
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]1.01100001700001997622850014421500000102795
          A1P020: Total ground area
          A1P020: Total ground area [m²]17.1321192641800002500150000032600
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area00001000113
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estateyesnononononoyesyesyesyesno
          A1P022a: Add the value in EUR if available [EUR]099999999
          A1P022b: Financing - PRIVATE - ESCO schemenonononononononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Otheryesnononononononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnononononononononoyesno
          A1P022d: Add the value in EUR if available [EUR]1000000
          A1P022e: Financing - PUBLIC - National fundingyesyesnononononoyesnoyesno
          A1P022e: Add the value in EUR if available [EUR]30000000
          A1P022f: Financing - PUBLIC - Regional fundingnonononononononoyesyesno
          A1P022f: Add the value in EUR if available [EUR]30000000
          A1P022g: Financing - PUBLIC - Municipal fundingyesnonoyesnonononoyesyesno
          A1P022g: Add the value in EUR if available [EUR]180000000
          A1P022h: Financing - PUBLIC - Othernonononononononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUyesnononoyesyesyesyesyesyesyes
          A1P022i: Add the value in EUR if available [EUR]750000020000001193355
          A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnonononononononoyes
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: OtherRetrofitted through various subsidies
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Other
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Positive externalities,
          • Other
          • Boosting local businesses,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Other
          • Positive externalities,
          • Boosting local and sustainable production
          A1P023: OtherSocial housingBoosting social cooperation and social aidWorld class sustainable living and research environments
          A1P024: More comments:
          A1P024: More comments:The building comprises 32 homes. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.6
          Contact person for general enquiries
          A1P026: NameJasper Tonen, Elisabeth KoopsÅse Lekang SørensenArtemis Giavasoglou, Kleopatra KalampokaJohn Einar ThommesenJudith StiekemaAbel MagyariOmar ShafqatStefano NebioloJulien HolgardMarkus PaulssonOzlem Senyol
          A1P027: OrganizationMunicipality of GroningenSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesMunicipality of Kifissia – SPARCS local teamSINTEF CommunityOASCABUDAmsterdam University of Applied SciencesFindhorn Innovation Research and Education CICVilogiaCity of LundKarsiyaka Municipality
          A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityOtherMunicipality / Public BodiesMunicipality / Public Bodies
          A1P028: Othernot for profit private organisationSocial Housing Company
          A1P029: EmailJasper.tonen@groningen.nlase.sorensen@sintef.nogiavasoglou@kifissia.grjohn.thommesen@sintef.nojudith@oascities.orgmagyari.abel@abud.huo.shafqat@hva.nlstefanonebiolo@gmail.comjulien.holgard@vilogia.frmarkus.paulsson@lund.seozlemkocaer2@gmail.com
          Contact person for other special topics
          A1P030: NameStavros Zapantis - vice mayorJohn Einar ThommesenStrassl IngeborgOmar ShafqatJulien HolgardEva DalmanHasan Burak Cavka
          A1P031: Emailstavros.zapantis@gmail.comjohn.thommesen@sintef.noinge.strassl@salzburg.gv.ato.shafqat@hva.nljulien.holgard@vilogia.freva.dalman@lund.sehasancavka@iyte.edu.tr
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Waste management
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Construction materials
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Water use,
          • Waste management,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Waste management
          • Energy efficiency,
          • Energy production,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Indoor air quality,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies,
          • Water use,
          • Waste management,
          • Construction materials,
          • Other
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Urban comfort (pollution, heat island, noise level etc.)
