Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Uncompare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleGroningen, PED North
Barcelona, SEILAB & Energy SmartLab
Espoo, Kera
Oulu, Kaukovainio
Riga, Ķīpsala, RTU smart student city
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthBarcelona, SEILAB & Energy SmartLabEspoo, KeraOulu, KaukovainioRiga, Ķīpsala, RTU smart student city
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyesyes
PED relevant case studynonoyesnono
PED Lab.yesyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyes
Annual energy surplusyesnononono
Energy communityyesyesnonoyes
Circularityyesnoyesyesno
Air quality and urban comfortnonononono
Electrificationnoyesnoyesno
Net-zero energy costnonononono
Net-zero emissionyesyesnonono
Self-sufficiency (energy autonomous)noyesnonoyes
Maximise self-sufficiencynonononoyes
Othernoyesnonono
Other (A1P004)Green IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseIn operationPlanning PhaseIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date12/1801/201101/1501/24
A1P007: End Date
A1P007: End date12/2302/201312/3512/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
A1P011: Geographic coordinates
X Coordinate (longitude):6.5351212.124.7537777825.51759508409350724.08168339
Y Coordinate (latitude):53.23484641.360.2162222264.9928809817313256.95245956
A1P012: Country
A1P012: CountryNetherlandsSpainFinlandFinlandLatvia
A1P013: City
A1P013: CityGroningenBarcelona and TarragonaEspooOuluRiga
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).CfaCsaDfbDfcCfb
A1P015: District boundary
A1P015: District boundaryFunctionalVirtualGeographicGeographic
OtherRegional (close to virtual)
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:MixedPublicMixedMixedPublic
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple Owners
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED70615
A1P019: Conditioned space
A1P019: Conditioned space [m²]1.0119700170000
A1P020: Total ground area
A1P020: Total ground area [m²]17.13258000060000119264
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area00001
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estateyesnonoyesno
A1P022a: Add the value in EUR if available [EUR]
A1P022b: Financing - PRIVATE - ESCO schemenonononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Otheryesnononono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingnonononono
A1P022d: Add the value in EUR if available [EUR]
A1P022e: Financing - PUBLIC - National fundingyesnononono
A1P022e: Add the value in EUR if available [EUR]
A1P022f: Financing - PUBLIC - Regional fundingnonononono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingyesnonoyesno
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernonononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUyesnonoyesyes
A1P022i: Add the value in EUR if available [EUR]7500000
A1P022j: Financing - RESEARCH FUNDING - Nationalnonononono
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernonononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: OtherMultiple different funding schemes depending on the case.
A1P023: Economic Targets
A1P023: Economic Targets
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Job creation,
  • Boosting local and sustainable production
  • Job creation,
  • Positive externalities,
  • Boosting local businesses,
  • Boosting local and sustainable production,
  • Boosting consumption of local and sustainable products
  • Positive externalities,
  • Boosting local and sustainable production
  • Boosting local businesses,
  • Boosting local and sustainable production
A1P023: OtherCircular economyDeveloping and demonstrating new solutions
A1P024: More comments:
A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5
Contact person for general enquiries
A1P026: NameJasper Tonen, Elisabeth KoopsDr. Jaume Salom, Dra. Cristina CorcheroJoni MäkinenSamuli RinneJudith Stiekema
A1P027: OrganizationMunicipality of GroningenIRECCity of EspooCity of OuluOASC
A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesOther
A1P028: Othernot for profit private organisation
A1P029: EmailJasper.tonen@groningen.nlJsalom@irec.catjoni.makinen@espoo.fisamuli.rinne@ouka.fijudith@oascities.org
Contact person for other special topics
A1P030: NameSamuli Rinne
A1P031: Emailsamuli.rinne@ouka.fi
Pursuant to the General Data Protection RegulationYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Waste management
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Waste management,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Water use,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
A2P001: Other
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.
