Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Uncompare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Bologna, Pilastro-Roveri district
Borlänge, Rymdgatan’s Residential Portfolio
City of Espoo, Espoonlahti district, Lippulaiva block
Oulu, Kaukovainio
Groningen, PED South
Graz, Reininghausgründe
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthBologna, Pilastro-Roveri districtBorlänge, Rymdgatan’s Residential PortfolioCity of Espoo, Espoonlahti district, Lippulaiva blockOulu, KaukovainioGroningen, PED SouthGraz, ReininghausgründeAalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesyesnoyesno
PED relevant case studynoyesyesnonononoyes
PED Lab.yesnonononoyesnoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesnoyesyesyesyes
Annual energy surplusyesnoyesnonoyesnono
Energy communityyesyesyesnonoyesnono
Circularityyesnononoyesyesnono
Air quality and urban comfortnononononononono
Electrificationnonoyesnoyesnonono
Net-zero energy costnononononononono
Net-zero emissionyesnonononoyesnono
Self-sufficiency (energy autonomous)nononononononono
Maximise self-sufficiencynonoyesyesnononoyes
Othernononononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhasePlanning PhaseIn operationIn operationImplementation PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date12/1809/1906/1812/18201911/22
A1P007: End Date
A1P007: End date12/2310/2303/2212/23202511/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • GIS open datasets
  • Monitoring data available within the districts,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
  • Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190,
  • Barroco Fontes Cunha F., Carani C., Nucci C.A., Castro C., Santana Silva M., Andrade Torres E. (2021) Transitioning to a low carbon society through energy communities: Lessons learned from Brazil and Italy, ENERGY RESEARCH & SOCIAL SCIENCE, 2021, 75, 1-19.,
  • GRETA Project, Pilastro-Roveri case study. Available at: https://projectgreta.eu/case-study/renewable-energy-district/
    • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
    • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
    • www.lippulaiva.fi
    • TNO, Hanze, RUG,
    • Ped noord book
    • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
    • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
    A1P011: Geographic coordinates
    X Coordinate (longitude):6.53512111.39732315.39449524.654325.5175950840935076.59065515.40744010.007
    Y Coordinate (latitude):53.23484644.50710660.48660960.149164.9928809817313253.20408747.060757.041028
    A1P012: Country
    A1P012: CountryNetherlandsItalySwedenFinlandFinlandNetherlandsAustriaDenmark
    A1P013: City
    A1P013: CityGroningenBolognaBorlängeEspooOuluGroningenGrazAalborg
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).CfaCfaDsbDfbDfcCfaDfbDfb
    A1P015: District boundary
    A1P015: District boundaryFunctionalGeographicGeographicGeographicFunctionalGeographicVirtual
    OtherRegional (close to virtual)
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:MixedMixedMixedPrivateMixedMixedMixedPublic
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED7196210964100
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]1.013700112000197007.86
    A1P020: Total ground area
    A1P020: Total ground area [m²]17.132780000099451650006000045.093100000031308000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area00010000
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estateyesnonoyesyesyesyesno
    A1P022a: Add the value in EUR if available [EUR]
    A1P022b: Financing - PRIVATE - ESCO schemenononononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Otheryesnonononoyesnono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnononononononono
    A1P022d: Add the value in EUR if available [EUR]
    A1P022e: Financing - PUBLIC - National fundingyesyesnononoyesyesno
    A1P022e: Add the value in EUR if available [EUR]
    A1P022f: Financing - PUBLIC - Regional fundingnoyesnononononono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingyesyesnonoyesyesyesno
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernononononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUyesyesnoyesyesyesnono
    A1P022i: Add the value in EUR if available [EUR]308875
    A1P022j: Financing - RESEARCH FUNDING - Nationalnononononononoyes
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnoyesnononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: Other
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Job creation,
    • Positive externalities,
    • Boosting local businesses
    • Positive externalities,
    • Boosting local businesses,
    • Boosting consumption of local and sustainable products
    • Job creation,
    • Positive externalities,
    • Boosting local businesses
    • Positive externalities,
    • Boosting local and sustainable production
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Job creation,
    • Boosting local businesses,
    • Boosting consumption of local and sustainable products
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production
    A1P023: OtherDeveloping and demonstrating new solutions
    A1P024: More comments:
    A1P024: More comments:The Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190]The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVsThe “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5
    Contact person for general enquiries
    A1P026: NameJasper Tonen, Elisabeth KoopsProf. Danila LongoJingchun ShenElina EkelundSamuli RinneJasper Tonen, Elisabeth KoopsKatharina SchwarzKristian Olesen
    A1P027: OrganizationMunicipality of GroningenUniversity of Bologna - Architecture DepartmentHögskolan DalarnaCitycon OyjCity of OuluMunicipality of GroningenStadtLABOR, Innovationen für urbane Lebensqualität GmbHAalborg University
    A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversitySME / IndustryMunicipality / Public BodiesMunicipality / Public BodiesSME / IndustryResearch Center / University
    A1P028: Other
    A1P029: EmailJasper.tonen@groningen.nljih@du.seElina.ekelund@citycon.comsamuli.rinne@ouka.fiJasper.tonen@groningen.nlkatharina.schwarz@stadtlaborgraz.atKristian@plan.aau.dk
    Contact person for other special topics
    A1P030: NameXingxing ZhangElina EkelundSamuli RinneHans SchnitzerAlex Søgaard Moreno
    A1P031: Emailxza@du.seElina.ekelund@citycon.comsamuli.rinne@ouka.fihans.schnitzer@stadtlaborgraz.atasm@aalborg.dk
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Waste management
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Waste management
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Water use,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Waste management
    • Energy efficiency,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Water use,
    • Indoor air quality,