          A2P001: OtherWalkability and biking
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsCity vision, Innovation AteliersLundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.Methods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoNoYesYesNoNoYes
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoYesYesNoNoYesYesYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoYesYesNoNoNoYesNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.Mobility is not included in the calculations.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.30.778000253.862
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.7650001.2301.226
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVnoyesyesnonoyesyesyesyesyesyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.0650.77706641.028
          A2P011: Windnonononoyesnonoyesnoyesno
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnoyesnonononoyesnononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
          A2P011: Biomass_peat_elnonononononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnonononoyesnononononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
          A2P011: Othernonononononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalyesnonononoyesyesnononono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalyesyesnononononoyesnonono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
          A2P012: Biomass_heatyesyesnonoyesnoyesyesnonono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.10.35
          A2P012: Waste heat+HPyesnononononoyesyesnoyesno
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
          A2P012: Biomass_peat_heatnonononononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thyesnononononononononono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnononononononoyesnonono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononononononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersListed values are measurements from 2018. Renewable energy share is increasing.Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.3x225 kW wind turbines + 100 kW PV
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]1.5000.8190161.20.0845.088
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]11.20.11
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]-1000
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonononoyesnoyesnononoyes
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnonononononoyesnononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnonononononoyesnononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernonononononononononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnonononononoyesnonoyesyes
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
          A2P018: Windnonononononoyesnonoyesno
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononononononoyesnonoyesno
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnonononononoyesnonoyesno
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnonononononoyesnononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnonononononoyesnononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernonononononononononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnonononononoyesnononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonononononoyesnononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonononononoyesnononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnonononononoyesnononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnonononononoyesnononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnonononononoyesnononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonononononoyesnononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernonononononononononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary00000000001.4540311173975
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]250
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Security
          A2P022: HealthCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
          A2P022: Education
          A2P022: MobilityMaximum 1/3 transport with car
          A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsLocal energy production 150% of energy need
          A2P022: Water
          A2P022: Economic developmentInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison
          A2P022: Housing and CommunityAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness50% rental apartments and 50% owner apartments
          A2P022: Waste
          A2P022: Other
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsyesyesnononoyesyesyesyesyesyes
          A2P023: Solar thermal collectorsyesyesnononononoyesnoyesno
          A2P023: Wind Turbinesnononononononoyesnoyesno
          A2P023: Geothermal energy systemyesnonononoyesyesnonoyesno
          A2P023: Waste heat recoveryyesnononononoyesyesnoyesno
          A2P023: Waste to energyyesnononononoyesnononono
          A2P023: Polygenerationnononononononononoyesno
          A2P023: Co-generationnoyesnonononononononono
          A2P023: Heat Pumpyesnononononoyesyesnoyesyes
          A2P023: Hydrogennononononononononoyesno
          A2P023: Hydropower plantnonononononononononono
          A2P023: Biomassnoyesnonononoyesyesnonono
          A2P023: Biogasnonononononoyesnononono
          A2P023: OtherThe Co-generation is biomass based.
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnonoyesnoyesnonoyesno
          A2P024: Energy management systemyesyesnonoyesyesyesyesnoyesno
          A2P024: Demand-side managementyesyesnonoyesyesyesnonoyesno
          A2P024: Smart electricity gridnonononoyesyesyesnonoyesno
          A2P024: Thermal Storageyesyesnonoyesnoyesyesnoyesno
          A2P024: Electric Storageyesyesnonoyesnoyesyesnoyesno
          A2P024: District Heating and Coolingyesyesnonoyesnoyesyesnoyesno
          A2P024: Smart metering and demand-responsive control systemsyesyesnonoyesnoyesnoyesyesno
          A2P024: P2P – buildingsnononononoyesyesnononono
          A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnonononononoyesnoyesnoyes
          A2P025: Energy efficiency measures in historic buildingsyesnononononoyesnononono
          A2P025: High-performance new buildingsyesyesnononoyesyesyesnoyesno
          A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononononoyesnonoyesno
          A2P025: Urban data platformsyesnononoyesnoyesnonoyesno
          A2P025: Mobile applications for citizensnonononoyesnoyesnononono
          A2P025: Building services (HVAC & Lighting)nonononoyesyesyesnonoyesyes
          A2P025: Smart irrigationnonononononoyesnononono
          A2P025: Digital tracking for waste disposalnonononononoyesnonoyesno
          A2P025: Smart surveillancenonononononononononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nonononononoyesnononono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononoyesyesnonoyesno
          A2P026: e-Mobilityyesyesnononoyesyesyesnoyesno
          A2P026: Soft mobility infrastructures and last mile solutionsnonononononoyesnonoyesno
          A2P026: Car-free areanonononononoyesnonoyesno
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notesShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.Walkability
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesYesYesNoYesNoYesNo
