Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Uncompare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Lund, Brunnshög district
Oslo, Verksbyen
Bologna, Pilastro-Roveri district
Maia, Sobreiro Social Housing
Amsterdam, Buiksloterham PED
Riga, Ķīpsala, RTU smart student city
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthLund, Brunnshög districtOslo, VerksbyenBologna, Pilastro-Roveri districtMaia, Sobreiro Social HousingAmsterdam, Buiksloterham PEDRiga, Ķīpsala, RTU smart student city
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnonoyesyes
PED relevant case studynononoyesnonono
PED Lab.yesnononoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyes
Annual energy surplusyesyesyesnonoyesno
Energy communityyesyesnoyesnoyesyes
Circularityyesyesnononoyesno
Air quality and urban comfortnoyesyesnononono
Electrificationnoyesnononoyesno
Net-zero energy costnonononononono
Net-zero emissionyesyesyesnonoyesno
Self-sufficiency (energy autonomous)nonononononoyes
Maximise self-sufficiencynonononoyesnoyes
Othernoyesnonononono
Other (A1P004)Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseIn operationImplementation PhasePlanning PhasePlanning PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date12/18201507/1809/1910/2111/1901/24
A1P007: End Date
A1P007: End date12/23204008/2410/2310/2410/2512/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: OtherGIS open dataset is under constructionhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
  • Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190,
  • Barroco Fontes Cunha F., Carani C., Nucci C.A., Castro C., Santana Silva M., Andrade Torres E. (2021) Transitioning to a low carbon society through energy communities: Lessons learned from Brazil and Italy, ENERGY RESEARCH & SOCIAL SCIENCE, 2021, 75, 1-19.,
  • GRETA Project, Pilastro-Roveri case study. Available at: https://projectgreta.eu/case-study/renewable-energy-district/
      A1P011: Geographic coordinates
      X Coordinate (longitude):6.53512113.23246940076959910.98617335443299211.397323-8.3735574.904124.08168339
      Y Coordinate (latitude):53.23484655.7198979220719359.2242971664204644.50710641.13580452.367656.95245956
      A1P012: Country
      A1P012: CountryNetherlandsSwedenNorwayItalyPortugalNetherlandsLatvia
      A1P013: City
      A1P013: CityGroningenLundFredrikstadBolognaMaiaAmsterdamRiga
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CfaDfbCfbCfaCsbCfbCfb
      A1P015: District boundary
      A1P015: District boundaryFunctionalGeographicGeographicGeographicVirtualFunctionalGeographic
      Other
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedPublicPrivateMixedPublicMixedPublic
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED720021962226015
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]1.011500000355028500170000
      A1P020: Total ground area
      A1P020: Total ground area [m²]17.13215000007800000119264
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area0100001
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesyesyesnonoyesno
      A1P022a: Add the value in EUR if available [EUR]99999999
      A1P022b: Financing - PRIVATE - ESCO schemenonononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Otheryesnononoyesnono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnoyesnonononono
      A1P022d: Add the value in EUR if available [EUR]1000000
      A1P022e: Financing - PUBLIC - National fundingyesyesnoyesyesnono
      A1P022e: Add the value in EUR if available [EUR]30000000
      A1P022f: Financing - PUBLIC - Regional fundingnoyesnoyesyesnono
      A1P022f: Add the value in EUR if available [EUR]30000000
      A1P022g: Financing - PUBLIC - Municipal fundingyesyesnoyesnonono
      A1P022g: Add the value in EUR if available [EUR]180000000
      A1P022h: Financing - PUBLIC - Othernonononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUyesyesnoyesyesyesyes
      A1P022i: Add the value in EUR if available [EUR]20000007500000
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononoyesnonono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Other
      • Job creation,
      • Positive externalities,
      • Boosting local businesses
      • Positive externalities,
      • Boosting local and sustainable production
      • Boosting local businesses,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      • Boosting local businesses,
      • Boosting local and sustainable production
      A1P023: OtherWorld class sustainable living and research environments
      A1P024: More comments:
      A1P024: More comments:The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.The Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190]
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
      Contact person for general enquiries
      A1P026: NameJasper Tonen, Elisabeth KoopsMarkus PaulssonTonje Healey TrulsrudProf. Danila LongoAdelina RodriguesOmar ShafqatJudith Stiekema
      A1P027: OrganizationMunicipality of GroningenCity of LundNorwegian University of Science and technology (NTNU)University of Bologna - Architecture DepartmentMaia Municipality (CM Maia) – Energy and Mobility divisionAmsterdam University of Applied SciencesOASC
      A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityOther
      A1P028: Othernot for profit private organisation
      A1P029: EmailJasper.tonen@groningen.nlmarkus.paulsson@lund.setonje.h.trulsrud@ntnu.nodscm.adelina@cm-maia.pto.shafqat@hva.nljudith@oascities.org
      Contact person for other special topics
      A1P030: NameEva DalmanCarolina Gonçalves (AdEPorto)Omar Shafqat
      A1P031: Emaileva.dalman@lund.secarolinagoncalves@adeporto.euo.shafqat@hva.nl
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Water use,
      • Waste management,
      • Construction materials,
      • Other
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Water use,
      • Waste management,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      A2P001: OtherWalkability and biking
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsLundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.Energy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilationEnergy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulationEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:City vision, Innovation AteliersA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoYesYesNoYesNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesNoNoYesNoYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoYesNoNoNoNoYes
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.3250.168000
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.33300.0535000
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVnoyesyesyesyesyesno
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.18
      A2P011: Windnoyesnonononoyes
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononoyesno
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonononononoyes
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernonononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalyesnonononoyesno
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalyesnonoyesyesnono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatyesnonoyesnoyesyes
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
      A2P012: Waste heat+HPyesyesnononoyesno
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
      A2P012: Biomass_peat_heatnonononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thyesnononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnonononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnononononoyesyes
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnononononoyesno
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnononononoyesno
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnoyesnononoyesno
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnoyesnononoyesno
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronoyesnononoyesno
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnoyesnononoyesno
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnononononoyesno
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononoyesno
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononoyesno
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnononononoyesno
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnononononoyesno
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnononononoyesno
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononoyesno
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononoyesno
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnononononoyesno
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary0000000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]-6.035250
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & SecurityPersonal Safety
      A2P022: HealthHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)
      A2P022: Education
      A2P022: MobilityMaximum 1/3 transport with carSustainable mobility
      A2P022: EnergyLocal energy production 150% of energy needEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissions
      A2P022: Water
      A2P022: Economic developmentEconomic Performance: capital costs, operational costs, overall performance
      A2P022: Housing and Community50% rental apartments and 50% owner apartmentsdemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousness
      A2P022: Waste
      A2P022: OtherSmartness and Flexibility
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesyesyesyesno
      A2P023: Solar thermal collectorsyesyesnoyesyesnono
      A2P023: Wind Turbinesnoyesnonononono
      A2P023: Geothermal energy systemyesyesyesyesnoyesno
      A2P023: Waste heat recoveryyesyesnononoyesno
      A2P023: Waste to energyyesnonoyesnoyesno
      A2P023: Polygenerationnoyesnonononono
      A2P023: Co-generationnononoyesnonono
      A2P023: Heat Pumpyesyesyesyesyesyesno
      A2P023: Hydrogennoyesnonononono
      A2P023: Hydropower plantnonononononono
      A2P023: Biomassnononononoyesno
      A2P023: Biogasnononononoyesno
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesyesyesyes
      A2P024: Energy management systemyesyesyesnoyesyesyes
      A2P024: Demand-side managementyesyesyesnonoyesyes
      A2P024: Smart electricity gridnoyesnononoyesyes
      A2P024: Thermal Storageyesyesnononoyesyes
      A2P024: Electric Storageyesyesnoyesyesyesyes
      A2P024: District Heating and Coolingyesyesnoyesnoyesyes
      A2P024: Smart metering and demand-responsive control systemsyesyesyesnoyesyesyes
      A2P024: P2P – buildingsnononononoyesno
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnononoyesyesyesno
      A2P025: Energy efficiency measures in historic buildingsyesnonononoyesno
      A2P025: High-performance new buildingsyesyesyesyesnoyesno
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesnoyesyesyesno
      A2P025: Urban data platformsyesyesnononoyesyes
      A2P025: Mobile applications for citizensnononoyesnoyesyes
      A2P025: Building services (HVAC & Lighting)noyesyesyesyesyesyes
      A2P025: Smart irrigationnononononoyesno
      A2P025: Digital tracking for waste disposalnoyesnoyesyesyesno
      A2P025: Smart surveillancenononoyesnonono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nononoyesyesyesno
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnoyesnoyesno
      A2P026: e-Mobilityyesyesnoyesyesyesno
      A2P026: Soft mobility infrastructures and last mile solutionsnoyesnoyesnoyesno
      A2P026: Car-free areanoyesnononoyesno
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesWalkability
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesYesYesYesNo
      A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateMiljöbyggnad silver/guldNS3700 Norwegian Passive HouseEnergy Performance Certificate for each dwellingThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCity strategy: Net climate neutrality 2030City level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal;
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods
      • Other
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas,
      • Hydrogen
      A3P003: OtherNo gas grid in BrunnshögAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesLocal waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.Bologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.Bologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • Blockchain
      • PPP models,
      • Other
      • Innovative business models,
      • PPP models,
      • Circular economy models,
      • Demand management Living Lab,
      • Existing incentives
      • Innovative business models,
      • PPP models,
      • Existing incentives
      • Innovative business models,
      • Life Cycle Cost,
      • Circular economy models,
      • Demand management Living Lab,
      • Local trading,
      • Existing incentives
      • Open data business models,
      • Innovative business models,
      • Demand management Living Lab
      A3P006: OtherAttractivenes
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Quality of Life,
