Name | Project | Type | Compare |
---|---|---|---|
Tartu, Estonia | V2G-QUESTS | PED Relevant Case Study | Compare |
Utrecht, the Netherlands (District of Kanaleneiland) | V2G-QUESTS | PED Relevant Case Study | Compare |
Aveiro, Portugal | V2G-QUESTS | PED Relevant Case Study | Compare |
Győr Geothermal District Heating Project | PED Relevant Case Study | Compare | |
Jacobs Borchs Gate, Drammen | PED Relevant Case Study | Compare | |
Dietenbach, Freiburg im Breisgau | PED Relevant Case Study | Compare | |
SmartEnCity, Lecce | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study | Compare |
STARDUST, Trento | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study / PED Lab | Compare |
Klimatkontrakt Hyllie, Malmö | PED Relevant Case Study | Compare | |
EnStadt:Pfaff, Kaiserslautern | PED Relevant Case Study / PED Lab | Compare | |
mySMARTlife, Helsinki | PED Relevant Case Study | Compare | |
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze | PED Relevant Case Study | Compare | |
Sinfonia, Bolzano | PED Relevant Case Study | Compare | |
Hunziker Areal, Zürich | PED Relevant Case Study | Compare | |
Hammarby Sjöstad 2.0, | PED Relevant Case Study | Compare | |
Sharing Cities, Milano | PED Relevant Case Study | Compare | |
District Heating Pozo Barredo, Mieres | PED Relevant Case Study | Compare | |
Cityfied (demo Linero), Lund | PED Relevant Case Study | Compare | |
Smart Otaniemi, Espoo | PED Relevant Case Study / PED Lab | Compare | |
Zukunftsquartier, Vienna | PED Case Study | Compare | |
Santa Chiara Open Lab, Trento | PED Case Study | Compare | |
Barrio La Pinada, Paterna | PED Case Study / PED Lab | Compare | |
Zero Village Bergen (ZVB) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Võru +CityxChange | PED Case Study | Compare | |
NTNU Campus within the Knowledge Axis, Trondheim | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Furuset project, Oslo | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Laser Valley – Land of Lights | PED Case Study | Compare | |
Ydalir project | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
NyBy – Ny Flyplass (New City – New Airport) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fornebu, Bærum | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fleuraye west, Carquefou | PED Case Study | Compare | |
Smart Energy Åland | PED Case Study | Compare | |
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Uncompare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Compare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Compare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Compare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Compare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Uncompare |
Halmstad, Fyllinge | PED Relevant Case Study | Uncompare | |
Lund, Brunnshög district | PED Case Study | Uncompare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Uncompare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Uncompare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | Compare |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Uncompare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Uncompare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Title | Groningen, PED North | Oulu, Kaukovainio | Halmstad, Fyllinge | Leon, Former Sugar Factory district | Lund, Brunnshög district | Leipzig, Baumwollspinnerei district | Kladno, Sletiště (Sport Area), PED Winter Stadium | Munich, Harthof district | Barcelona, SEILAB & Energy SmartLab |
---|---|---|---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | |||||||||
A1P001: Name of the PED case study / PED Lab | Groningen, PED North | Oulu, Kaukovainio | Halmstad, Fyllinge | Leon, Former Sugar Factory district | Lund, Brunnshög district | Leipzig, Baumwollspinnerei district | Kladno, Sletiště (Sport Area), PED Winter Stadium | Munich, Harthof district | Barcelona, SEILAB & Energy SmartLab |
A1P002: Map / aerial view / photos / graphic details / leaflet | |||||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
| ||||||||
A1P003: Categorisation of the PED site | |||||||||
PED case study | no | yes | no | yes | yes | yes | no | yes | no |
PED relevant case study | no | no | yes | no | no | no | yes | no | no |
PED Lab. | yes | no | no | no | no | no | no | no | yes |
A1P004: Targets of the PED case study / PED Lab | |||||||||
Climate neutrality | yes | yes | no | no | yes | yes | yes | yes | no |
Annual energy surplus | yes | no | no | yes | yes | no | yes | yes | no |
Energy community | yes | no | yes | no | yes | no | yes | yes | yes |
Circularity | yes | yes | no | no | yes | no | no | no | no |
Air quality and urban comfort | no | no | no | no | yes | yes | no | no | no |
Electrification | no | yes | no | no | yes | yes | yes | no | yes |
Net-zero energy cost | no | no | no | no | no | no | no | no | no |
Net-zero emission | yes | no | no | no | yes | no | no | no | yes |
Self-sufficiency (energy autonomous) | no | no | no | no | no | no | no | no | yes |
Maximise self-sufficiency | no | no | no | yes | no | no | no | no | no |
Other | no | no | no | no | yes | yes | no | no | yes |
Other (A1P004) | Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030; | Net-zero emission; Annual energy surplus | Green IT | ||||||
A1P005: Phase of the PED case study / PED Lab | |||||||||
A1P005: Project Phase of your case study/PED Lab | Implementation Phase | In operation | Planning Phase | Planning Phase | In operation | Implementation Phase | Planning Phase | Implementation Phase | In operation |
A1P006: Start Date | |||||||||
A1P006: Start date | 12/18 | 01/21 | 12/18 | 2015 | 2022 | 01/23 | 01/2011 | ||
A1P007: End Date | |||||||||
A1P007: End date | 12/23 | 01/30 | 12/23 | 2040 | 12/27 | 02/2013 | |||
A1P008: Reference Project | |||||||||
A1P008: Reference Project | |||||||||
