Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Uncompare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Uncompare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Halmstad, Fyllinge
Maia, Sobreiro Social Housing
Istanbul, Kadikoy district, Caferaga
Bologna, Pilastro-Roveri district
Riga, Ķīpsala, RTU smart student city
Oslo, Verksbyen
Groningen, PED South
Leipzig, Baumwollspinnerei district
NyBy – Ny Flyplass (New City – New Airport)
Utrecht, the Netherlands (District of Kanaleneiland)
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthHalmstad, FyllingeMaia, Sobreiro Social HousingIstanbul, Kadikoy district, CaferagaBologna, Pilastro-Roveri districtRiga, Ķīpsala, RTU smart student cityOslo, VerksbyenGroningen, PED SouthLeipzig, Baumwollspinnerei districtNyBy – Ny Flyplass (New City – New Airport)Utrecht, the Netherlands (District of Kanaleneiland)
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesnoyesyesnoyesyesno
PED relevant case studynoyesnonoyesnononononoyes
PED Lab.yesnoyesnonononoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyesyesyesyesyesyesyes
Annual energy surplusyesnononononoyesyesnonono
Energy communityyesyesnoyesyesyesnoyesnonoyes
Circularityyesnonononononoyesnonono
Air quality and urban comfortnonononononoyesnoyesnono
Electrificationnonononononononoyesnoyes
Net-zero energy costnonononononononononono
Net-zero emissionyesnononononoyesyesnoyesno
Self-sufficiency (energy autonomous)nononononoyesnonononono
Maximise self-sufficiencynonoyesnonoyesnonononono
Othernonononononononoyesyesno
Other (A1P004)Net-zero emission; Annual energy surplusEnergy efficient; Sustainable neighbourhood; Social aspects/affordability
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhaseImplementation PhaseImplementation PhaseImplementation PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date12/1801/2110/2101/2009/1901/2407/1812/1801/2011/23
A1P007: End Date
A1P007: End date12/2301/3010/2412/2210/2312/2608/2412/2311/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
      • Alpagut, B., Lopez Romo, A., Hernández, P., Tabanoğlu, O., & Hermoso Martinez, N. (2021). A GIS-Based Multicriteria Assessment for Identification of Positive Energy Districts Boundary in Cities. Energies, 14(22), 7517.
      • Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190,
      • Barroco Fontes Cunha F., Carani C., Nucci C.A., Castro C., Santana Silva M., Andrade Torres E. (2021) Transitioning to a low carbon society through energy communities: Lessons learned from Brazil and Italy, ENERGY RESEARCH & SOCIAL SCIENCE, 2021, 75, 1-19.,
      • GRETA Project, Pilastro-Roveri case study. Available at: https://projectgreta.eu/case-study/renewable-energy-district/
      • TNO, Hanze, RUG,
      • Ped noord book
          A1P011: Geographic coordinates
          X Coordinate (longitude):6.53512112.92054-8.37355729.0263195268751711.39732324.0816833910.9861733544329926.59065512.31845814.3631695.0875
          Y Coordinate (latitude):53.23484656.6519441.13580440.9884139524746144.50710656.9524595659.2242971664204653.20408751.32649267.27195452.0653
          A1P012: Country
          A1P012: CountryNetherlandsSwedenPortugalTurkeyItalyLatviaNorwayNetherlandsGermanyNorwayNetherlands
          A1P013: City
          A1P013: CityGroningenHalmstadMaiaIstanbulBolognaRigaFredrikstadGroningenLeipzigBodøUtrecht (Kanaleneiland)
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CfaDwbCsbCsbCfaCfbCfbCfaDfbDfcCfb
          A1P015: District boundary
          A1P015: District boundaryFunctionalGeographicVirtualGeographicGeographicGeographicGeographicFunctionalFunctionalGeographic
          OtherGeographic
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedMixedPublicMixedMixedPublicPrivateMixedPublicPrivate
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple Owners
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED72502213196215242
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]1.0111605217000035507.8617000
          A1P020: Total ground area
          A1P020: Total ground area [m²]17.1321151727780000011926445.0933000034000002910000
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area00000100100
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estateyesyesnonononoyesyesnonono
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenonononononononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Otheryesnoyesnonononoyesnonono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnonononononononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingyesnoyesnoyesnonoyesnonoyes
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnonoyesnoyesnononononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingyesnononoyesnonoyesnonono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernonononononononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUyesyesyesyesyesyesnoyesnonono
          A1P022i: Add the value in EUR if available [EUR]7500000
          A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononononononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononoyesnononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local and sustainable production
          • Job creation,
          • Positive externalities,
          • Other
          • Job creation,
          • Positive externalities,
          • Boosting local businesses
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Boosting local businesses,