      • Strategies towards social mix
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Affordability,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Social incentives,
      • Quality of Life,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Digital twinning and visual 3D models
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral
      • Net zero carbon footprint,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Pollutants Reduction,
      • Greening strategies
      • Energy Neutral,
      • Net zero carbon footprint,
      • Pollutants Reduction
      • Energy Neutral,
      • Life Cycle approach
      • Energy Neutral
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityThe municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.PEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’Regulatory sandbox
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionVision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.Pilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.Functional PEDExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentThe aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.Pilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030.Brown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaSuburban areaUrban areaUrban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • New construction
      • Renovation
      • New construction
      B1P005: Case Study Context
      B1P005: Case Study Context
      • New Development
      • New Development
      • Retrofitting Area
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential0
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential18000
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential2000
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential22000
      B1P011: Population density before intervention
      B1P011: Population density before intervention0000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention00.02666666666666700000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnononoyesnonono
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officenoyesnoyesnonono
      B1P013 - Office: Specify the sqm [m²]60000
      B1P013: Industry and Utilitynonoyesyesnoyesno
      B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
      B1P013: Commercialnononoyesnonono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononoyesnonono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnoyesnoyesnonono
      B1P013 - Natural areas: Specify the sqm [m²]2000000
      B1P013: Recreationalnononoyesnonono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononoyesnonono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernoyesnonononono
      B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesyesyesnoyesno
      B1P014 - Residential: Specify the sqm [m²]600000
      B1P014: Officenoyesnoyesnoyesno
      B1P014 - Office: Specify the sqm [m²]650000
      B1P014: Industry and Utilitynononoyesnonono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnononoyesnoyesno
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnoyesnoyesnonono
      B1P014 - Institutional: Specify the sqm [m²]50000
      B1P014: Natural areasnononoyesnonono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnoyesnoyesnoyesno
      B1P014 - Recreational: Specify the sqm [m²]400000
      B1P014: Dismissed areasnononoyesnonono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernonononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.Permanent installation
      B2P003: Scale of action
      B2P003: ScaleDistrictVirtual
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.CM Maia, IPMAIA, NEW, AdEP.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Civic
      • Strategic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Other
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO,
      • Other
      B2P009: Otherresearch companies, monitoring company, ict companyEnergy Agency
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Energy storage,
      • Efficiency measures,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Ambient measures,
      • Social interactions
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Tools for prototyping and modelling
      • Monitoring and evaluation infrastructure,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      • Execution plan,
      • Available data,
      • Type of measured data
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Social,
      • Economical / Financial
      • Energy,
      • Environmental,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
      B2P017: Capacities
      B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models
      • Energy modelling,
      • Social models,
      • Business and financial models,
      • Fundraising and accessing resources,
      • Matching actors
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important5 - Very important5 - Very important4 - Important4 - Important4 - Important5 - Very important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important5 - Very important4 - Important4 - Important4 - Important5 - Very important5 - Very important
      C1P001: Energy Communities, P2P, Prosumers concepts4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important
      C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important
      C1P001: Decreasing costs of innovative materials5 - Very important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important
      C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important3 - Moderately important1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important
      C1P001: The ability to predict Multiple Benefits3 - Moderately important2 - Slightly important1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important
      C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important2 - Slightly important5 - Very important
      C1P001: Social acceptance (top-down)3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important5 - Very important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important4 - Important
      C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important5 - Very important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important
      C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important5 - Very important4 - Important4 - Important3 - Moderately important4 - Important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important4 - Important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need2 - Slightly important5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important5 - Very important5 - Very important4 - Important5 - Very important4 - Important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
