Name | Project | Type | Compare |
---|---|---|---|
Tartu, Estonia | V2G-QUESTS | PED Relevant Case Study | Compare |
Utrecht, the Netherlands (District of Kanaleneiland) | V2G-QUESTS | PED Relevant Case Study | Compare |
Aveiro, Portugal | V2G-QUESTS | PED Relevant Case Study | Compare |
Győr Geothermal District Heating Project | PED Relevant Case Study | Compare | |
Jacobs Borchs Gate, Drammen | PED Relevant Case Study | Compare | |
Dietenbach, Freiburg im Breisgau | PED Relevant Case Study | Compare | |
SmartEnCity, Lecce | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study | Compare |
STARDUST, Trento | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study / PED Lab | Compare |
Klimatkontrakt Hyllie, Malmö | PED Relevant Case Study | Compare | |
EnStadt:Pfaff, Kaiserslautern | PED Relevant Case Study / PED Lab | Compare | |
mySMARTlife, Helsinki | PED Relevant Case Study | Compare | |
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze | PED Relevant Case Study | Compare | |
Sinfonia, Bolzano | PED Relevant Case Study | Compare | |
Hunziker Areal, Zürich | PED Relevant Case Study | Compare | |
Hammarby Sjöstad 2.0, | PED Relevant Case Study | Compare | |
Sharing Cities, Milano | PED Relevant Case Study | Compare | |
District Heating Pozo Barredo, Mieres | PED Relevant Case Study | Compare | |
Cityfied (demo Linero), Lund | PED Relevant Case Study | Compare | |
Smart Otaniemi, Espoo | PED Relevant Case Study / PED Lab | Compare | |
Zukunftsquartier, Vienna | PED Case Study | Compare | |
Santa Chiara Open Lab, Trento | PED Case Study | Compare | |
Barrio La Pinada, Paterna | PED Case Study / PED Lab | Compare | |
Zero Village Bergen (ZVB) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Võru +CityxChange | PED Case Study | Compare | |
NTNU Campus within the Knowledge Axis, Trondheim | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Furuset project, Oslo | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Laser Valley – Land of Lights | PED Case Study | Compare | |
Ydalir project | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
NyBy – Ny Flyplass (New City – New Airport) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fornebu, Bærum | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fleuraye west, Carquefou | PED Case Study | Compare | |
Smart Energy Åland | PED Case Study | Compare | |
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Compare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Uncompare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Compare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Uncompare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Uncompare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Compare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | Compare |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Uncompare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Title | Groningen, PED North | Barcelona, SEILAB & Energy SmartLab | Stor-Elvdal, Campus Evenstad | Innsbruck, Campagne-Areal | Oslo, Verksbyen |
---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | |||||
A1P001: Name of the PED case study / PED Lab | Groningen, PED North | Barcelona, SEILAB & Energy SmartLab | Stor-Elvdal, Campus Evenstad | Innsbruck, Campagne-Areal | Oslo, Verksbyen |
A1P002: Map / aerial view / photos / graphic details / leaflet | |||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
|
|
| ||
A1P003: Categorisation of the PED site | |||||
PED case study | no | no | no | no | yes |
PED relevant case study | no | no | yes | yes | no |
PED Lab. | yes | yes | no | no | no |
A1P004: Targets of the PED case study / PED Lab | |||||
Climate neutrality | yes | no | yes | yes | yes |
Annual energy surplus | yes | no | yes | no | yes |
Energy community | yes | yes | no | no | no |
Circularity | yes | no | no | no | no |
Air quality and urban comfort | no | no | no | no | yes |
Electrification | no | yes | no | no | no |
Net-zero energy cost | no | no | no | no | no |
Net-zero emission | yes | yes | no | yes | yes |
Self-sufficiency (energy autonomous) | no | yes | no | no | no |
Maximise self-sufficiency | no | no | no | no | no |
Other | no | yes | yes | no | no |
Other (A1P004) | Green IT | Energy-flexibility | |||
A1P005: Phase of the PED case study / PED Lab | |||||
A1P005: Project Phase of your case study/PED Lab | Implementation Phase | In operation | In operation | Completed | Implementation Phase |
A1P006: Start Date | |||||
A1P006: Start date | 12/18 | 01/2011 | 01/13 | 04/16 | 07/18 |
A1P007: End Date | |||||
A1P007: End date | 12/23 | 02/2013 | 12/24 | 04/22 | 08/24 |
