Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Uncompare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Maia, Sobreiro Social Housing
City of Espoo, Espoonlahti district, Lippulaiva block
Lund, Brunnshög district
Istanbul, Ozyegin University Campus
Oslo, Verksbyen
Riga, Ķīpsala, RTU smart student city
Bologna, Pilastro-Roveri district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthMaia, Sobreiro Social HousingCity of Espoo, Espoonlahti district, Lippulaiva blockLund, Brunnshög districtIstanbul, Ozyegin University CampusOslo, VerksbyenRiga, Ķīpsala, RTU smart student cityBologna, Pilastro-Roveri district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyesnoyesyesno
PED relevant case studynonononoyesnonoyes
PED Lab.yesyesnononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesnoyesyesyesyesyes
Annual energy surplusyesnonoyesnoyesnono
Energy communityyesnonoyesnonoyesyes
Circularityyesnonoyesnononono
Air quality and urban comfortnononoyesyesyesnono
Electrificationnononoyesyesnonono
Net-zero energy costnononononononono
Net-zero emissionyesnonoyesnoyesnono
Self-sufficiency (energy autonomous)nonononononoyesno
Maximise self-sufficiencynoyesyesnononoyesno
Othernononoyesyesnonono
Other (A1P004)Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;almost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhaseIn operationIn operationImplementation PhaseImplementation PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date12/1810/2106/18201510/2407/1801/2409/19
A1P007: End Date
A1P007: End date12/2310/2403/22204010/2808/2412/2610/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: OtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
    • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
    • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
    • www.lippulaiva.fi
      • Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190,
      • Barroco Fontes Cunha F., Carani C., Nucci C.A., Castro C., Santana Silva M., Andrade Torres E. (2021) Transitioning to a low carbon society through energy communities: Lessons learned from Brazil and Italy, ENERGY RESEARCH & SOCIAL SCIENCE, 2021, 75, 1-19.,
      • GRETA Project, Pilastro-Roveri case study. Available at: https://projectgreta.eu/case-study/renewable-energy-district/
      A1P011: Geographic coordinates
      X Coordinate (longitude):6.535121-8.37355724.654313.23246940076959929.25830010.98617335443299224.0816833911.397323
      Y Coordinate (latitude):53.23484641.13580460.149155.7198979220719341.03060059.2242971664204656.9524595644.507106
      A1P012: Country
      A1P012: CountryNetherlandsPortugalFinlandSwedenTurkeyNorwayLatviaItaly
      A1P013: City
      A1P013: CityGroningenMaiaEspooLundIstanbulFredrikstadRigaBologna
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CfaCsbDfbDfbCfaCfbCfbCfa
      A1P015: District boundary
      A1P015: District boundaryFunctionalVirtualGeographicGeographicGeographicGeographicGeographicGeographic
      Other
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedPublicPrivatePublicPrivatePrivatePublicMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED7229200152151962
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]1.0111200015000003550170000
      A1P020: Total ground area
      A1P020: Total ground area [m²]17.1321650001500000285.4001192647800000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area00110010
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesnoyesyesyesyesnono
      A1P022a: Add the value in EUR if available [EUR]99999999
      A1P022b: Financing - PRIVATE - ESCO schemenononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Otheryesyesnononononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnononoyesnononono
      A1P022d: Add the value in EUR if available [EUR]1000000
      A1P022e: Financing - PUBLIC - National fundingyesyesnoyesnononoyes
      A1P022e: Add the value in EUR if available [EUR]30000000
      A1P022f: Financing - PUBLIC - Regional fundingnoyesnoyesnononoyes
      A1P022f: Add the value in EUR if available [EUR]30000000
      A1P022g: Financing - PUBLIC - Municipal fundingyesnonoyesnononoyes
      A1P022g: Add the value in EUR if available [EUR]180000000
      A1P022h: Financing - PUBLIC - Othernononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUyesyesyesyesyesnoyesyes
      A1P022i: Add the value in EUR if available [EUR]30887520000007500000
      A1P022j: Financing - RESEARCH FUNDING - Nationalnononononononono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononoyes
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local and sustainable production
      • Job creation,
      • Positive externalities,
      • Boosting local businesses
      • Other
      • Positive externalities,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Job creation,
      • Positive externalities,
      • Boosting local businesses
      A1P023: OtherWorld class sustainable living and research environments
      A1P024: More comments:
      A1P024: More comments:The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVsIn addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.The Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190]
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]1
      Contact person for general enquiries
      A1P026: NameJasper Tonen, Elisabeth KoopsAdelina RodriguesElina EkelundMarkus PaulssonCem KeskinTonje Healey TrulsrudJudith StiekemaProf. Danila Longo
      A1P027: OrganizationMunicipality of GroningenMaia Municipality (CM Maia) – Energy and Mobility divisionCitycon OyjCity of LundCenter for Energy, Environment and Economy, Ozyegin UniversityNorwegian University of Science and technology (NTNU)OASCUniversity of Bologna - Architecture Department
      A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesSME / IndustryMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityOtherResearch Center / University
      A1P028: Othernot for profit private organisation
      A1P029: EmailJasper.tonen@groningen.nldscm.adelina@cm-maia.ptElina.ekelund@citycon.commarkus.paulsson@lund.secem.keskin@ozyegin.edu.trtonje.h.trulsrud@ntnu.nojudith@oascities.org
      Contact person for other special topics
      A1P030: NameCarolina Gonçalves (AdEPorto)Elina EkelundEva DalmanM. Pınar Mengüç
      A1P031: Emailcarolinagoncalves@adeporto.euElina.ekelund@citycon.comeva.dalman@lund.sepinar.menguc@ozyegin.edu.tr
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Water use,
      • Waste management,
      • Construction materials,
      • Other
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management,
      • Indoor air quality,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management
      A2P001: OtherWalkability and biking