      C1P002: Urban re-development of existing built environment4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important
      C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant5 - Very important4 - Important4 - Important4 - Important4 - Important4 - Important
      C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important5 - Very important3 - Moderately important4 - Important4 - Important4 - Important
      C1P002: Energy autonomy/independence2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important
      C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important2 - Slightly important4 - Important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important
      C1P003: Lack of public participation1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important4 - Important
      C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P003:Long and complex procedures for authorization of project activities4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
      C1P003: Complicated and non-comprehensive public procurement3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
      C1P003: Fragmented and or complex ownership structure4 - Important2 - Slightly important1 - Unimportant5 - Very important5 - Very important2 - Slightly important3 - Moderately important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important
      C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important5 - Very important5 - Very important4 - Important4 - Important3 - Moderately important4 - Important
      C1P005: Regulatory instability3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important3 - Moderately important
      C1P005: Non-effective regulations3 - Moderately important2 - Slightly important5 - Very important4 - Important4 - Important2 - Slightly important3 - Moderately important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important4 - Important
      C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
      C1P005: Insufficient or insecure financial incentives3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important3 - Moderately important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important3 - Moderately important
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers?
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important
      C1P007: Deficient planning2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
      C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant
      C1P007: Lack of well-defined process3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important
      C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
      C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important3 - Moderately important
      C1P007: Grid congestion, grid instability4 - Important4 - Important1 - Unimportant4 - Important4 - Important5 - Very important4 - Important
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important
      C1P007: Difficult definition of system boundaries1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P008: Low acceptance of new projects and technologies2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important
      C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P008: Lack of trust beyond social network4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important
      C1P008: Rebound effect2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
      C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P008: Exclusion of socially disadvantaged groups5 - Very important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
      C1P008: Non-energy issues are more important and urgent for actors4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
      C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important3 - Moderately important
      C1P009: Lack of awareness among authorities2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important4 - Important3 - Moderately important
      C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important4 - Important4 - Important4 - Important3 - Moderately important3 - Moderately important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs2 - Slightly important3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important
      C1P010: Insufficient external financial support and funding for project activities3 - Moderately important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
      C1P010: Economic crisis1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important
      C1P010: Risk and uncertainty3 - Moderately important5 - Very important4 - Important5 - Very important4 - Important4 - Important3 - Moderately important
      C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important
      C1P010: Limited access to capital and cost disincentives2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives5 - Very important3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important
      C1P011: Energy price distortion4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important2 - Slightly important5 - Very important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important2 - Slightly important1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Monitoring/operation/management
      • Planning/leading
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Analyst, ICT and Big Data
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Construction/implementation
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading
      • Design/demand aggregation,
      • Construction/implementation
      • None
      • Monitoring/operation/management
      C1P012: Urban Services providers
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Real Estate developers
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • Construction/implementation
      C1P012: Design/Construction companies
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • None
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Design/demand aggregation
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation
      • None
      • Planning/leading,
      • Design/demand aggregation
      • Design/demand aggregation
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      • Construction/implementation
      C1P012: Other
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)