A1P008: Reference Project | |||||
A1P008: Reference Project | |||||
A1P009: Data availability | |||||
A1P009: Data availability |
|
|
|
| |
A1P009: Other | |||||
A1P010: Sources | |||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
|
| |||
A1P011: Geographic coordinates | |||||
X Coordinate (longitude): | 6.535121 | 2.1 | 11.078770773531746 | 11.424346738140256 | 10.986173354432992 |
Y Coordinate (latitude): | 53.234846 | 41.3 | 61.42604420399112 | 47.271470786729104 | 59.22429716642046 |
A1P012: Country | |||||
A1P012: Country | Netherlands | Spain | Norway | Austria | Norway |
A1P013: City | |||||
A1P013: City | Groningen | Barcelona and Tarragona | Evenstad, Stor-Elvdal municipality | Innsbruck | Fredrikstad |
A1P014: Climate Zone (Köppen Geiger classification) | |||||
A1P014: Climate Zone (Köppen Geiger classification). | Cfa | Csa | Dwc | Dfb | Cfb |
A1P015: District boundary | |||||
A1P015: District boundary | Functional | Virtual | Geographic | Geographic | Geographic |
Other | |||||
A1P016: Ownership of the case study/PED Lab | |||||
A1P016: Ownership of the case study/PED Lab: | Mixed | Public | Public | Mixed | Private |
A1P017: Ownership of the land / physical infrastructure | |||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Single Owner | Single Owner | Multiple Owners | Single Owner |
A1P018: Number of buildings in PED | |||||
A1P018: Number of buildings in PED | 7 | 0 | 22 | 4 | 2 |
A1P019: Conditioned space | |||||
A1P019: Conditioned space [m²] | 1.01 | 10000 | 22277 | 3550 | |
A1P020: Total ground area | |||||
A1P020: Total ground area [m²] | 17.132 | 11351 | |||
A1P021: Floor area ratio: Conditioned space / total ground area | |||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 0 | 0 | 2 | 0 |
A1P022: Financial schemes | |||||
A1P022a: Financing - PRIVATE - Real estate | yes | no | no | no | yes |
A1P022a: Add the value in EUR if available [EUR] | |||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | |||||
A1P022c: Financing - PRIVATE - Other | yes | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | |||||
A1P022d: Financing - PUBLIC - EU structural funding | no | no | no | no | no |
A1P022d: Add the value in EUR if available [EUR] | |||||
A1P022e: Financing - PUBLIC - National funding | yes | no | yes | no | no |
A1P022e: Add the value in EUR if available [EUR] | |||||
A1P022f: Financing - PUBLIC - Regional funding | no | no | no | no | no |
A1P022f: Add the value in EUR if available [EUR] | |||||
A1P022g: Financing - PUBLIC - Municipal funding | yes | no | no | no | no |
A1P022g: Add the value in EUR if available [EUR] | |||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | |||||
A1P022i: Financing - RESEARCH FUNDING - EU | yes | no | no | no | no |
A1P022i: Add the value in EUR if available [EUR] | |||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | yes | yes | no |
A1P022j: Add the value in EUR if available [EUR] | |||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no |
A1P022k: Add the value in EUR if available [EUR] | |||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | |||||
A1P022: Other | |||||
A1P023: Economic Targets | |||||
A1P023: Economic Targets |
|
|
|
| |
A1P023: Other | Create affordable appartments for the citizens | ||||
A1P024: More comments: | |||||
A1P024: More comments: | Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2 | The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high. | ||
A1P025: Estimated PED case study / PED LAB costs | |||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | |||||
Contact person for general enquiries | |||||
A1P026: Name | Jasper Tonen, Elisabeth Koops | Dr. Jaume Salom, Dra. Cristina Corchero | Åse Lekang Sørensen | Georgios Dermentzis | Tonje Healey Trulsrud |
A1P027: Organization | Municipality of Groningen | IREC | SINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities | University of Innsbruck | Norwegian University of Science and technology (NTNU) |
A1P028: Affiliation | Municipality / Public Bodies | Research Center / University | Research Center / University | Research Center / University | Research Center / University |
A1P028: Other | |||||
A1P029: Email | Jasper.tonen@groningen.nl | Jsalom@irec.cat | ase.sorensen@sintef.no | Georgios.Dermentzis@uibk.ac.at | tonje.h.trulsrud@ntnu.no |
Contact person for other special topics | |||||
A1P030: Name | |||||
A1P031: Email | |||||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes |
A2P001: Fields of application | |||||
A2P001: Fields of application |
|
|
|
|
|