A1P009: Data availability | |||||||||
A1P009: Data availability |
|
|
|
|
| ||||
A1P009: Other | GIS open dataset is under construction | ||||||||
A1P010: Sources | |||||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
|
|
| ||||||
A1P011: Geographic coordinates | |||||||||
X Coordinate (longitude): | 6.535121 | 25.517595084093507 | 12.92054 | -5.584795 | 13.232469400769599 | 12.318458 | 14.09296 | 11.569625059947604 | 2.1 |
Y Coordinate (latitude): | 53.234846 | 64.99288098173132 | 56.65194 | 42.593391 | 55.71989792207193 | 51.326492 | 50.13715 | 48.20436261275152 | 41.3 |
A1P012: Country | |||||||||
A1P012: Country | Netherlands | Finland | Sweden | Spain | Sweden | Germany | Czech Republic | Germany | Spain |
A1P013: City | |||||||||
A1P013: City | Groningen | Oulu | Halmstad | Leon | Lund | Leipzig | Kladno | Munich | Barcelona and Tarragona |
A1P014: Climate Zone (Köppen Geiger classification) | |||||||||
A1P014: Climate Zone (Köppen Geiger classification). | Cfa | Dfc | Dwb | Csb | Dfb | Dfb | Cfb | Cfb | Csa |
A1P015: District boundary | |||||||||
A1P015: District boundary | Functional | Geographic | Geographic | Geographic | Functional | Geographic | Geographic | Virtual | |
Other | Regional (close to virtual) | Geographic | V1* (ca 8 buildings) | ||||||
A1P016: Ownership of the case study/PED Lab | |||||||||
A1P016: Ownership of the case study/PED Lab: | Mixed | Mixed | Mixed | Mixed | Public | Mixed | Mixed | Public | |
A1P017: Ownership of the land / physical infrastructure | |||||||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Single Owner | Multiple Owners | Multiple Owners | Multiple Owners | Multiple Owners | Multiple Owners | Single Owner | |
A1P018: Number of buildings in PED | |||||||||
A1P018: Number of buildings in PED | 7 | 6 | 250 | 21 | 200 | 2 | 8 | 126 | 0 |
A1P019: Conditioned space | |||||||||
A1P019: Conditioned space [m²] | 1.01 | 19700 | 16.06900 | 1500000 | 17000 | 206 | |||
A1P020: Total ground area | |||||||||
A1P020: Total ground area [m²] | 17.132 | 60000 | 73.14569 | 1500000 | 30000 | 560 | |||
A1P021: Floor area ratio: Conditioned space / total ground area | |||||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
A1P022: Financial schemes | |||||||||
A1P022a: Financing - PRIVATE - Real estate | yes | yes | yes | no | yes | no | yes | no | no |
A1P022a: Add the value in EUR if available [EUR] | 99999999 | ||||||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no | yes | no | no |
A1P022b: Add the value in EUR if available [EUR] | |||||||||
A1P022c: Financing - PRIVATE - Other | yes | no | no | no | no | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | |||||||||
A1P022d: Financing - PUBLIC - EU structural funding | no | no | no | no | yes | no | yes | no | no |
A1P022d: Add the value in EUR if available [EUR] | 1000000 | ||||||||
A1P022e: Financing - PUBLIC - National funding | yes | no | no | no | yes | no | no | no | no |
A1P022e: Add the value in EUR if available [EUR] | 30000000 | ||||||||
A1P022f: Financing - PUBLIC - Regional funding | no | no | no | no | yes | no | no | no | no |
A1P022f: Add the value in EUR if available [EUR] | 30000000 | ||||||||
A1P022g: Financing - PUBLIC - Municipal funding | yes | yes | no | no | yes | no | yes | yes | no |
A1P022g: Add the value in EUR if available [EUR] | 180000000 | ||||||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | |||||||||
A1P022i: Financing - RESEARCH FUNDING - EU | yes | yes | yes | no | yes | no | yes | yes | no |
A1P022i: Add the value in EUR if available [EUR] | 2000000 | ||||||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | no | no | no | no | yes | no | no |
A1P022j: Add the value in EUR if available [EUR] | |||||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no | no | no | no |
A1P022k: Add the value in EUR if available [EUR] | |||||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | |||||||||
A1P022: Other | |||||||||
A1P023: Economic Targets | |||||||||
A1P023: Economic Targets |
|
|
|
|
|
| |||
A1P023: Other | Developing and demonstrating new solutions | World class sustainable living and research environments | Sustainable and replicable business models regarding renewable energy systems | ||||||
A1P024: More comments: | |||||||||
A1P024: More comments: | Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | ||||||||
A1P025: Estimated PED case study / PED LAB costs | |||||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | 5 | ||||||||
Contact person for general enquiries | |||||||||
A1P026: Name | Jasper Tonen, Elisabeth Koops | Samuli Rinne | Markus Olofsgård | Begoña Gonzalo Orden | Markus Paulsson | Simon Baum | David Škorňa | Stefan Synek | Dr. Jaume Salom, Dra. Cristina Corchero |
A1P027: Organization | Municipality of Groningen | City of Oulu | AFRY | Municipality of Leon | City of Lund | CENERO Energy GmbH | Město Kladno | City of Munich | IREC |
A1P028: Affiliation | Municipality / Public Bodies | Municipality / Public Bodies | Other | Other | Municipality / Public Bodies | Other | Municipality / Public Bodies | Municipality / Public Bodies | Research Center / University |
A1P028: Other | Municipality of Leon - ILRUV | CENERO Energy GmbH | Andreas Bärnreuther | ||||||
A1P029: Email | Jasper.tonen@groningen.nl | samuli.rinne@ouka.fi | markus.olofsgard@afry.com | begona.gonzalo@aytoleon.es | markus.paulsson@lund.se | sib@cenero.de | david.skorna@mestokladno.cz | stefan.synek@muenchen.de | Jsalom@irec.cat |
Contact person for other special topics | |||||||||
A1P030: Name | Samuli Rinne | Monica Prada Corral | Eva Dalman | Simon Baum | Michal Kuzmič | Stefan Synek | |||
A1P031: Email | samuli.rinne@ouka.fi | Monica.Prada@ilruv.es | eva.dalman@lund.se | sib@cenero.de | michal.kuzmic@cvut.cz | stefan.synek@muenchen.de | |||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
