Filters:
NameProjectTypeCompare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Uncompare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Bologna, Pilastro-Roveri district
Umeå, Ålidhem district
Graz, Reininghausgründe
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthBologna, Pilastro-Roveri districtUmeå, Ålidhem districtGraz, Reininghausgründe
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyes
PED relevant case studynoyesnono
PED Lab.yesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyes
Annual energy surplusyesnonono
Energy communityyesyesnono
Circularityyesnonono
Air quality and urban comfortnononono
Electrificationnononono
Net-zero energy costnononono
Net-zero emissionyesnonono
Self-sufficiency (energy autonomous)nononono
Maximise self-sufficiencynononono
Othernononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhasePlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date12/1809/1910/222019
A1P007: End Date
A1P007: End date12/2310/2309/252025
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
  • Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190,
  • Barroco Fontes Cunha F., Carani C., Nucci C.A., Castro C., Santana Silva M., Andrade Torres E. (2021) Transitioning to a low carbon society through energy communities: Lessons learned from Brazil and Italy, ENERGY RESEARCH & SOCIAL SCIENCE, 2021, 75, 1-19.,
  • GRETA Project, Pilastro-Roveri case study. Available at: https://projectgreta.eu/case-study/renewable-energy-district/
  • Umeå Energi
  • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
  • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
A1P011: Geographic coordinates
X Coordinate (longitude):6.53512111.39732320.263015.407440
Y Coordinate (latitude):53.23484644.50710663.825847.0607
A1P012: Country
A1P012: CountryNetherlandsItalySwedenAustria
A1P013: City
A1P013: CityGroningenBolognaUmeåGraz
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).CfaCfaDfbDfb
A1P015: District boundary
A1P015: District boundaryFunctionalGeographicGeographicGeographic
Other
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:MixedMixedPublicMixed
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple Owners
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED71962100
A1P019: Conditioned space
A1P019: Conditioned space [m²]1.0142000
A1P020: Total ground area
A1P020: Total ground area [m²]17.1327800000520001000000
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area0010
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estateyesnonoyes
A1P022a: Add the value in EUR if available [EUR]
A1P022b: Financing - PRIVATE - ESCO schemenononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Otheryesnonono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingnononono
A1P022d: Add the value in EUR if available [EUR]
A1P022e: Financing - PUBLIC - National fundingyesyesnoyes
A1P022e: Add the value in EUR if available [EUR]
A1P022f: Financing - PUBLIC - Regional fundingnoyesnono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingyesyesnoyes
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUyesyesnono
A1P022i: Add the value in EUR if available [EUR]
A1P022j: Financing - RESEARCH FUNDING - Nationalnononono
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnoyesnono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: Other
A1P023: Economic Targets
A1P023: Economic Targets
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Job creation,
  • Positive externalities,
  • Boosting local businesses
  • Job creation,
  • Boosting local businesses,
  • Boosting consumption of local and sustainable products
A1P023: Other
A1P024: More comments:
A1P024: More comments:The Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190]The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
Contact person for general enquiries
A1P026: NameJasper Tonen, Elisabeth KoopsProf. Danila LongoGireesh NairKatharina Schwarz
A1P027: OrganizationMunicipality of GroningenUniversity of Bologna - Architecture DepartmentUmea MunicipalityStadtLABOR, Innovationen für urbane Lebensqualität GmbH
A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesSME / Industry
A1P028: Other
A1P029: EmailJasper.tonen@groningen.nlgireesh.nair@umu.sekatharina.schwarz@stadtlaborgraz.at
Contact person for other special topics
A1P030: NameHans Schnitzer
A1P031: Emailhans.schnitzer@stadtlaborgraz.at
Pursuant to the General Data Protection RegulationYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Waste management
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Waste management
  • Energy efficiency,
  • Energy flexibility,
  • Energy production
  • Energy efficiency,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Water use,
  • Indoor air quality,
  • Other
A2P001: OtherUrban Management; Air Quality
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulationSimulation tools: City Energy Analyst and PolysunEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the district
A2P003: Application of ISO52000
A2P003: Application of ISO52000NoYesNoNo
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceNoNoYesYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoNoNoYes
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.3
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVnoyesyesyes
A2P011: PV - specify production in GWh/annum [GWh/annum]0.249
A2P011: Windnononono
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydronononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnononono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnononono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalyesnonoyes
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalyesyesnoyes
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_heatyesyesnono
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
A2P012: Waste heat+HPyesnonoyes
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_peat_heatnononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thyesnonono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersGroundwater (used for heat pumps)
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]6.1
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnononono
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnononoyes
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windnononoyes
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydronononoyes
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnononono
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnononoyes
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnonoyesyes
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnonoyesyes
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary0000
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]0.036
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Security
A2P022: Health
A2P022: Education
A2P022: Mobilityx
A2P022: EnergyEnergyx
A2P022: Waterx
A2P022: Economic developmentx
A2P022: Housing and Communityx
A2P022: Waste
A2P022: Other
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesyesyesyes
A2P023: Solar thermal collectorsyesyesnono
A2P023: Wind Turbinesnononono
A2P023: Geothermal energy systemyesyesnono
A2P023: Waste heat recoveryyesnonoyes
A2P023: Waste to energyyesyesnono
A2P023: Polygenerationnononono
A2P023: Co-generationnoyesnono