A2P001: Other | |||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | |||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streams | Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35) | Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied. | The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed. | Energy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilation |
A2P003: Application of ISO52000 | |||||
A2P003: Application of ISO52000 | No | No | No | Yes | |
A2P004: Appliances included in the calculation of the energy balance | |||||
A2P004: Appliances included in the calculation of the energy balance | No | Yes | Yes | Yes | No |
A2P005: Mobility included in the calculation of the energy balance | |||||
A2P005: Mobility included in the calculation of the energy balance | No | Yes | Yes | No | No |
A2P006: Description of how mobility is included (or not included) in the calculation | |||||
A2P006: Description of how mobility is included (or not included) in the calculation | Mobility, till now, is not included in the energy model. | – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah | At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance. | ||
A2P007: Annual energy demand in buildings / Thermal demand | |||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 2.3 | 0.77 | 0.39 | 0.16 | |
A2P008: Annual energy demand in buildings / Electric Demand | |||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 0.33 | 0.76 | 0.655 | 0.053 | |
A2P009: Annual energy demand for e-mobility | |||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | 0 | ||||
A2P010: Annual energy demand for urban infrastructure | |||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | |||||
A2P011: Annual renewable electricity production on-site during target year | |||||
A2P011: PV | no | yes | yes | yes | yes |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 0.065 | 0.42 | 0.18 | ||
A2P011: Wind | no | no | no | no | no |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | |||||
A2P011: Hydro | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | |||||
A2P011: Biomass_el | no | no | yes | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | 0.050 | ||||
A2P011: Biomass_peat_el | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | |||||
A2P011: PVT_el | no | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | |||||
A2P011: Other | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | |||||
A2P012: Annual renewable thermal production on-site during target year | |||||
A2P012: Geothermal | yes | no | no | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | |||||
A2P012: Solar Thermal | yes | no | yes | no | no |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | 0.045 | ||||
A2P012: Biomass_heat | yes | no | yes | no | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | 0.1 | 0.35 | |||
A2P012: Waste heat+HP | yes | no | no | no | no |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | |||||
A2P012: Biomass_peat_heat | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | |||||
A2P012: PVT_th | yes | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | |||||
A2P012: Biomass_firewood_th | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | |||||
A2P012: Other | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | |||||
A2P013: Renewable resources on-site - Additional notes | |||||
A2P013: Renewable resources on-site - Additional notes | Geothermal heatpump systems, Waste heat from data centers | Listed values are measurements from 2018. Renewable energy share is increasing. | |||
A2P014: Annual energy use | |||||
A2P014: Annual energy use [GWh/annum] | 1.500 | 0.96 | |||
A2P015: Annual energy delivered | |||||
A2P015: Annual energy delivered [GWh/annum] | 1 | -2 | |||
A2P016: Annual non-renewable electricity production on-site during target year | |||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | |||||
A2P017: Annual non-renewable thermal production on-site during target year | |||||
A2P017: Gas | no | yes | no | no | no |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||
A2P017: Coal | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||
A2P017: Oil | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||
A2P017: Other | no | no | no | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | |||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | |||||
A2P018: PV | no | no | no | no | no |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | |||||
A2P018: Wind | no | no | no | no | no |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | |||||
A2P018: Hydro | no | no | no | no | no |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | |||||