A2P001: Fields of application | |||||||||
A2P001: Fields of application |
|
|
|
|
|
|
|
|
|
A2P001: Other | Walkability and biking | ||||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | |||||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streams | Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place. | link based regulation of electricity grid | Energy efficiency: - buildings energy retrofit Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; Energy flexibility: - testing share energy solutions (public-private stakeholders) Digital technologies - smart city platform - smart energy management E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. | LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions. | Trnsys, PV modelling tools, CAD | Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35) | ||
A2P003: Application of ISO52000 | |||||||||
A2P003: Application of ISO52000 | No | No | No | No | No | No | |||
A2P004: Appliances included in the calculation of the energy balance | |||||||||
A2P004: Appliances included in the calculation of the energy balance | No | No | No | No | Yes | Yes | Yes | Yes | |
A2P005: Mobility included in the calculation of the energy balance | |||||||||
A2P005: Mobility included in the calculation of the energy balance | No | No | Yes | No | Yes | No | No | Yes | |
A2P006: Description of how mobility is included (or not included) in the calculation | |||||||||
A2P006: Description of how mobility is included (or not included) in the calculation | Mobility, till now, is not included in the energy model. | Not included. However, there is a charging place for a shared EV in one building. | Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included. | Not yet included. | – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah | ||||
A2P007: Annual energy demand in buildings / Thermal demand | |||||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 2.3 | 2.1 | 3.49 | 25 | 1.65 | 1.4 | |||
A2P008: Annual energy demand in buildings / Electric Demand | |||||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 0.33 | 0.2 | 0.57 | 30 | 0.3 | ||||
A2P009: Annual energy demand for e-mobility | |||||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | 0 | ||||||||
A2P010: Annual energy demand for urban infrastructure | |||||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | |||||||||
A2P011: Annual renewable electricity production on-site during target year | |||||||||
A2P011: PV | no | yes | yes | yes | yes | yes | yes | yes | yes |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 0.1 | 1.24 | 1.1 | ||||||
A2P011: Wind | no | no | no | no | yes | no | no | no | no |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | |||||||||
A2P011: Hydro | no | no | no | yes | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | 1.28 | ||||||||
A2P011: Biomass_el | no | no | no | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | |||||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | |||||||||
A2P011: PVT_el | no | no | no | yes | no | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | 0.28 | ||||||||
A2P011: Other | no | no | no | no | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | |||||||||
A2P012: Annual renewable thermal production on-site during target year | |||||||||
A2P012: Geothermal | yes | no | yes | no | no | no | no | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | |||||||||
A2P012: Solar Thermal | yes | no | no | no | no | no | no | yes | no |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | |||||||||
A2P012: Biomass_heat | yes | no | no | no | no | no | no | no | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | 0.1 | ||||||||
A2P012: Waste heat+HP | yes | yes | no | no | yes | no | yes | no | no |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | 2.2 | 200 | 1.7 | ||||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | |||||||||
A2P012: PVT_th | yes | no | no | yes | no | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | |||||||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | |||||||||
A2P012: Other | no | no | no | yes | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | |||||||||
A2P013: Renewable resources on-site - Additional notes | |||||||||
A2P013: Renewable resources on-site - Additional notes | Geothermal heatpump systems, Waste heat from data centers | Heat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that) | Waste heat from cooling the ice rink. | ||||||
A2P014: Annual energy use | |||||||||
A2P014: Annual energy use [GWh/annum] | 2.3 | 2.421 | 2.1 | ||||||
A2P015: Annual energy delivered | |||||||||
A2P015: Annual energy delivered [GWh/annum] | |||||||||
A2P016: Annual non-renewable electricity production on-site during target year | |||||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | 0 | 0 | ||||||
A2P017: Annual non-renewable thermal production on-site during target year | |||||||||
A2P017: Gas | no | no | no | no | no | no | no | yes | yes |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||||
A2P017: Coal | no | no | no | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||||
A2P017: Oil | no | no | no | no | no | no | no | yes | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||||
A2P017: Other | no | no | no | no | no | no | no | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | |||||||||
A2P018: PV | no | yes | no | no | yes | no | no | yes | no |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | |||||||||
A2P018: Wind | no | yes | no | no | yes | no | no | yes | no |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | |||||||||
A2P018: Hydro | no | yes | no | no | yes | no | no | no | no |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | |||||||||
A2P018: Biomass_el | no | yes | no | no | yes | no | no | yes | no |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | |||||||||