    • Other
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies
    A2P001: OtherUrban Management; Air Quality
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulationLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtStakeholder engagement, expert energy system analysis, future scenarios
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoYesNoYesNoNoNoNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceNoNoYesYesNoNoYesNo
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoNoYesNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.Mobility is not included in the energy model.Not included. However, there is a charging place for a shared EV in one building.Mobility, till now, is not included in the energy model.- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)Large combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.30.67775.52.11.86218
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.036565.80.21.45148
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]0
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVnoyesnoyesyesnoyesno
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.540.1
    A2P011: Windnononononononoyes
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydronononononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnononononononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnononononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnonoyesnonononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
    A2P011: Othernononononononoyes
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalyesnonoyesnoyesyesno
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
    A2P012: Solar Thermalyesyesnononoyesyesno
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_heatyesyesnononoyesnono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
    A2P012: Waste heat+HPyesnononoyesyesyesyes
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2300
    A2P012: Biomass_peat_heatnononononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thyesnoyesnonoyesnono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
    A2P012: Biomass_firewood_thnononononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernononononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)Geothermal heatpump systems, Waste heat from data centersGroundwater (used for heat pumps)Very little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]0.31811.32.3620
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]0.20555.76399
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnononononononono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Coalnononononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Oilnononononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Othernonoyesnonononoyes
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0300
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnonononoyesnoyesno
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnonononoyesnoyesno
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydrononononoyesnoyesno
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnonononoyesnonono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnonononoyesnonono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnononononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernonoyesyesnononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.1875.26
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnononononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnonononononoyesno
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnonononoyesnoyesno
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
    A2P019: Waste heat+HPnonononononoyesno
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnononononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnononononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnononononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernonoyesnonononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary000.538395721925131.05323193916353.2857142857143000
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93000.036
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Securitynone
    A2P022: Healththermal comfort diagramEncouraging a healthy lifestyle
    A2P022: Educationnone
    A2P022: MobilitynoneModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV chargingx
    A2P022: Energynormalized CO2/GHG & Energy intensityOn-site energy ratioFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionx
    A2P022: Waterx
    A2P022: Economic developmentcost of excess emissionsTotal investments, Payback time, Economic value of savingsx
    A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy povertyx
    A2P022: WasteRecycling rate
    A2P022: OtherSmart Cities strategies, Quality of open data
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesyesyesyesyes
    A2P023: Solar thermal collectorsyesyesyesnonoyesnoyes
    A2P023: Wind Turbinesnononononononono
    A2P023: Geothermal energy systemyesyesyesyesnoyesnono
    A2P023: Waste heat recoveryyesnoyesyesyesyesyesyes
    A2P023: Waste to energyyesyesnononoyesnoyes
    A2P023: Polygenerationnononononononono
    A2P023: Co-generationnoyesnonoyesnonono
    A2P023: Heat Pumpyesyesyesnoyesyesyesyes
    A2P023: Hydrogennononononononono
    A2P023: Hydropower plantnononononononono
    A2P023: Biomassnonononoyesnonoyes
    A2P023: Biogasnononononononono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesyesyesyesno
    A2P024: Energy management systemyesnonoyesyesyesnoyes
    A2P024: Demand-side managementyesnonononononoyes
    A2P024: Smart electricity gridnononoyesnononoyes
    A2P024: Thermal Storageyesnoyesyesyesyesyesyes
    A2P024: Electric Storageyesyesnoyesnoyesnoyes
    A2P024: District Heating and Coolingyesyesyesnoyesyesyesyes
    A2P024: Smart metering and demand-responsive control systemsyesnonononoyesnoyes
    A2P024: P2P – buildingsnononononononono
    A2P024: Other
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnoyesyesnoyesnonoyes
    A2P025: Energy efficiency measures in historic buildingsyesnonononoyesnono
    A2P025: High-performance new buildingsyesyesnoyesyesyesyesno
    A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesnoyesnoyesyesno
    A2P025: Urban data platformsyesnononoyesyesnono
    A2P025: Mobile applications for citizensnoyesnonononoyesno
    A2P025: Building services (HVAC & Lighting)noyesyesyesyesnonono
    A2P025: Smart irrigationnonononononoyesno
    A2P025: Digital tracking for waste disposalnoyesnononononono
    A2P025: Smart surveillancenoyesnononononoyes
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)noyesnonoyesnoyesno
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnoyesyesnoyesno
    A2P026: e-Mobilityyesyesnoyesyesyesyesno