A2P003: Application of ISO52000
A2P003: Application of ISO52000NoNoNoNo
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceNoYesNoNoYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoYesNoNoYes
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhNot included. However, there is a charging place for a shared EV in one building.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.354.52.18000
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.3319.40.25000
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVnoyesyesyesno
A2P011: PV - specify production in GWh/annum [GWh/annum]40.1
A2P011: Windnonononoyes
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydrononononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnonononono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnonononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnonononoyes
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernonononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalyesnononono
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalyesnononono
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_heatyesnononoyes
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
A2P012: Waste heat+HPyesnoyesyesno
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
A2P012: Biomass_peat_heatnonononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thyesnononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnonononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernonononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.Heat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]78.82.3
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]15.4
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnoyesnonoyes
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnonononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnonononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernonononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnononoyesno
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windnononoyesno
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydronononoyesno
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnononoyesno
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnononoyesno
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnonononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernonononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnonononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnonononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnononoyesno
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
A2P019: Waste heat+HPnonononono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnonononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnonononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnonononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernonononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary0003.28571428571430
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]4500000
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Security
A2P022: HealthEncouraging a healthy lifestyle
A2P022: Education
A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging
A2P022: EnergyFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reduction
A2P022: Water
A2P022: Economic developmentTotal investments, Payback time, Economic value of savings
A2P022: Housing and CommunityDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty
A2P022: WasteRecycling rate
A2P022: OtherSmart Cities strategies, Quality of open data
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesyesyesyesno
A2P023: Solar thermal collectorsyesnononono
A2P023: Wind Turbinesnonononono
A2P023: Geothermal energy systemyesnononono
A2P023: Waste heat recoveryyesnoyesyesno
A2P023: Waste to energyyesnononono
A2P023: Polygenerationnonononono
A2P023: Co-generationnononoyesno
A2P023: Heat Pumpyesnoyesyesno
A2P023: Hydrogennonononono
A2P023: Hydropower plantnonononono
A2P023: Biomassnononoyesno
A2P023: Biogasnonononono
A2P023: Other
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesyes
A2P024: Energy management systemyesyesyesyesyes
A2P024: Demand-side managementyesnoyesnoyes
A2P024: Smart electricity gridnoyesyesnoyes
A2P024: Thermal Storageyesnonoyesyes
A2P024: Electric Storageyesyesnonoyes
A2P024: District Heating and Coolingyesnoyesyesyes
A2P024: Smart metering and demand-responsive control systemsyesnononoyes
A2P024: P2P – buildingsnonononono
A2P024: Other
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingnononoyesno
A2P025: Energy efficiency measures in historic buildingsyesnononono
A2P025: High-performance new buildingsyesnoyesyesno
A2P025: Smart Public infrastructure (e.g. smart lighting)yesnoyesnono
A2P025: Urban data platformsyesnoyesyesyes
A2P025: Mobile applications for citizensnonononoyes
A2P025: Building services (HVAC & Lighting)noyesyesyesyes
A2P025: Smart irrigationnonononono
A2P025: Digital tracking for waste disposalnonononono
A2P025: Smart surveillancenonononono
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)noyesyesyesno
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesyesno
A2P026: e-Mobilityyesnoyesyesno
A2P026: Soft mobility infrastructures and last mile solutionsnonoyesyesno
A2P026: Car-free areanonononono
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notes
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYesNoYesNo
A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateThe obligatory buildijng energy classification
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesNoNoNo
A2P029: If yes, please specify and/or enter notes
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • New development strategies
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract)
  • Smart cities strategies,
  • Urban Renewal Strategies,
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategyCarbon neutrality by 2035
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Electrification of Heating System based on Heat Pumps,
  • Electrification of Cooking Methods,
  • Biogas
A3P003: Other
A3P004: Identification of needs and priorities
A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Developing and demonstrating solutions for carbon neutrality
A3P005: Sustainable behaviour
A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.E. g. visualizing energy and water consumption
A3P006: Economic strategies
A3P006: Economic strategies
  • Innovative business models,
  • Blockchain
  • Demand management Living Lab
  • PPP models,
  • Circular economy models
  • Open data business models,
  • Innovative business models,
  • PPP models,
  • Life Cycle Cost,
  • Circular economy models
  • Open data business models,
  • Innovative business models,
  • Demand management Living Lab
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Citizen Social Research,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance
  • Digital Inclusion,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Quality of Life
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • District Energy plans
  • Strategic urban planning,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates
  • Digital twinning and visual 3D models
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Energy Neutral
  • Energy Neutral,
  • Low Emission Zone,
  • Pollutants Reduction,
  • Greening strategies
  • Net zero carbon footprint,
  • Life Cycle approach,
  • Greening strategies,
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Net zero carbon footprint
  • Energy Neutral
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionImplementation of district level heating system to make heating energy positive and expanding local renewable electricity production.The original idea is that the area produces at least as much it consumes.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentDeveloping systems towards carbon neutrality. Also urban renewal.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaSuburban areaUrban area
B1P004: Type of district
B2P004: Type of district
  • New construction
  • New construction,
  • Renovation
B1P005: Case Study Context
B1P005: Case Study Context
  • Re-use / Transformation Area
  • New Development,
  • Retrofitting Area
B1P006: Year of construction
B1P006: Year of construction
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential3500
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential140003500
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential10000
B1P011: Population density before intervention
B1P011: Population density before intervention00000
B1P012: Population density after intervention
B1P012: Population density after intervention000.0413793103448280.0583333333333330
B1P013: Building and Land Use before intervention
B1P013: Residentialnonoyesyesno
B1P013 - Residential: Specify the sqm [m²]
B1P013: Officenonoyesnono
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilitynonoyesnono
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialnononoyesno
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnonononono
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasnononoyesno
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalnononoyesno
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnonoyesnono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernonononono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialnonoyesyesno
B1P014 - Residential: Specify the sqm [m²]
B1P014: Officenonoyesnono
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynonononono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialnonoyesyesno
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnonononono
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasnononoyesno
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalnonoyesyesno
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnonononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernonononono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
B2P002: Installation life time
B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
B2P003: Scale of action
B2P003: ScaleDistrictVirtual
B2P004: Operator of the installation
B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.IREC
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Civic
  • Strategic,
  • Private
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Private,
  • Industrial,
  • Other
B2P009: Otherresearch companies, monitoring company, ict company
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Buildings,
  • Demand-side management,
  • Energy storage,
  • Energy networks,
  • Waste management,
  • Lighting,
  • E-mobility,
  • Information and Communication Technologies (ICT),
  • Social interactions,
  • Business models
  • Demand-side management,
  • Energy storage,
  • Energy networks,
  • Efficiency measures,
  • Information and Communication Technologies (ICT)
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Tools for prototyping and modelling
  • Monitoring and evaluation infrastructure,
  • Tools for prototyping and modelling,
  • Tools, spaces, events for testing and validation
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Execution plan,
  • Available data,
  • Type of measured data,
  • Equipment,
  • Level of access
  • Equipment
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Social,
  • Economical / Financial
  • Energy,
  • Environmental
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
  • Energy modelling,
  • Social models,
  • Business and financial models
  • Energy modelling
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibility
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant5 - Very important5 - Very important5 - Very important
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important1 - Unimportant4 - Important2 - Slightly important5 - Very important
C1P001: Energy Communities, P2P, Prosumers concepts4 - Important3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important
C1P001: Storage systems and E-mobility market penetration4 - Important5 - Very important4 - Important1 - Unimportant4 - Important
C1P001: Decreasing costs of innovative materials5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important
C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important
C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important3 - Moderately important4 - Important5 - Very important
C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important3 - Moderately important2 - Slightly important5 - Very important
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
C1P001: Social acceptance (top-down)3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important
C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important4 - Important5 - Very important4 - Important5 - Very important
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important5 - Very important
C1P001: Availability of RES on site (Local RES)4 - Important4 - Important4 - Important4 - Important4 - Important
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important5 - Very important5 - Very important4 - Important4 - Important
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
C1P001: Any other UNLOCKING FACTORS (if any)
C1P002: Driving Factors
C1P002: Climate Change adaptation need2 - Slightly important4 - Important5 - Very important1 - Unimportant5 - Very important
C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important4 - Important5 - Very important5 - Very important4 - Important
C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important
C1P002: Urban re-development of existing built environment4 - Important4 - Important5 - Very important5 - Very important4 - Important
C1P002: Economic growth need2 - Slightly important4 - Important4 - Important2 - Slightly important4 - Important