          A2P028: If yes, please specify and/or enter notesEnergy Performance CertificatePassive house (2 buildings, 4 200 m2, from 2015)Energy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance CertificateMiljöbyggnad silver/guld
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesYesNoYesNoNoNo
          A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)Klimaaktiv certificate, Greenpass certificate
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Promotion of energy communities (REC/CEC),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyCity strategy: Net climate neutrality 2030Karşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas,
          • Hydrogen
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps
          A3P003: OtherNo gas grid in Brunnshög
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesNursing home for people with special needsLocal waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.According to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Innovative business models,
          • Blockchain
          • Open data business models,
          • Innovative business models,
          • Demand management Living Lab
          • Innovative business models,
          • Local trading
          • Innovative business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Demand management Living Lab,
          • Local trading,
          • Existing incentives
          • PPP models,
          • Other
          A3P006: OtherAttractivenes
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Citizen Social Research,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance
          • Behavioural Change / End-users engagement,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
          • Other
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Quality of Life,
          • Strategies towards social mix,
          • Affordability,
          • Citizen/owner involvement in planning and maintenance
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Social incentives,
          • Quality of Life,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Quality of Life
          • Behavioural Change / End-users engagement,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Quality of Life,
          • Strategies towards social mix
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Affordability
          A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • Digital twinning and visual 3D models
          • Building / district Certification
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • City Vision 2050,
          • SECAP Updates
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • SECAP Updates
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral
          • Low Emission Zone
          • Other
          • Energy Neutral
          • Energy Neutral,
          • Low Emission Zone
          • Energy Neutral,
          • Life Cycle approach
          • Energy Neutral,
          • Net zero carbon footprint
          • Energy Neutral
          • Net zero carbon footprint,
          • Greening strategies,
          • Sustainable Urban drainage systems (SUDS),
          • Nature Based Solutions (NBS)
          • Energy Neutral,
          • Low Emission Zone,
          • Pollutants Reduction
          A3P009: OtherPEB
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.Regulatory sandboxThe municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionThe biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.PEBExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Functional PEDRefurbishment of social housing. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentIn line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.Brown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.Refurbishment of social housingThe aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaRuralUrban areaUrban areaSuburban areaUrban areaRuralSuburban areaUrban areaUrban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction,
          • Renovation
          • New construction
          • New construction
          • New construction
          • New construction
          • Renovation
          • New construction
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • Retrofitting Area
          • New Development
          • New Development
          • New Development
          • New Development
          • Retrofitting Area
          • New Development
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction202419582005
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential0
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential18000
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential2000
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential22000
          B1P011: Population density before intervention
          B1P011: Population density before intervention00000000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention0000000000.0266666666666670
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnonononononononoyesnoyes
          B1P013 - Residential: Specify the sqm [m²]102795
          B1P013: Officenononononononononoyesno
          B1P013 - Office: Specify the sqm [m²]60000
          B1P013: Industry and Utilitynonononononoyesnononono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnonononononononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnonononononononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnononononoyesnoyesnoyesno
          B1P013 - Natural areas: Specify the sqm [m²]2000000
          B1P013: Recreationalnonononononononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnonononononononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernononononononononoyesno
          B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnononononoyesyesyesyesyesyes
          B1P014 - Residential: Specify the sqm [m²]600000102795
          B1P014: Officenonononononoyesyesnoyesno
          B1P014 - Office: Specify the sqm [m²]650000
          B1P014: Industry and Utilitynonononononononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnonononononoyesnononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnononononononononoyesno
          B1P014 - Institutional: Specify the sqm [m²]50000
          B1P014: Natural areasnononononoyesnoyesnonono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnonononononoyesnonoyesno
          B1P014 - Recreational: Specify the sqm [m²]400000
          B1P014: Dismissed areasnonononononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernonononononononononono
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
          B2P002: Installation life time
          B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
          B2P003: Scale of action
          B2P003: ScaleDistrict
          B2P004: Operator of the installation
          B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?No
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Civic
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabMunicipality
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          • Academia,
          • Private,
          • Industrial,
          • Other
          B2P009: Otherresearch companies, monitoring company, ict company