    A2P026: Soft mobility infrastructures and last mile solutionsnoyesnonoyesnoyesno
    A2P026: Car-free areanonononononoyesno
    A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesNoYesYesYesYesYes
    A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateEnergy Performance Certificate for each dwellingEnergy Performance Certificate => Energy efficiency class B (2018 version)The obligatory buildijng energy classificationEnergy Performance CertificateEnergieausweis mandatory if buildings/ flats/ apartments are sold
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoNoYesNoYesNo
    A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)Klimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyCity level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal;The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Relevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.Carbon neutrality by 2035City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supplyReduction of 1018000 tons CO2 by 2030
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    • Electrification of Heating System based on Heat Pumps,
    • Biogas
    A3P003: Other
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesBologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.Developing and demonstrating solutions for carbon neutralityReininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared officesDecarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Bologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.For Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.E. g. visualizing energy and water consumptionIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Innovative business models,
    • Blockchain
    • Innovative business models,
    • PPP models,
    • Circular economy models,
    • Demand management Living Lab,
    • Existing incentives
    • Open data business models,
    • Life Cycle Cost,
    • Circular economy models,
    • Local trading
    • Innovative business models
    • Open data business models,
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Circular economy models
    • Innovative business models,
    • Blockchain
    • PPP models,
    • Local trading
    • Life Cycle Cost,
    • Circular economy models
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Citizen Social Research,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Affordability,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Behavioural Change / End-users engagement,
    • Social incentives,
    • Affordability,
    • Digital Inclusion
    • Co-creation / Citizen engagement strategies
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Citizen Social Research,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Social incentives,
    • Quality of Life,
    • Affordability,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Policy Forums,
    • Citizen/owner involvement in planning and maintenance
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • City Vision 2050,
    • SECAP Updates,
    • Building / district Certification
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • District Energy plans,
    • Building / district Certification
    • Building / district Certification
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • City Vision 2050,
    • Building / district Certification
    • Strategic urban planning,
    • District Energy plans
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Energy Neutral
    • Energy Neutral,
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Pollutants Reduction,
    • Greening strategies
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Sustainable Urban drainage systems (SUDS)
    • Other
    • Energy Neutral,
    • Net zero carbon footprint
    • Energy Neutral
    • Pollutants Reduction,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Net zero carbon footprint
    A3P009: OtherCarbon free in terms of energy
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityPEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.Current energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their own
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionPilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.The original idea is that the area produces at least as much it consumes.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.The large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentPilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030.Borlänge city has committed to become the carbon-neutral city by 2030.- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersDeveloping systems towards carbon neutrality. Also urban renewal.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.The area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaUrban areaSuburban area
    B1P004: Type of district
    B2P004: Type of district
    • Renovation
    • Renovation
    • New construction
    • New construction,
    • Renovation
    • New construction
    • Renovation
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Retrofitting Area
    • Re-use / Transformation Area,
    • Retrofitting Area
    • Re-use / Transformation Area,
    • New Development
    • New Development,
    • Retrofitting Area
    • New Development
    • Retrofitting Area
    B1P006: Year of construction
    B1P006: Year of construction199020222025
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential1003500016.931
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential100350010000
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential60
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential6
    B1P011: Population density before intervention
    B1P011: Population density before intervention00000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention000.01065862242332800.05833333333333300.010
    B1P013: Building and Land Use before intervention
    B1P013: Residentialnoyesyesnoyesnonono
    B1P013 - Residential: Specify the sqm [m²]4360
    B1P013: Officenoyesnononononono
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilitynoyesnonononoyesno
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnoyesnoyesyesnonono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnoyesnononononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnoyesnoyesyesnoyesno
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalnoyesnonoyesnonono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnoyesnononononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernonoyesnonononono
    B1P013 - Other: Specify the sqm [m²]706
    B1P014: Building and Land Use after intervention
    B1P014: Residentialnoyesyesyesyesnoyesno
    B1P014 - Residential: Specify the sqm [m²]4360
    B1P014: Officenoyesnonononoyesno
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynoyesnononononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnoyesnoyesyesnoyesno
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnoyesnonononoyesno
    B1P014 - Institutional: Specify the sqm [m²]
    B1P014: Natural areasnoyesnonoyesnoyesno
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnoyesnonoyesnoyesno
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnoyesnononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernonoyesnonononono
    B1P014 - Other: Specify the sqm [m²]706
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.Groningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.An ongoing process and dialogue with local stakeholders to determine the future development of the area.
    B2P002: Installation life time
    B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.The MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.No new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.
    B2P003: Scale of action
    B2P003: ScaleDistrictDistrictDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.The Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.Kristian Olesen
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materialsGroningen does not have a strategy to reuse and recyle materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Civic
    • Civic
    • Civic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipalityMunicipalityResearch center/University
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Other
    • Academia,
    • Private,
    • Industrial,
    • Other
    • Academia,
    • Private
    B2P009: Otherresearch companies, monitoring company, ict companyresearch companies, monitoring company, ict company
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Demand-side management,
    • Energy storage,
    • Energy networks,
    • Waste management,
    • Lighting,
    • E-mobility,
    • Information and Communication Technologies (ICT),
    • Social interactions,
    • Business models
    • Buildings,
    • Demand-side management,
    • Energy storage,
    • Energy networks,
    • Waste management,
    • Lighting,
    • E-mobility,
    • Information and Communication Technologies (ICT),
    • Social interactions,
    • Business models
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Tools for prototyping and modelling
    • Tools for prototyping and modelling
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    • Execution plan,
    • Available data,
    • Type of measured data,
    • Equipment,
    • Level of access
    • Execution plan,
    • Available data,
    • Type of measured data,
    • Equipment,
    • Level of access
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy,
    • Social,
    • Economical / Financial
    • Energy,
    • Social,
    • Economical / Financial
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    • Energy modelling,
    • Social models,
    • Business and financial models
    • Energy modelling,
    • Social models,
    • Business and financial models
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important4 - Important4 - Important5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important4 - Important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important4 - Important
    C1P001: Energy Communities, P2P, Prosumers concepts4 - Important5 - Very important3 - Moderately important4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant
    C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important
    C1P001: Decreasing costs of innovative materials5 - Very important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant
    C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important5 - Very important2 - Slightly important4 - Important
    C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important4 - Important4 - Important4 - Important3 - Moderately important4 - Important2 - Slightly important
    C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant4 - Important4 - Important2 - Slightly important3 - Moderately important4 - Important4 - Important
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important5 - Very important5 - Very important
    C1P001: Social acceptance (top-down)3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important5 - Very important3 - Moderately important4 - Important4 - Important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important4 - Important4 - Important2 - Slightly important2 - Slightly important4 - Important5 - Very important4 - Important
    C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important3 - Moderately important
    C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important4 - Important5 - Very important1 - Unimportant4 - Important2 - Slightly important5 - Very important5 - Very important
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important2 - Slightly important
    C1P001: Availability of RES on site (Local RES)4 - Important4 - Important5 - Very important5 - Very important4 - Important4 - Important3 - Moderately important2 - Slightly important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important5 - Very important5 - Very important
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need2 - Slightly important4 - Important5 - Very important5 - Very important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important
    C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important5 - Very important4 - Important5 - Very important3 - Moderately important5 - Very important4 - Important
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
    C1P002: Urban re-development of existing built environment4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important
    C1P002: Economic growth need2 - Slightly important3 - Moderately important4 - Important3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
    C1P002: Territorial and market attractiveness2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important5 - Very important3 - Moderately important
    C1P002: Energy autonomy/independence2 - Slightly important4 - Important2 - Slightly important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant
    C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extractionEarthquakes due to gas extraction
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important4 - Important4 - Important4 - Important2 - Slightly important3 - Moderately important5 - Very important4 - Important
    C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important
    C1P003: Lack of public participation1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
    C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important
    C1P003:Long and complex procedures for authorization of project activities4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important3 - Moderately important
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important