          • Boosting local and sustainable production
          A1P023: OtherBoosting new investors to the area, - Increasing the touristic value of area and urban mobility at the area, - Increasing the regional value (housing price, etc.), - Providing economic advantages by switching to positive energy productionSustainable and replicable business models regarding renewable energy systems
          A1P024: More comments:
          A1P024: More comments:The Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190]The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
          Contact person for general enquiries
          A1P026: NameJasper Tonen, Elisabeth KoopsMarkus OlofsgårdAdelina RodriguesMr. Dogan UNERIProf. Danila LongoJudith StiekemaTonje Healey TrulsrudJasper Tonen, Elisabeth KoopsSimon BaumChristoph GollnerDr. Gonçalo Homem De Almeida Rodriguez Correia
          A1P027: OrganizationMunicipality of GroningenAFRYMaia Municipality (CM Maia) – Energy and Mobility divisionMunicipality of KadikoyUniversity of Bologna - Architecture DepartmentOASCNorwegian University of Science and technology (NTNU)Municipality of GroningenCENERO Energy GmbHFFGDelft University of Technology
          A1P028: AffiliationMunicipality / Public BodiesOtherMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityOtherResearch Center / UniversityMunicipality / Public BodiesOtherOtherResearch Center / University
          A1P028: Othernot for profit private organisationCENERO Energy GmbH
          A1P029: EmailJasper.tonen@groningen.nlmarkus.olofsgard@afry.comdscm.adelina@cm-maia.ptdogan.uneri@kadikoy.bel.trjudith@oascities.orgtonje.h.trulsrud@ntnu.noJasper.tonen@groningen.nlsib@cenero.dechristoph.gollner@ffg.atg.correia@tudelft.nl
          Contact person for other special topics
          A1P030: NameCarolina Gonçalves (AdEPorto)Mrs. Damla MUHCU YILMAZSimon BaumQiaochu Fan
          A1P031: Emailcarolinagoncalves@adeporto.eudamla.muhcu@kadikoy.bel.trsib@cenero.deq.fan-1@tudelft.nl
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Waste management
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Waste management
          • Energy efficiency,
          • Energy flexibility,
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamslink based regulation of electricity gridEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Energy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulationA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Energy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilationEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streams
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoNoYesYesNoYesNo
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoNoYesNoNoYesNoNo
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoYesNoNoYesNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.Mobility, till now, is not included in the energy model.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.30.9480000.161.861.65
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.1050000.0531.45
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]0
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVnoyesyesyesyesnoyesnoyesnono
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.510.18
          A2P011: Windnononononoyesnonononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnonononononononononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnonononononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnononononoyesnonononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
          A2P011: Othernonononononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalyesyesnononononoyesnonono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalyesnoyesyesyesnonoyesnonono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.08
          A2P012: Biomass_heatyesnononoyesyesnoyesnonono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
          A2P012: Waste heat+HPyesnonononononoyesnonono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnonononononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thyesnonononononoyesnonono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnonononononononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononononononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersTwo scenarios are conducted regarding Kadikoy PED energy generation. For the second scenario, just 0.53GWh/annum PV production is proposed.Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.Geothermal heatpump systems, Waste heat from data centers
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]0.742.421
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]0.49
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnononononoyesnonononono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnonononononononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnonononononononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernonononononononononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnononoyesnonononononono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]-0.26