A2P018: Biomass_peat_el | no | yes | no | no | no | no | no | yes | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | |||||||||
A2P018: PVT_el | no | no | no | no | no | no | no | yes | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | |||||||||
A2P018: Other | no | no | no | no | no | no | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | |||||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | |||||||||
A2P019: Geothermal | no | no | no | no | no | no | no | yes | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | |||||||||
A2P019: Solar Thermal | no | no | no | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | |||||||||
A2P019: Biomass_heat | no | yes | no | no | no | no | no | yes | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | 0.7 | ||||||||
A2P019: Waste heat+HP | no | no | no | no | no | no | no | yes | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | |||||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | |||||||||
A2P019: PVT_th | no | no | no | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | |||||||||
A2P019: Biomass_firewood_th | no | no | no | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | |||||||||
A2P019: Other | no | no | no | no | no | no | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | |||||||||
A2P020: Share of RES on-site / RES outside the boundary | |||||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 3.2857142857143 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A2P021: GHG-balance calculated for the PED | |||||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | 0 | -104 | |||||||
A2P022: KPIs related to the PED case study / PED Lab | |||||||||
A2P022: Safety & Security | |||||||||
A2P022: Health | Encouraging a healthy lifestyle | ||||||||
A2P022: Education | |||||||||
A2P022: Mobility | Modal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging | Maximum 1/3 transport with car | |||||||
A2P022: Energy | Final energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reduction | Local energy production 150% of energy need | apply | Energy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balance | Energy | ||||
A2P022: Water | |||||||||
A2P022: Economic development | Total investments, Payback time, Economic value of savings | Investment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROI | |||||||
A2P022: Housing and Community | Development of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty | 50% rental apartments and 50% owner apartments | |||||||
A2P022: Waste | Recycling rate | ||||||||
A2P022: Other | Smart Cities strategies, Quality of open data | ||||||||
A2P023: Technological Solutions / Innovations - Energy Generation | |||||||||
A2P023: Photovoltaics | yes | yes | yes | yes | yes | no | yes | yes | yes |
A2P023: Solar thermal collectors | yes | no | no | yes | yes | no | no | no | no |
A2P023: Wind Turbines | no | no | no | no | yes | no | no | no | no |
A2P023: Geothermal energy system | yes | no | no | no | yes | no | no | yes | no |
A2P023: Waste heat recovery | yes | yes | no | no | yes | no | yes | no | no |
A2P023: Waste to energy | yes | no | no | no | no | no | no | no | no |
A2P023: Polygeneration | no | no | no | no | yes | no | no | no | no |
A2P023: Co-generation | no | yes | no | no | no | no | no | no | no |
A2P023: Heat Pump | yes | yes | no | yes | yes | no | yes | yes | no |
A2P023: Hydrogen | no | no | no | no | yes | no | no | no | no |
A2P023: Hydropower plant | no | no | no | yes | no | no | no | no | no |
A2P023: Biomass | no | yes | no | no | no | no | no | no | no |
A2P023: Biogas | no | no | no | no | no | no | no | no | no |
A2P023: Other | |||||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | |||||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | yes | yes | yes | yes | yes | no | yes | yes | yes |
A2P024: Energy management system | yes | yes | no | yes | yes | no | yes | yes | yes |
A2P024: Demand-side management | yes | no | yes | yes | yes | no | yes | no | no |
A2P024: Smart electricity grid | no | no | yes | no | yes | no | no | no | yes |
A2P024: Thermal Storage | yes | yes | no | no | yes | no | no | yes | no |
A2P024: Electric Storage | yes | no | no | no | yes | no | no | yes | yes |
A2P024: District Heating and Cooling | yes | yes | no | no | yes | no | yes | yes | no |
A2P024: Smart metering and demand-responsive control systems | yes | no | yes | no | yes | no | yes | yes | no |
A2P024: P2P – buildings | no | no | no | yes | no | no | no | no | no |
A2P024: Other | |||||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | |||||||||
A2P025: Deep Retrofitting | no | yes | no | yes | no | no | yes | yes | no |
A2P025: Energy efficiency measures in historic buildings | yes | no | no | yes | no | no | no | no | no |
A2P025: High-performance new buildings | yes | yes | no | no | yes | no | no | no | no |
A2P025: Smart Public infrastructure (e.g. smart lighting) | yes | no | no | no | yes | no | no | no | no |
A2P025: Urban data platforms | yes | yes | no | yes | yes | no | yes | yes | no |
A2P025: Mobile applications for citizens | no | no | no | no | no | no | no | no | no |
A2P025: Building services (HVAC & Lighting) | no | yes | no | no | yes | no | yes | no | yes |
A2P025: Smart irrigation | no | no | no | no | no | no | no | no | no |
A2P025: Digital tracking for waste disposal | no | no | no | no | yes | no | no | no | no |
A2P025: Smart surveillance | no | no | no | no | no | no | no | no | no |
A2P025: Other | |||||||||
A2P026: Technological Solutions / Innovations - Mobility | |||||||||
A2P026: Efficiency of vehicles (public and/or private) | no | yes | no | yes | no | no | no | no | yes |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | no | yes | no | no | yes | no | no | no | no |