    C1P003: Complicated and non-comprehensive public procurement3 - Moderately important4 - Important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important
    C1P003: Fragmented and or complex ownership structure4 - Important5 - Very important4 - Important1 - Unimportant2 - Slightly important4 - Important5 - Very important3 - Moderately important
    C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important5 - Very important5 - Very important1 - Unimportant2 - Slightly important5 - Very important4 - Important5 - Very important
    C1P003: Lack of internal capacities to support energy transition1 - Unimportant4 - Important5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
    C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important
    C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important4 - Important4 - Important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
    C1P005: Regulatory instability3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P005: Non-effective regulations3 - Moderately important4 - Important2 - Slightly important4 - Important2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important
    C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
    C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important
    C1P005: Insufficient or insecure financial incentives3 - Moderately important4 - Important3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important4 - Important4 - Important
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important4 - Important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important3 - Moderately important
    C1P005: Shortage of proven and tested solutions and examples2 - Slightly important2 - Slightly important4 - Important3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers2 - Slightly important
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel4 - Important4 - Important4 - Important4 - Important2 - Slightly important4 - Important2 - Slightly important2 - Slightly important
    C1P007: Deficient planning2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important
    C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important5 - Very important4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
    C1P007: Lack of well-defined process3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important4 - Important
    C1P007: Inaccuracy in energy modelling and simulation4 - Important4 - Important2 - Slightly important2 - Slightly important3 - Moderately important4 - Important2 - Slightly important2 - Slightly important
    C1P007: Lack/cost of computational scalability1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
    C1P007: Grid congestion, grid instability4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P007: Negative effects of project intervention on the natural environment1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
    C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
    C1P007: Difficult definition of system boundaries1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important
    C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
    C1P008: Low acceptance of new projects and technologies2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant
    C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
    C1P008: Lack of trust beyond social network4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
    C1P008: Rebound effect2 - Slightly important4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important
    C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P008: Exclusion of socially disadvantaged groups5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
    C1P008: Non-energy issues are more important and urgent for actors4 - Important4 - Important3 - Moderately important4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant
    C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important2 - Slightly important
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important5 - Very important
    C1P009: Lack of awareness among authorities2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important
    C1P009: High costs of design, material, construction, and installation4 - Important4 - Important5 - Very important4 - Important3 - Moderately important4 - Important4 - Important3 - Moderately important
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs2 - Slightly important4 - Important5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
    C1P010: Insufficient external financial support and funding for project activities3 - Moderately important4 - Important5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important
    C1P010: Economic crisis1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
    C1P010: Risk and uncertainty3 - Moderately important5 - Very important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important
    C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important5 - Very important4 - Important3 - Moderately important3 - Moderately important2 - Slightly important4 - Important
    C1P010: Limited access to capital and cost disincentives2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives5 - Very important5 - Very important4 - Important3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important2 - Slightly important
    C1P011: Energy price distortion4 - Important5 - Very important4 - Important3 - Moderately important2 - Slightly important4 - Important4 - Important2 - Slightly important
    C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Financial/Funding
    • Design/demand aggregation,
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Analyst, ICT and Big Data
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Monitoring/operation/management
    C1P012: Business process management
    • Planning/leading
    • None
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading,
    • Monitoring/operation/management
    • Planning/leading
    • None
    C1P012: Urban Services providers
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    • None
    • None
    • Planning/leading
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Planning/leading,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Real Estate developers
    • Construction/implementation
    • None
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Design/Construction companies
    • Construction/implementation
    • Construction/implementation
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Design/demand aggregation
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • None
    • Design/demand aggregation
    C1P012: Social/Civil Society/NGOs
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Other
    • None
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)