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important
C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important4 - Important
C1P002: Energy autonomy/independence2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important4 - Important
C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important4 - Important4 - Important2 - Slightly important4 - Important
C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important
C1P003: Lack of public participation1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important
C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important3 - Moderately important4 - Important2 - Slightly important3 - Moderately important
C1P003:Long and complex procedures for authorization of project activities4 - Important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important3 - Moderately important5 - Very important3 - Moderately important
C1P003: Complicated and non-comprehensive public procurement3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important
C1P003: Fragmented and or complex ownership structure4 - Important5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important
C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important4 - Important4 - Important2 - Slightly important3 - Moderately important
C1P003: Lack of internal capacities to support energy transition1 - Unimportant4 - Important4 - Important2 - Slightly important3 - Moderately important
C1P003: Any other Administrative BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
C1P003: Any other Administrative BARRIER (if any)
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant
C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies4 - Important5 - Very important3 - Moderately important3 - Moderately important4 - Important
C1P005: Regulatory instability3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important
C1P005: Non-effective regulations3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important
C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important
C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant3 - Moderately important4 - Important2 - Slightly important3 - Moderately important
C1P005: Insufficient or insecure financial incentives3 - Moderately important5 - Very important5 - Very important2 - Slightly important3 - Moderately important
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important
C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important2 - Slightly important2 - Slightly important3 - Moderately important
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel4 - Important5 - Very important3 - Moderately important2 - Slightly important4 - Important
C1P007: Deficient planning2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant4 - Important
C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Lack of well-defined process3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important
C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
C1P007: Lack/cost of computational scalability1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
C1P007: Grid congestion, grid instability4 - Important5 - Very important3 - Moderately important1 - Unimportant4 - Important
C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P007: Any other Thecnical BARRIER (if any)
C1P008: Social and Cultural barriers
C1P008: Inertia2 - Slightly important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important
C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
C1P008: Low acceptance of new projects and technologies2 - Slightly important5 - Very important3 - Moderately important2 - Slightly important4 - Important
C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important5 - Very important4 - Important1 - Unimportant3 - Moderately important
C1P008: Lack of trust beyond social network4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important
C1P008: Rebound effect2 - Slightly important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important3 - Moderately important
C1P008: Exclusion of socially disadvantaged groups5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
C1P008: Non-energy issues are more important and urgent for actors4 - Important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important5 - Very important4 - Important2 - Slightly important3 - Moderately important
C1P009: Lack of awareness among authorities2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important4 - Important3 - Moderately important3 - Moderately important
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant4 - Important
C1P010: Insufficient external financial support and funding for project activities3 - Moderately important5 - Very important4 - Important2 - Slightly important3 - Moderately important
C1P010: Economic crisis1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
C1P010: Risk and uncertainty3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important
C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important
C1P010: Limited access to capital and cost disincentives2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives5 - Very important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important
C1P011: Energy price distortion4 - Important5 - Very important3 - Moderately important2 - Slightly important5 - Very important
C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important5 - Very important3 - Moderately important1 - Unimportant5 - Very important
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading
C1P012: Research & Innovation
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Financial/Funding
  • Design/demand aggregation,
  • Construction/implementation
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
C1P012: Analyst, ICT and Big Data
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Planning/leading,
  • Monitoring/operation/management
C1P012: Business process management
  • Planning/leading
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Monitoring/operation/management
  • Monitoring/operation/management
C1P012: Urban Services providers
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Construction/implementation
  • Planning/leading
  • Planning/leading,
  • Monitoring/operation/management
C1P012: Real Estate developers
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
C1P012: Design/Construction companies
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Design/demand aggregation
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • None
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Design/demand aggregation
C1P012: Social/Civil Society/NGOs
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading
  • Monitoring/operation/management
  • Design/demand aggregation
C1P012: Industry/SME/eCommerce
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation
C1P012: Other
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)