A2P026: e-Mobility | yes | yes | no | yes | yes | no | no | yes | no |
A2P026: Soft mobility infrastructures and last mile solutions | no | yes | no | yes | yes | no | no | yes | no |
A2P026: Car-free area | no | no | no | no | yes | no | no | no | no |
A2P026: Other | |||||||||
A2P027: Mobility strategies - Additional notes | |||||||||
A2P027: Mobility strategies - Additional notes | Walkability | Test-Concept for bidirectional charging. | |||||||
A2P028: Energy efficiency certificates | |||||||||
A2P028: Energy efficiency certificates | Yes | Yes | No | Yes | Yes | Yes | Yes | ||
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate | The obligatory buildijng energy classification | Energy Performance Certificate - in Spain it is mandatory in order to buy or rent a house or a dwelling) | Miljöbyggnad silver/guld | National standards apply. | ||||
A2P029: Any other building / district certificates | |||||||||
A2P029: Any other building / district certificates | No | No | No | No | No | ||||
A2P029: If yes, please specify and/or enter notes | |||||||||
A3P001: Relevant city /national strategy | |||||||||
A3P001: Relevant city /national strategy |
|
|
|
|
|
|
| ||
A3P002: Quantitative targets included in the city / national strategy | |||||||||
A3P002: Quantitative targets included in the city / national strategy | Carbon neutrality by 2035 | City strategy: Net climate neutrality 2030 | Carbon neutrality 2050 | City wide climate neutrality by 2035, city administration climate neutrality by 2030 | |||||
A3P003: Strategies towards decarbonization of the gas grid | |||||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
|
|
| |||||
A3P003: Other | No gas grid in Brunnshög | ||||||||
A3P004: Identification of needs and priorities | |||||||||
A3P004: Identification of needs and priorities | Developing and demonstrating solutions for carbon neutrality | Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars. | -Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | ||||||
A3P005: Sustainable behaviour | |||||||||
A3P005: Sustainable behaviour | In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed. | E. g. visualizing energy and water consumption | Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection. | -Improving the development of Net Zero Energy Buildings and Flexible Energy buildings. | |||||
A3P006: Economic strategies | |||||||||
A3P006: Economic strategies |
|
|
|
|
|
|
|
| |
A3P006: Other | Attractivenes | operational savings through efficiency measures | |||||||
A3P007: Social models | |||||||||
A3P007: Social models |
|
|
|
|
|
|
|
|
|
A3P007: Other | |||||||||
A3P008: Integrated urban strategies | |||||||||
A3P008: Integrated urban strategies |
|
|
|
|
|
| |||
A3P008: Other | |||||||||
A3P009: Environmental strategies | |||||||||
A3P009: Environmental strategies |
|
|
|
|
|
|
| ||
A3P009: Other | Positive Energy Balance for the demo site | ||||||||
A3P010: Legal / Regulatory aspects | |||||||||
A3P010: Legal / Regulatory aspects | At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen: Lack of legal certainty and clarity with regard to the energy legislation. Lack of coherence between policy and legislation from different ministries. The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals. Lack of capacity on the distribution grid for electricity | The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions. | decision by the Munich City Council in 2019 to become climate neutral by 2030 / 2035 | - European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013. | |||||
B1P001: PED/PED relevant concept definition | |||||||||
B1P001: PED/PED relevant concept definition | The original idea is that the area produces at least as much it consumes. | Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods. | Onsite Energy Ratio > 1 | Munich as demonstrator together with Lyon in ASCEND project | |||||
B1P002: Motivation behind PED/PED relevant project development | |||||||||
B1P002: Motivation behind PED/PED relevant project development | Developing systems towards carbon neutrality. Also urban renewal. | The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development. | Strategic, economic | speed and scale of PEDs | |||||
B1P003: Environment of the case study area | |||||||||
B2P003: Environment of the case study area | Suburban area | Suburban area | Urban area | Urban area | Urban area | Urban area | |||
B1P004: Type of district | |||||||||
B2P004: Type of district |
|
|
|
|
|
| |||
B1P005: Case Study Context | |||||||||
B1P005: Case Study Context |
|
|
|
|
|
|
| ||
B1P006: Year of construction | |||||||||
B1P006: Year of construction | |||||||||
B1P007: District population before intervention - Residential | |||||||||
B1P007: District population before intervention - Residential | 3500 | 0 | 6 | ||||||
B1P008: District population after intervention - Residential | |||||||||
B1P008: District population after intervention - Residential | 3500 | 18000 | 6 | ||||||
B1P009: District population before intervention - Non-residential | |||||||||
B1P009: District population before intervention - Non-residential | 2000 | ||||||||
B1P010: District population after intervention - Non-residential | |||||||||
B1P010: District population after intervention - Non-residential | 22000 | ||||||||
B1P011: Population density before intervention | |||||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | |||||||||
B1P012: Population density after intervention | 0 | 0.058333333333333 | 0 | 0 | 0.026666666666667 | 0 | 0 | 0.010714285714286 | 0 |
B1P013: Building and Land Use before intervention | |||||||||
B1P013: Residential | no | yes | no | yes | no | no | yes | yes | no |
B1P013 - Residential: Specify the sqm [m²] | |||||||||
B1P013: Office | no | no | no | no | yes | no | yes | no | no |