          A2P018: Windnonononononononononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononononononononononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnonononononononononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnonononononononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnonononononononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernonononononononononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnonononononononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonononononononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonononononononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnonononononononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnonononononononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnonononononononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonononononononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernonononononononononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary000-2.26923076923080000000
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]-6.035
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & SecurityPersonal Safety
          A2P022: HealthHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)
          A2P022: Education
          A2P022: MobilitySustainable mobilityMode of transport; Access to public transportImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districts
          A2P022: EnergyEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissionsapplyEnergy efficiency in buildings; Net energy need; Gross energy need; Total energy needTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stability
          A2P022: Water
          A2P022: Economic developmentEconomic Performance: capital costs, operational costs, overall performanceDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
          A2P022: Housing and Communitydemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousnessDelivery and proximity to amenities
          A2P022: Waste
          A2P022: OtherSmartness and FlexibilityGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public Space
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsyesyesyesyesyesnoyesyesnonoyes
          A2P023: Solar thermal collectorsyesnoyesyesyesnonoyesnoyesno
          A2P023: Wind Turbinesnonononononononononoyes
          A2P023: Geothermal energy systemyesnononoyesnoyesyesnoyesno
          A2P023: Waste heat recoveryyesnonononononoyesnoyesno
          A2P023: Waste to energyyesnononoyesnonoyesnonono
          A2P023: Polygenerationnonononononononononono
          A2P023: Co-generationnonononoyesnononononono
          A2P023: Heat Pumpyesnoyesyesyesnoyesyesnoyesno
          A2P023: Hydrogennonononononononononono
          A2P023: Hydropower plantnonononononononononono
          A2P023: Biomassnonononononononononono
          A2P023: Biogasnonononononononononono
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesnoyesyesyesyesnonono
          A2P024: Energy management systemyesnoyesnonoyesyesyesnonoyes
          A2P024: Demand-side managementyesyesnononoyesyesnononono
          A2P024: Smart electricity gridnoyesnononoyesnonononoyes
          A2P024: Thermal Storageyesnonononoyesnoyesnonono
          A2P024: Electric Storageyesnoyesnoyesyesnoyesnonoyes
          A2P024: District Heating and Coolingyesnononoyesyesnoyesnoyesno
          A2P024: Smart metering and demand-responsive control systemsyesyesyesnonoyesyesyesnonono
          A2P024: P2P – buildingsnonononononononononono
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnonoyesnoyesnononononoyes
          A2P025: Energy efficiency measures in historic buildingsyesnonononononoyesnonono
          A2P025: High-performance new buildingsyesnononoyesnoyesyesnonono
          A2P025: Smart Public infrastructure (e.g. smart lighting)yesnoyesnoyesnonoyesnonoyes
          A2P025: Urban data platformsyesnonononoyesnoyesnonoyes
          A2P025: Mobile applications for citizensnonononoyesyesnonononono
          A2P025: Building services (HVAC & Lighting)nonoyesnoyesyesyesnononono
          A2P025: Smart irrigationnonononononononononono
          A2P025: Digital tracking for waste disposalnonoyesnoyesnononononono
          A2P025: Smart surveillancenonononoyesnononononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nonoyesnoyesnononononoyes
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononoyesnononononoyes
          A2P026: e-Mobilityyesnoyesnoyesnonoyesnonoyes
          A2P026: Soft mobility infrastructures and last mile solutionsnonononoyesnononononono
          A2P026: Car-free areanonononononononononono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesYesNoYesNoYesNoYesYes
          A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.Energy Performance Certificate for each dwellingNS3700 Norwegian Passive HouseEnergy Performance Certificate
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNoNoNoNo
          A2P029: If yes, please specify and/or enter notes
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Promotion of energy communities (REC/CEC)
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • National / international city networks addressing sustainable urban development and climate neutrality
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyCity level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal;
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas
          • Other
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas
          • Biogas
          A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesBologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility.