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Energy storage,
          • Energy networks,
          • Waste management,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Social interactions,
          • Business models
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Tools for prototyping and modelling
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Execution plan,
          • Available data,
          • Type of measured data,
          • Equipment,
          • Level of access
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Social,
          • Economical / Financial
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling,
          • Social models,
          • Business and financial models
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important
          C1P001: Energy Communities, P2P, Prosumers concepts4 - Important5 - Very important5 - Very important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
          C1P001: Storage systems and E-mobility market penetration4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P001: Decreasing costs of innovative materials5 - Very important3 - Moderately important4 - Important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important
          C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important1 - Unimportant4 - Important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
          C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
          C1P001: Social acceptance (top-down)3 - Moderately important4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
          C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important1 - Unimportant4 - Important2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
          C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need2 - Slightly important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
          C1P002: Urban re-development of existing built environment4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
          C1P002: Economic growth need2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P002: Energy autonomy/independence2 - Slightly important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important4 - Important
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
          C1P003: Lack of public participation1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
          C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P003:Long and complex procedures for authorization of project activities4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P003: Complicated and non-comprehensive public procurement3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
          C1P003: Fragmented and or complex ownership structure4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
          C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P005: Regulatory instability3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P005: Non-effective regulations3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
          C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
          C1P005: Insufficient or insecure financial incentives3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers?- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P007: Deficient planning2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P007: Lack of well-defined process3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
          C1P007: Inaccuracy in energy modelling and simulation4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
          C1P007: Lack/cost of computational scalability1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P007: Grid congestion, grid instability4 - Important5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
          C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
          C1P007: Any other Thecnical BARRIER1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
          C1P008: Social and Cultural barriers
          C1P008: Inertia2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
          C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
          C1P008: Low acceptance of new projects and technologies2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
          C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
          C1P008: Lack of trust beyond social network4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
          C1P008: Rebound effect2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P008: Exclusion of socially disadvantaged groups5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P008: Non-energy issues are more important and urgent for actors4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important
          C1P009: Lack of awareness among authorities2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
          C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
          C1P010: Financial barriers
          C1P010: Hidden costs2 - Slightly important5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P010: Insufficient external financial support and funding for project activities3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
          C1P010: Economic crisis1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P010: Risk and uncertainty3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important
          C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
          C1P010: Limited access to capital and cost disincentives2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
          C1P011: Energy price distortion4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading
          • Planning/leading
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Design/demand aggregation
          C1P012: Financial/Funding
          • Design/demand aggregation,
          • Construction/implementation
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Construction/implementation
          C1P012: Analyst, ICT and Big Data
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          • Construction/implementation
          • Monitoring/operation/management
          C1P012: Business process management
          • Planning/leading
          • Planning/leading
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Urban Services providers
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Real Estate developers
          • Construction/implementation
          • Planning/leading,
          • Monitoring/operation/management
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Design/Construction companies
          • Construction/implementation
          • Construction/implementation
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: End‐users/Occupants/Energy Citizens
          • None
          • Monitoring/operation/management
          • Design/demand aggregation
          • Design/demand aggregation
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Planning/leading,
          • Design/demand aggregation
          • None
          • Design/demand aggregation
          • None
          C1P012: Industry/SME/eCommerce
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          • Construction/implementation
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)