B1P013 - Office: Specify the sqm [m²] | 60000 | ||||||||
B1P013: Industry and Utility | no | no | no | no | no | no | no | no | no |
B1P013 - Industry and Utility: Specify the sqm [m²] | |||||||||
B1P013: Commercial | no | yes | no | no | no | no | no | no | no |
B1P013 - Commercial: Specify the sqm [m²] | |||||||||
B1P013: Institutional | no | no | no | no | no | no | no | no | no |
B1P013 - Institutional: Specify the sqm [m²] | |||||||||
B1P013: Natural areas | no | yes | yes | no | yes | no | no | no | no |
B1P013 - Natural areas: Specify the sqm [m²] | 2000000 | ||||||||
B1P013: Recreational | no | yes | no | no | no | no | yes | no | no |
B1P013 - Recreational: Specify the sqm [m²] | |||||||||
B1P013: Dismissed areas | no | no | no | no | no | no | no | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | |||||||||
B1P013: Other | no | no | no | yes | yes | no | no | no | no |
B1P013 - Other: Specify the sqm [m²] | Outdoor parking: 100000 | ||||||||
B1P014: Building and Land Use after intervention | |||||||||
B1P014: Residential | no | yes | no | yes | yes | no | yes | yes | no |
B1P014 - Residential: Specify the sqm [m²] | 600000 | ||||||||
B1P014: Office | no | no | no | no | yes | no | yes | no | no |
B1P014 - Office: Specify the sqm [m²] | 650000 | ||||||||
B1P014: Industry and Utility | no | no | no | no | no | no | no | no | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | |||||||||
B1P014: Commercial | no | yes | no | no | no | no | no | no | no |
B1P014 - Commercial: Specify the sqm [m²] | |||||||||
B1P014: Institutional | no | no | no | no | yes | no | no | no | no |
B1P014 - Institutional: Specify the sqm [m²] | 50000 | ||||||||
B1P014: Natural areas | no | yes | no | no | no | no | no | no | no |
B1P014 - Natural areas: Specify the sqm [m²] | |||||||||
B1P014: Recreational | no | yes | no | no | yes | no | yes | no | no |
B1P014 - Recreational: Specify the sqm [m²] | 400000 | ||||||||
B1P014: Dismissed areas | no | no | no | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | |||||||||
B1P014: Other | no | no | no | yes | no | no | no | no | no |
B1P014 - Other: Specify the sqm [m²] | |||||||||
B2P001: PED Lab concept definition | |||||||||
B2P001: PED Lab concept definition | Groningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city. | addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation | |||||||
B2P002: Installation life time | |||||||||
B2P002: Installation life time | The MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact. | ||||||||
B2P003: Scale of action | |||||||||
B2P003: Scale | District | Virtual | |||||||
B2P004: Operator of the installation | |||||||||
B2P004: Operator of the installation | The Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties. | IREC | |||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | |||||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | Groningen does not have a strategy to reuse and recyle materials | ||||||||
B2P006: Circular Economy Approach | |||||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | No | No | |||||||
B2P006: Other | |||||||||
B2P007: Motivation for developing the PED Lab | |||||||||
B2P007: Motivation for developing the PED Lab |
|
| |||||||
B2P007: Other | |||||||||
B2P008: Lead partner that manages the PED Lab | |||||||||
B2P008: Lead partner that manages the PED Lab | Municipality | Research center/University | |||||||
B2P008: Other | |||||||||
B2P009: Collaborative partners that participate in the PED Lab | |||||||||
B2P009: Collaborative partners that participate in the PED Lab |
| ||||||||
B2P009: Other | research companies, monitoring company, ict company | ||||||||
B2P010: Synergies between the fields of activities | |||||||||
B2P010: Synergies between the fields of activities | |||||||||
B2P011: Available facilities to test urban configurations in PED Lab | |||||||||
B2P011: Available facilities to test urban configurations in PED Lab |
|
| |||||||
B2P011: Other | |||||||||
B2P012: Incubation capacities of PED Lab | |||||||||
B2P012: Incubation capacities of PED Lab |
|
| |||||||
B2P013: Availability of the facilities for external people | |||||||||
B2P013: Availability of the facilities for external people | |||||||||
B2P014: Monitoring measures | |||||||||
B2P014: Monitoring measures |
|
| |||||||
B2P015: Key Performance indicators | |||||||||
B2P015: Key Performance indicators |
|
| |||||||
B2P016: Execution of operations | |||||||||
B2P016: Execution of operations | |||||||||
B2P017: Capacities | |||||||||
B2P017: Capacities | - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. | ||||||||
B2P018: Relations with stakeholders | |||||||||
B2P018: Relations with stakeholders | |||||||||
B2P019: Available tools | |||||||||
B2P019: Available tools |
|
| |||||||
B2P019: Available tools | |||||||||
B2P020: External accessibility | |||||||||
B2P020: External accessibility | |||||||||
C1P001: Unlocking Factors | |||||||||
C1P001: Recent technological improvements for on-site RES production | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 3 - Moderately important | 1 - Unimportant | |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | |
C1P001: Energy Communities, P2P, Prosumers concepts | 4 - Important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 4 - Important | 3 - Moderately important | |
C1P001: Storage systems and E-mobility market penetration | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 5 - Very important | |
C1P001: Decreasing costs of innovative materials | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 5 - Very important | 5 - Very important | |
C1P001: The ability to predict Multiple Benefits | 3 - Moderately important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 4 - Important | |