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Bologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri.In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Innovative business models,
          • Blockchain
          • Local trading
          • Innovative business models,
          • PPP models,
          • Existing incentives
          • Innovative business models,
          • PPP models,
          • Circular economy models,
          • Demand management Living Lab,
          • Local trading
          • Innovative business models,
          • PPP models,
          • Circular economy models,
          • Demand management Living Lab,
          • Existing incentives
          • Open data business models,
          • Innovative business models,
          • Demand management Living Lab
          • Innovative business models,
          • Blockchain
          • Innovative business models,
          • Other
          • Innovative business models,
          • Local trading,
          • Existing incentives
          A3P006: Otheroperational savings through efficiency measures
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Citizen Social Research,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance
          • Co-creation / Citizen engagement strategies,
          • Prevention of energy poverty,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Prevention of energy poverty,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Policy Forums,
          • Affordability,
          • Prevention of energy poverty,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Citizen Social Research,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance
          • Behavioural Change / End-users engagement
          • Co-creation / Citizen engagement strategies,
          • Citizen/owner involvement in planning and maintenance
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Prevention of energy poverty,
          • Digital Inclusion
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • Strategic urban planning
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Digital twinning and visual 3D models
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • Strategic urban planning,
          • District Energy plans
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral
          • Energy Neutral,
          • Carbon-free
          • Energy Neutral,
          • Net zero carbon footprint,
          • Pollutants Reduction
          • Energy Neutral,
          • Low Emission Zone,
          • Net zero carbon footprint
          • Energy Neutral,
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Pollutants Reduction,
          • Greening strategies
          • Energy Neutral
          • Energy Neutral
          • Other
          • Energy Neutral,
          • Low Emission Zone,
          • Nature Based Solutions (NBS)
          A3P009: OtherPositive Energy Balance for the demo site
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityPEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionPilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentPilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaSuburban areaUrban areaUrban areaUrban areaSuburban areaSuburban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • Renovation
          • Renovation
          • New construction
          • New construction
          B1P005: Case Study Context
          B1P005: Case Study Context
          • New Development
          • Re-use / Transformation Area,
          • Retrofitting Area
          • Retrofitting Area
          • New Development
          • Preservation Area
          • New Development
          B1P006: Year of construction
          B1P006: Year of construction
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential23.379
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P011: Population density before intervention
          B1P011: Population density before intervention00000000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention00000000000
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnononoyesyesnononononono
          B1P013 - Residential: Specify the sqm [m²]
          B1P013: Officenononoyesyesnononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynonononoyesnoyesnononono
          B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
          B1P013: Commercialnononoyesyesnononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnonononoyesnononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnoyesnonoyesnononononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnonononoyesnononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnonononoyesnononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernononoyesnonononononono
          B1P013 - Other: Specify the sqm [m²]Cultural Center, Sports Center / Total building and land use data of neigborhood 13,878 residential, 4,441 commercial using before intervention. For project area & 49 building area m2
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnononoyesyesnoyesnonoyesno
          B1P014 - Residential: Specify the sqm [m²]
          B1P014: Officenononoyesyesnononononono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynonononoyesnononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnononoyesyesnononononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnonononoyesnononononono
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnonononoyesnononononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnonononoyesnononononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnonononoyesnononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernononoyesnononononoyesno
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.Groningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
          B2P002: Installation life time
          B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.Permanent installationThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
          B2P003: Scale of action
          B2P003: ScaleDistrictVirtualDistrict
          B2P004: Operator of the installation
          B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.CM Maia, IPMAIA, NEW, AdEP.The Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materialsGroningen does not have a strategy to reuse and recyle materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Civic
          • Strategic
          • Civic
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabMunicipalityMunicipalityMunicipality
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          • Academia,
          • Private,
          • Industrial,
          • Other
          • Academia,
          • Private,
          • Industrial,
          • Citizens, public, NGO,
          • Other
          • Academia,
          • Private,
          • Industrial,
          • Other
          B2P009: Otherresearch companies, monitoring company, ict companyEnergy Agencyresearch companies, monitoring company, ict company
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Energy storage,
          • Energy networks,
          • Waste management,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Social interactions,
          • Business models
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Efficiency measures,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Ambient measures,
          • Social interactions
          • Buildings,
          • Demand-side management,
          • Energy storage,
          • Energy networks,
          • Waste management,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Social interactions,
          • Business models
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Tools for prototyping and modelling
          • Monitoring and evaluation infrastructure,
          • Tools, spaces, events for testing and validation
          • Tools for prototyping and modelling
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Execution plan,