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Energy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricLundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.LEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentEnergy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilationA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Energy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulation
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoYesNoYesYesNoYes
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesYesYesYesNoYesNo
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoNoYesNoNoYesNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.Mobility is not included in the energy model.Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.Not included, the campus is a non car area except emergenciesThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.35.5250.168000
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.335.8300.0535000
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVnoyesyesyesyesyesnoyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.540.18
      A2P011: Windnononoyesnonoyesno
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonononononoyesno
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernononononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalyesnoyesnonononono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
      A2P012: Solar Thermalyesyesnononononoyes
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatyesnononononoyesyes
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
      A2P012: Waste heat+HPyesnonoyesnononono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
      A2P012: Biomass_peat_heatnononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thyesnonononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]11.33.5
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]5.76
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonononononoyesno
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P017: Coalnononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P017: Oilnononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P017: Othernononononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnononoyesyesnonono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
      A2P018: Windnononoyesnononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronononoyesnononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnononoyesnononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnononononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonoyesnonononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.26
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnononononononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnononononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnononononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary001.053231939163500000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]0-6.035
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & SecurityPersonal Safety
      A2P022: HealthHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)
      A2P022: Education
      A2P022: MobilityMaximum 1/3 transport with carSustainable mobility
      A2P022: EnergyOn-site energy ratioLocal energy production 150% of energy needEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissions
      A2P022: Water
      A2P022: Economic developmentEconomic Performance: capital costs, operational costs, overall performance
      A2P022: Housing and Community50% rental apartments and 50% owner apartmentsdemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousness
      A2P022: Waste
      A2P022: OtherSmartness and Flexibility
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesyesyesyesnoyes
      A2P023: Solar thermal collectorsyesyesnoyesnononoyes
      A2P023: Wind Turbinesnononoyesyesnonono
      A2P023: Geothermal energy systemyesnoyesyesnoyesnoyes
      A2P023: Waste heat recoveryyesnoyesyesnononono
      A2P023: Waste to energyyesnonononononoyes
      A2P023: Polygenerationnononoyesnononono
      A2P023: Co-generationnonononoyesnonoyes
      A2P023: Heat Pumpyesyesnoyesyesyesnoyes
      A2P023: Hydrogennononoyesnononono
      A2P023: Hydropower plantnononononononono
      A2P023: Biomassnononononononono
      A2P023: Biogasnononononononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesyesyesyesyes
      A2P024: Energy management systemyesyesyesyesyesyesyesno
      A2P024: Demand-side managementyesnonoyesyesyesyesno
      A2P024: Smart electricity gridnonoyesyesnonoyesno
      A2P024: Thermal Storageyesnoyesyesnonoyesno
      A2P024: Electric Storageyesyesyesyesyesnoyesyes
      A2P024: District Heating and Coolingyesnonoyesyesnoyesyes
      A2P024: Smart metering and demand-responsive control systemsyesyesnoyesyesyesyesno
      A2P024: P2P – buildingsnononononononono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnoyesnononononoyes
      A2P025: Energy efficiency measures in historic buildingsyesnonononononono
      A2P025: High-performance new buildingsyesnoyesyesyesyesnoyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesyesyesnononoyes
      A2P025: Urban data platformsyesnonoyesnonoyesno
      A2P025: Mobile applications for citizensnonononononoyesyes
      A2P025: Building services (HVAC & Lighting)noyesyesyesyesyesyesyes
      A2P025: Smart irrigationnonononoyesnonono
      A2P025: Digital tracking for waste disposalnoyesnoyesnononoyes
      A2P025: Smart surveillancenonononoyesnonoyes
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)noyesnononononoyes
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesyesnononoyes
      A2P026: e-Mobilityyesyesyesyesyesnonoyes
      A2P026: Soft mobility infrastructures and last mile solutionsnononoyesyesnonoyes
      A2P026: Car-free areanononoyesyesnonono
      A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesWalkability
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesYesYesYesYesNoYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.Energy Performance Certificate => Energy efficiency class B (2018 version)Miljöbyggnad silver/guldNS3700 Norwegian Passive HouseEnergy Performance Certificate for each dwelling
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoYesNoYesNoNo
      A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)LEED BD+C, LEED NC CAMPUS
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyRelevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.City strategy: Net climate neutrality 2030City level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal;
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      • Other
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods
      A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.No gas grid in BrunnshögBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and priorities- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.Carbon and Energy NeutralityBologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.For Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.Bologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • Blockchain
      • Innovative business models,
      • PPP models,
      • Existing incentives
      • Innovative business models
      • PPP models,
      • Other
      • Open data business models,
      • Innovative business models,
      • Demand management Living Lab
      • Innovative business models,
      • PPP models,
      • Circular economy models,
      • Demand management Living Lab,
      • Existing incentives
      A3P006: OtherAttractivenes
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Co-creation / Citizen engagement strategies,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Quality of Life,
      • Strategies towards social mix
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Affordability,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Building / district Certification
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • City Vision 2050,
      • SECAP Updates
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Digital twinning and visual 3D models
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral
      • Energy Neutral,
      • Net zero carbon footprint,
      • Pollutants Reduction
      • Other
      • Net zero carbon footprint,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Greening strategies,
      • Cool Materials
      • Energy Neutral
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Pollutants Reduction,
      • Greening strategies
      A3P009: OtherCarbon free in terms of energy
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.ISO 45001, ISO 14001, ISO 50001, Zero Waste PolicyPEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionLippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Pilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project development- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersThe aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.Pilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaUrban areaSuburban areaSuburban areaUrban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • New construction
      • Renovation
      • New construction
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Re-use / Transformation Area,
      • New Development
      • New Development
      • Retrofitting Area
      • New Development
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction20222024
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential0
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential18000
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential20009800
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential220009800
      B1P011: Population density before intervention
      B1P011: Population density before intervention000034000
      B1P012: Population density after intervention
      B1P012: Population density after intervention0000.02666666666666734.337771548704000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnononononononoyes
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officenononoyesnononoyes
      B1P013 - Office: Specify the sqm [m²]60000
      B1P013: Industry and Utilitynononononoyesnoyes
      B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
      B1P013: Commercialnonoyesnonononoyes
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononoyesnonoyes
      B1P013 - Institutional: Specify the sqm [m²]285.400
      B1P013: Natural areasnonoyesyesnononoyes
      B1P013 - Natural areas: Specify the sqm [m²]2000000
      B1P013: Recreationalnononononononoyes
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononononononoyes
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononoyesnononono
      B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnonoyesyesnoyesnoyes
      B1P014 - Residential: Specify the sqm [m²]600000
      B1P014: Officenononoyesnononoyes
      B1P014 - Office: Specify the sqm [m²]650000
      B1P014: Industry and Utilitynononononononoyes
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnonoyesnonononoyes
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnononoyesyesnonoyes
      B1P014 - Institutional: Specify the sqm [m²]50000280000
      B1P014: Natural areasnononononononoyes
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnononoyesnononoyes
      B1P014 - Recreational: Specify the sqm [m²]400000
      B1P014: Dismissed areasnononononononoyes
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.Permanent installation
      B2P003: Scale of action
      B2P003: ScaleDistrictVirtual
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.CM Maia, IPMAIA, NEW, AdEP.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Civic
      • Strategic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Other
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO,
      • Other
      B2P009: Otherresearch companies, monitoring company, ict companyEnergy Agency
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Energy storage,
      • Efficiency measures,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Ambient measures,
      • Social interactions
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Tools for prototyping and modelling
      • Monitoring and evaluation infrastructure,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      • Execution plan,
      • Available data,
      • Type of measured data
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Social,
      • Economical / Financial
      • Energy,
      • Environmental,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
      B2P017: Capacities
      B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models
      • Energy modelling,
      • Social models,
      • Business and financial models,
      • Fundraising and accessing resources,
      • Matching actors
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important4 - Important5 - Very important5 - Very important5 - Very important5 - Very important4 - Important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important4 - Important
      C1P001: Energy Communities, P2P, Prosumers concepts4 - Important4 - Important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important
      C1P001: Storage systems and E-mobility market penetration4 - Important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P001: Decreasing costs of innovative materials5 - Very important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important
      C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant5 - Very important4 - Important
      C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important