C1P001: The ability to predict the distribution of benefits and impacts | 3 - Moderately important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 4 - Important | |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 5 - Very important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 4 - Important | 1 - Unimportant | |
C1P001: Social acceptance (top-down) | 3 - Moderately important | 5 - Very important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 4 - Important | 1 - Unimportant | |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 4 - Important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | |
C1P001: Presence of integrated urban strategies and plans | 3 - Moderately important | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant | |
C1P001: Multidisciplinary approaches available for systemic integration | 2 - Slightly important | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 4 - Important | |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 5 - Very important | |
C1P001: Availability of RES on site (Local RES) | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 4 - Important | 4 - Important | 5 - Very important | |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | |
C1P001: Any other UNLOCKING FACTORS (if any) | Collaboration with the local partners | ||||||||
C1P002: Driving Factors | |||||||||
C1P002: Climate Change adaptation need | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 4 - Important | 4 - Important | |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important | 4 - Important | |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | |
C1P002: Urban re-development of existing built environment | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 4 - Important | 4 - Important | |
C1P002: Economic growth need | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | 3 - Moderately important | 4 - Important | |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 4 - Important | 4 - Important | |
C1P002: Territorial and market attractiveness | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | |
C1P002: Energy autonomy/independence | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 5 - Very important | |
C1P002: Any other DRIVING FACTOR | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | |
C1P002: Any other DRIVING FACTOR (if any) | Earthquakes due to gas extraction | ||||||||
C1P003: Administrative barriers | |||||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important | 3 - Moderately important | 4 - Important | |
C1P003: Lack of good cooperation and acceptance among partners | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | |
C1P003: Lack of public participation | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 4 - Important | 4 - Important | 2 - Slightly important | |
C1P003: Lack of institutions/mechanisms to disseminate information | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | |
C1P003:Long and complex procedures for authorization of project activities | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 4 - Important | 5 - Very important | |
C1P003: Complicated and non-comprehensive public procurement | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | |
C1P003: Fragmented and or complex ownership structure | 4 - Important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 5 - Very important | 5 - Very important | |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | 3 - Moderately important | 4 - Important | |
C1P003: Lack of internal capacities to support energy transition | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important | 4 - Important | |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 5 - Very important | |
C1P003: Any other Administrative BARRIER (if any) | Fragmented financial support; lack of experimental budget for complex projects, etc. | ||||||||
C1P004: Policy barriers | |||||||||
C1P004: Lack of long-term and consistent energy plans and policies | 1 - Unimportant | 2 - Slightly important | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 4 - Important | 1 - Unimportant | |
C1P004: Lacking or fragmented local political commitment and support on the long term | 1 - Unimportant | 3 - Moderately important | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 4 - Important | 1 - Unimportant | |
C1P004: Lack of Cooperation & support between national-regional-local entities | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 4 - Important | 3 - Moderately important | 2 - Slightly important | |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | |
C1P004: Any other Political BARRIER (if any) | Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc. | ||||||||
C1P005: Legal and Regulatory barriers | |||||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | |
C1P005: Regulatory instability | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | |
C1P005: Non-effective regulations | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 4 - Important | 3 - Moderately important | 2 - Slightly important | |
C1P005: Unfavorable local regulations for innovative technologies | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 4 - Important | 3 - Moderately important | 4 - Important | |
C1P005: Building code and land-use planning hindering innovative technologies | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 4 - Important | 3 - Moderately important | 3 - Moderately important | |
C1P005: Insufficient or insecure financial incentives | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 2 - Slightly important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | |
C1P005: Shortage of proven and tested solutions and examples | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 3 - Moderately important | 4 - Important | |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | |
C1P005: Any other Legal and Regulatory BARRIER (if any) | |||||||||
C1P006: Environmental barriers | |||||||||
C1P006: Environmental barriers | ? | ||||||||
C1P007: Technical barriers | |||||||||
C1P007: Lack of skilled and trained personnel | 4 - Important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important | 5 - Very important | |
C1P007: Deficient planning | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 3 - Moderately important | 5 - Very important | |
C1P007: Retrofitting work in dwellings in occupied state | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 1 - Unimportant | |
C1P007: Lack of well-defined process | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important | |
C1P007: Inaccuracy in energy modelling and simulation | 4 - Important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | |
C1P007: Lack/cost of computational scalability | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 4 - Important | |
C1P007: Grid congestion, grid instability | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | 3 - Moderately important | 5 - Very important | |
C1P007: Negative effects of project intervention on the natural environment | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | |
C1P007: Difficult definition of system boundaries | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 4 - Important | 3 - Moderately important | 1 - Unimportant | |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | |
C1P007: Any other Thecnical BARRIER (if any) | Inadequate regulation towards energy transition | ||||||||
C1P008: Social and Cultural barriers | |||||||||
C1P008: Inertia | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 4 - Important | |
C1P008: Lack of values and interest in energy optimization measurements | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | |
C1P008: Low acceptance of new projects and technologies | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 4 - Important | 5 - Very important | |
C1P008: Difficulty of finding and engaging relevant actors | 2 - Slightly important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | |
C1P008: Lack of trust beyond social network | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | |
C1P008: Rebound effect | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | |
C1P008: Hostile or passive attitude towards environmentalism | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | |
C1P008: Exclusion of socially disadvantaged groups | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | |
C1P008: Non-energy issues are more important and urgent for actors | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 4 - Important | 1 - Unimportant | |
C1P008: Hostile or passive attitude towards energy collaboration | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P008: Any other Social BARRIER (if any) | |||||||||
C1P009: Information and Awareness barriers | |||||||||
C1P009: Insufficient information on the part of potential users and consumers | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 4 - Important | 1 - Unimportant | |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | 3 - Moderately important | 5 - Very important | |
C1P009: Lack of awareness among authorities | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 4 - Important | 2 - Slightly important | |
C1P009: Information asymmetry causing power asymmetry of established actors | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | |
C1P009: High costs of design, material, construction, and installation | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P009: Any other Information and Awareness BARRIER (if any) | |||||||||
C1P010: Financial barriers | |||||||||
C1P010: Hidden costs | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 4 - Important | 3 - Moderately important | 5 - Very important | |
C1P010: Insufficient external financial support and funding for project activities | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 4 - Important | 4 - Important | 5 - Very important | |
C1P010: Economic crisis | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 4 - Important | |
C1P010: Risk and uncertainty | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important | 5 - Very important | |
C1P010: Lack of consolidated and tested business models | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important | 4 - Important | 3 - Moderately important | 5 - Very important | |
C1P010: Limited access to capital and cost disincentives | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | ||
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P010: Any other Financial BARRIER (if any) | |||||||||
C1P011: Market barriers | |||||||||
C1P011: Split incentives | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 4 - Important | |
C1P011: Energy price distortion | 4 - Important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 5 - Very important | 5 - Very important | |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 5 - Very important | |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | |
C1P011: Any other Market BARRIER (if any) | |||||||||
C1P012: Stakeholders involved | |||||||||
C1P012: Government/Public Authorities |
|
|
|
|
|
| |||
C1P012: Research & Innovation |
|
|
|
|
| ||||
C1P012: Financial/Funding |
|
|
|
| |||||
C1P012: Analyst, ICT and Big Data |
|
|
|
|
| ||||
C1P012: Business process management |
|
|
|
|
| ||||
C1P012: Urban Services providers |
|
|
|
|
|
| |||
C1P012: Real Estate developers |
|
|
|
|
|
| |||
C1P012: Design/Construction companies |
|
|
|
|
| ||||
C1P012: End‐users/Occupants/Energy Citizens |
|
|
|
|
|
| |||
C1P012: Social/Civil Society/NGOs |
|
|
|
|
| ||||
C1P012: Industry/SME/eCommerce |
|
|
|
|
| ||||
C1P012: Other | |||||||||
C1P012: Other (if any) | |||||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)