          • Available data,
          • Type of measured data,
          • Equipment,
          • Level of access
          • Execution plan,
          • Available data,
          • Type of measured data
          • Execution plan,
          • Available data,
          • Type of measured data,
          • Equipment,
          • Level of access
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Social,
          • Economical / Financial
          • Energy,
          • Environmental,
          • Social,
          • Economical / Financial
          • Energy,
          • Social,
          • Economical / Financial
          B2P016: Execution of operations
          B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
          B2P017: Capacities
          B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling,
          • Social models,
          • Business and financial models
          • Energy modelling,
          • Social models,
          • Business and financial models,
          • Fundraising and accessing resources,
          • Matching actors
          • Energy modelling,
          • Social models,
          • Business and financial models
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production3 - Moderately important3 - Moderately important4 - Important4 - Important4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant5 - Very important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant4 - Important
          C1P001: Energy Communities, P2P, Prosumers concepts4 - Important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important
          C1P001: Storage systems and E-mobility market penetration4 - Important5 - Very important4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important
          C1P001: Decreasing costs of innovative materials5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
          C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
          C1P001: The ability to predict Multiple Benefits3 - Moderately important2 - Slightly important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
          C1P001: Social acceptance (top-down)3 - Moderately important4 - Important4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important4 - Important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important4 - Important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important4 - Important4 - Important4 - Important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need2 - Slightly important3 - Moderately important5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important3 - Moderately important4 - Important5 - Very important5 - Very important4 - Important5 - Very important3 - Moderately important1 - Unimportant5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P002: Urban re-development of existing built environment4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important
          C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important
          C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important5 - Very important2 - Slightly important1 - Unimportant4 - Important
          C1P002: Energy autonomy/independence2 - Slightly important2 - Slightly important4 - Important4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extractionEarthquakes due to gas extraction
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P003: Lack of public participation1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P003:Long and complex procedures for authorization of project activities4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
          C1P003: Complicated and non-comprehensive public procurement3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P003: Fragmented and or complex ownership structure4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
          C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant4 - Important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant4 - Important4 - Important4 - Important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important
          C1P005: Regulatory instability3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P005: Non-effective regulations3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P005: Insufficient or insecure financial incentives3 - Moderately important3 - Moderately important4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant4 - Important4 - Important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important
          C1P007: Deficient planning2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important
          C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P007: Grid congestion, grid instability4 - Important1 - Unimportant4 - Important4 - Important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important
          C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P008: Low acceptance of new projects and technologies2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P008: Lack of trust beyond social network4 - Important1 - Unimportant4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important
          C1P008: Rebound effect2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P008: Exclusion of socially disadvantaged groups5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
          C1P008: Non-energy issues are more important and urgent for actors4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important
          C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important5 - Very important4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant4 - Important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P009: Lack of awareness among authorities2 - Slightly important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P009: High costs of design, material, construction, and installation4 - Important1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P010: Insufficient external financial support and funding for project activities3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P010: Economic crisis1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P010: Risk and uncertainty3 - Moderately important2 - Slightly important4 - Important5 - Very important5 - Very important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important
          C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P010: Limited access to capital and cost disincentives2 - Slightly important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important
          C1P011: Energy price distortion4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Design/demand aggregation,
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Analyst, ICT and Big Data
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Business process management
          • Planning/leading
          • Design/demand aggregation
          • None
          • None
          • Monitoring/operation/management
          • Planning/leading
          C1P012: Urban Services providers
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Real Estate developers
          • Construction/implementation
          • Construction/implementation
          • None
          • None
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          C1P012: Design/Construction companies
          • Construction/implementation
          • Design/demand aggregation
          • Construction/implementation
          • Construction/implementation
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation
          • Construction/implementation
          C1P012: End‐users/Occupants/Energy Citizens
          • None
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • None
          C1P012: Social/Civil Society/NGOs
          • Planning/leading,
          • Design/demand aggregation
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation
          C1P012: Industry/SME/eCommerce
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)