      C1P001: Social acceptance (top-down)3 - Moderately important4 - Important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important
      C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important
      C1P001: Availability of RES on site (Local RES)4 - Important4 - Important5 - Very important5 - Very important5 - Very important5 - Very important4 - Important4 - Important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need2 - Slightly important5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
      C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important4 - Important4 - Important5 - Very important5 - Very important5 - Very important4 - Important5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important4 - Important1 - Unimportant
      C1P002: Urban re-development of existing built environment4 - Important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important
      C1P002: Economic growth need2 - Slightly important4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant4 - Important3 - Moderately important5 - Very important5 - Very important4 - Important4 - Important4 - Important
      C1P002: Territorial and market attractiveness2 - Slightly important4 - Important2 - Slightly important5 - Very important4 - Important5 - Very important4 - Important3 - Moderately important
      C1P002: Energy autonomy/independence2 - Slightly important4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important
      C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant4 - Important2 - Slightly important
      C1P003: Lack of public participation1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important2 - Slightly important
      C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P003:Long and complex procedures for authorization of project activities4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
      C1P003: Complicated and non-comprehensive public procurement3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important
      C1P003: Fragmented and or complex ownership structure4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important5 - Very important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important
      C1P003: Lack of internal capacities to support energy transition1 - Unimportant4 - Important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
      C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important4 - Important2 - Slightly important5 - Very important5 - Very important5 - Very important4 - Important4 - Important
      C1P005: Regulatory instability3 - Moderately important4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P005: Non-effective regulations3 - Moderately important4 - Important4 - Important2 - Slightly important4 - Important5 - Very important3 - Moderately important4 - Important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant4 - Important2 - Slightly important
      C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant4 - Important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Insufficient or insecure financial incentives3 - Moderately important4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers?Air Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important
      C1P007: Deficient planning2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
      C1P007: Lack of well-defined process3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important5 - Very important
      C1P007: Inaccuracy in energy modelling and simulation4 - Important4 - Important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P007: Lack/cost of computational scalability1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
      C1P007: Grid congestion, grid instability4 - Important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important4 - Important
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important
      C1P007: Difficult definition of system boundaries1 - Unimportant4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important5 - Very important
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P008: Low acceptance of new projects and technologies2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant4 - Important3 - Moderately important
      C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important4 - Important
      C1P008: Lack of trust beyond social network4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important
      C1P008: Rebound effect2 - Slightly important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
      C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant3 - Moderately important2 - Slightly important4 - Important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P008: Exclusion of socially disadvantaged groups5 - Very important3 - Moderately important2 - Slightly important4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P008: Non-energy issues are more important and urgent for actors4 - Important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important
      C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important
      C1P009: Lack of awareness among authorities2 - Slightly important4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P009: High costs of design, material, construction, and installation4 - Important4 - Important4 - Important5 - Very important4 - Important4 - Important3 - Moderately important4 - Important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs2 - Slightly important4 - Important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important
      C1P010: Insufficient external financial support and funding for project activities3 - Moderately important4 - Important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important4 - Important
      C1P010: Economic crisis1 - Unimportant4 - Important4 - Important5 - Very important4 - Important1 - Unimportant3 - Moderately important4 - Important
      C1P010: Risk and uncertainty3 - Moderately important4 - Important3 - Moderately important5 - Very important5 - Very important4 - Important3 - Moderately important5 - Very important
      C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important
      C1P010: Limited access to capital and cost disincentives2 - Slightly important4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important5 - Very important
      C1P011: Energy price distortion4 - Important4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant5 - Very important4 - Important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • None
      C1P012: Urban Services providers
      • Design/demand aggregation,
      • Monitoring/operation/management
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Real Estate developers
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      • None
      C1P012: Design/Construction companies
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)