A2P023: Heat Pumpyesyesnoyes
A2P023: Hydrogennononono
A2P023: Hydropower plantnononono
A2P023: Biomassnononono
A2P023: Biogasnononono
A2P023: Other
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyes
A2P024: Energy management systemyesnonono
A2P024: Demand-side managementyesnoyesno
A2P024: Smart electricity gridnononono
A2P024: Thermal Storageyesnonoyes
A2P024: Electric Storageyesyesnono
A2P024: District Heating and Coolingyesyesnoyes
A2P024: Smart metering and demand-responsive control systemsyesnonono
A2P024: P2P – buildingsnononono
A2P024: OtherDistrict Heating
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingnoyesyesno
A2P025: Energy efficiency measures in historic buildingsyesnonono
A2P025: High-performance new buildingsyesyesnoyes
A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesnoyes
A2P025: Urban data platformsyesnonono
A2P025: Mobile applications for citizensnoyesnoyes
A2P025: Building services (HVAC & Lighting)noyesnono
A2P025: Smart irrigationnononoyes
A2P025: Digital tracking for waste disposalnoyesnono
A2P025: Smart surveillancenoyesnono
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)noyesnoyes
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnoyes
A2P026: e-Mobilityyesyesnoyes
A2P026: Soft mobility infrastructures and last mile solutionsnoyesnoyes
A2P026: Car-free areanononoyes
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYesYesYesYes
A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateEnergy Performance Certificate for each dwellingEnergieausweis mandatory if buildings/ flats/ apartments are sold
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesNoYes
A2P029: If yes, please specify and/or enter notesKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Urban Renewal Strategies,
  • Energy master planning (SECAP, etc.),
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategyCity level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal;City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Electrification of Heating System based on Heat Pumps,
  • Electrification of Cooking Methods,
  • Biogas
  • Electrification of Heating System based on Heat Pumps,
  • Electrification of Cooking Methods
  • Electrification of Heating System based on Heat Pumps,
  • Electrification of Cooking Methods,
  • Biogas
A3P003: OtherNA
A3P004: Identification of needs and priorities
A3P004: Identification of needs and prioritiesBologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility.Reininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices
A3P005: Sustainable behaviour
A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Bologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri.- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.
A3P006: Economic strategies
A3P006: Economic strategies
  • Innovative business models,
  • Blockchain
  • Innovative business models,
  • PPP models,
  • Circular economy models,
  • Demand management Living Lab,
  • Existing incentives
  • PPP models,
  • Local trading
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Citizen Social Research,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Affordability,
  • Prevention of energy poverty,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Social incentives,
  • Quality of Life,
  • Affordability,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • City Vision 2050,
  • SECAP Updates,
  • Building / district Certification
  • District Energy plans
  • Strategic urban planning,
  • City Vision 2050,
  • Building / district Certification
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Energy Neutral
  • Energy Neutral,
  • Low Emission Zone,
  • Net zero carbon footprint,
  • Life Cycle approach,
  • Pollutants Reduction,
  • Greening strategies
  • Carbon-free
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityPEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’Mobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionPilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentPilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaUrban areaUrban area
B1P004: Type of district
B2P004: Type of district
  • Renovation
  • Renovation
  • New construction
B1P005: Case Study Context
B1P005: Case Study Context
  • Retrofitting Area
  • Retrofitting Area
  • New Development
B1P006: Year of construction
B1P006: Year of construction2025
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential0
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential10000
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential0
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P011: Population density before intervention
B1P011: Population density before intervention0000
B1P012: Population density after intervention
B1P012: Population density after intervention0000.01
B1P013: Building and Land Use before intervention
B1P013: Residentialnoyesyesno
B1P013 - Residential: Specify the sqm [m²]
B1P013: Officenoyesnono
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilitynoyesnoyes
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialnoyesnono
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnoyesnono
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasnoyesnoyes
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalnoyesnono
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnoyesnono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernononono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialnoyesyesyes
B1P014 - Residential: Specify the sqm [m²]
B1P014: Officenoyesnoyes
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynoyesnono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialnoyesnoyes
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnoyesnoyes
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasnoyesnoyes
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalnoyesnoyes
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnoyesnono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernononono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
B2P002: Installation life time
B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
B2P003: Scale of action
B2P003: ScaleDistrict
B2P004: Operator of the installation
B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?No
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Civic
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabMunicipality
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Private,
  • Industrial,
  • Other
B2P009: Otherresearch companies, monitoring company, ict company
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Buildings,
  • Demand-side management,
  • Energy storage,
  • Energy networks,
  • Waste management,
  • Lighting,
  • E-mobility,
  • Information and Communication Technologies (ICT),
  • Social interactions,
  • Business models
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Tools for prototyping and modelling
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Execution plan,
  • Available data,
  • Type of measured data,
  • Equipment,
  • Level of access
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Social,
  • Economical / Financial
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
  • Energy modelling,
  • Social models,
  • Business and financial models
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibility
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
C1P001: Energy Communities, P2P, Prosumers concepts4 - Important5 - Very important1 - Unimportant4 - Important
C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important1 - Unimportant2 - Slightly important
C1P001: Decreasing costs of innovative materials5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important
C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important5 - Very important1 - Unimportant2 - Slightly important
C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important1 - Unimportant4 - Important
C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important1 - Unimportant5 - Very important
C1P001: Social acceptance (top-down)3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important4 - Important1 - Unimportant5 - Very important
C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important1 - Unimportant5 - Very important
C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important4 - Important1 - Unimportant5 - Very important
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important1 - Unimportant4 - Important
C1P001: Availability of RES on site (Local RES)4 - Important4 - Important1 - Unimportant3 - Moderately important
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)
C1P002: Driving Factors
C1P002: Climate Change adaptation need2 - Slightly important4 - Important1 - Unimportant5 - Very important
C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important1 - Unimportant5 - Very important
C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
C1P002: Urban re-development of existing built environment4 - Important5 - Very important1 - Unimportant5 - Very important
C1P002: Economic growth need2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant4 - Important1 - Unimportant5 - Very important
C1P002: Territorial and market attractiveness2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important
C1P002: Energy autonomy/independence2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important4 - Important1 - Unimportant5 - Very important
C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important
C1P003: Lack of public participation1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important
C1P003:Long and complex procedures for authorization of project activities4 - Important5 - Very important1 - Unimportant5 - Very important
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important1 - Unimportant3 - Moderately important
C1P003: Complicated and non-comprehensive public procurement3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
C1P003: Fragmented and or complex ownership structure4 - Important5 - Very important1 - Unimportant5 - Very important
C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important5 - Very important1 - Unimportant4 - Important
C1P003: Lack of internal capacities to support energy transition1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies4 - Important4 - Important1 - Unimportant1 - Unimportant
C1P005: Regulatory instability3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
C1P005: Non-effective regulations3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
C1P005: Insufficient or insecure financial incentives3 - Moderately important4 - Important1 - Unimportant4 - Important
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
C1P005: Shortage of proven and tested solutions and examples2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel4 - Important4 - Important1 - Unimportant2 - Slightly important
C1P007: Deficient planning2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
C1P007: Lack of well-defined process3 - Moderately important5 - Very important1 - Unimportant4 - Important
C1P007: Inaccuracy in energy modelling and simulation4 - Important4 - Important1 - Unimportant2 - Slightly important
C1P007: Lack/cost of computational scalability1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
C1P007: Grid congestion, grid instability4 - Important4 - Important1 - Unimportant1 - Unimportant
C1P007: Negative effects of project intervention on the natural environment1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
C1P007: Difficult definition of system boundaries1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)
C1P008: Social and Cultural barriers
C1P008: Inertia2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important
C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
C1P008: Low acceptance of new projects and technologies2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important4 - Important1 - Unimportant4 - Important
C1P008: Lack of trust beyond social network4 - Important5 - Very important1 - Unimportant3 - Moderately important
C1P008: Rebound effect2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P008: Exclusion of socially disadvantaged groups5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
C1P008: Non-energy issues are more important and urgent for actors4 - Important4 - Important1 - Unimportant4 - Important
C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important4 - Important1 - Unimportant4 - Important
C1P009: Lack of awareness among authorities2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important
C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
C1P009: High costs of design, material, construction, and installation4 - Important4 - Important1 - Unimportant4 - Important
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
C1P010: Insufficient external financial support and funding for project activities3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
C1P010: Economic crisis1 - Unimportant4 - Important1 - Unimportant4 - Important
C1P010: Risk and uncertainty3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
C1P010: Limited access to capital and cost disincentives2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives5 - Very important5 - Very important1 - Unimportant2 - Slightly important
C1P011: Energy price distortion4 - Important5 - Very important1 - Unimportant4 - Important
C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important4 - Important1 - Unimportant4 - Important
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Research & Innovation
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Financial/Funding
  • Design/demand aggregation,
  • Construction/implementation
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Analyst, ICT and Big Data
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Monitoring/operation/management
C1P012: Business process management
  • Planning/leading
  • None
  • None
C1P012: Urban Services providers
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Real Estate developers
  • Construction/implementation
  • None
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Design/Construction companies
  • Construction/implementation
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • None
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
C1P012: Social/Civil Society/NGOs
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation
  • Design/demand aggregation,
  • Monitoring/operation/management
C1P012: Industry/SME/eCommerce
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Other
  • None
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)