A2P018: Biomass_el | no | no | no | no | no |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | |||||
A2P018: Biomass_peat_el | no | no | no | no | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | |||||
A2P018: PVT_el | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | |||||
A2P018: Other | no | no | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | |||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | |||||
A2P019: Geothermal | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | |||||
A2P019: Solar Thermal | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | |||||
A2P019: Biomass_heat | no | no | no | no | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | |||||
A2P019: Waste heat+HP | no | no | no | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | |||||
A2P019: Biomass_peat_heat | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | |||||
A2P019: PVT_th | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | |||||
A2P019: Biomass_firewood_th | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | |||||
A2P019: Other | no | no | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | |||||
A2P020: Share of RES on-site / RES outside the boundary | |||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0 | 0 | 0 |
A2P021: GHG-balance calculated for the PED | |||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | -6.035 | ||||
A2P022: KPIs related to the PED case study / PED Lab | |||||
A2P022: Safety & Security | Personal Safety | ||||
A2P022: Health | indoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold. | Healthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort) | |||
A2P022: Education | |||||
A2P022: Mobility | Sustainable mobility | ||||
A2P022: Energy | Space heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production. | Energy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissions | |||
A2P022: Water | |||||
A2P022: Economic development | Economic Performance: capital costs, operational costs, overall performance | ||||
A2P022: Housing and Community | demopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousness | ||||
A2P022: Waste | |||||
A2P022: Other | Smartness and Flexibility | ||||
A2P023: Technological Solutions / Innovations - Energy Generation | |||||
A2P023: Photovoltaics | yes | yes | yes | yes | yes |
A2P023: Solar thermal collectors | yes | no | yes | no | no |
A2P023: Wind Turbines | no | no | no | no | no |
A2P023: Geothermal energy system | yes | no | no | no | yes |
A2P023: Waste heat recovery | yes | no | no | no | no |
A2P023: Waste to energy | yes | no | no | no | no |
A2P023: Polygeneration | no | no | no | no | no |
A2P023: Co-generation | no | no | yes | no | no |
A2P023: Heat Pump | yes | no | no | yes | yes |
A2P023: Hydrogen | no | no | no | no | no |
A2P023: Hydropower plant | no | no | no | no | no |
A2P023: Biomass | no | no | yes | no | no |
A2P023: Biogas | no | no | no | no | no |
A2P023: Other | The Co-generation is biomass based. | ||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | |||||
A2P024: A2P024: Information and Communication Technologies (ICT) | yes | yes | yes | no | yes |
A2P024: Energy management system | yes | yes | yes | no | yes |
A2P024: Demand-side management | yes | no | yes | no | yes |
A2P024: Smart electricity grid | no | yes | no | no | no |
A2P024: Thermal Storage | yes | no | yes | yes | no |
A2P024: Electric Storage | yes | yes | yes | no | no |
A2P024: District Heating and Cooling | yes | no | yes | yes | no |
A2P024: Smart metering and demand-responsive control systems | yes | no | yes | no | yes |
A2P024: P2P – buildings | no | no | no | yes | no |
A2P024: Other | Bidirectional electric vehicle (EV) charging (V2G) | ||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | |||||
A2P025: Deep Retrofitting | no | no | no | no | no |
A2P025: Energy efficiency measures in historic buildings | yes | no | no | no | no |
A2P025: High-performance new buildings | yes | no | yes | yes | yes |
A2P025: Smart Public infrastructure (e.g. smart lighting) | yes | no | no | no | no |
A2P025: Urban data platforms | yes | no | no | no | no |
A2P025: Mobile applications for citizens | no | no | no | no | no |
A2P025: Building services (HVAC & Lighting) | no | yes | no | yes | yes |
A2P025: Smart irrigation | no | no | no | no | no |
A2P025: Digital tracking for waste disposal | no | no | no | no | no |
A2P025: Smart surveillance | no | no | no | no | no |
A2P025: Other | |||||
A2P026: Technological Solutions / Innovations - Mobility | |||||
A2P026: Efficiency of vehicles (public and/or private) | no | yes | no | no | no |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | no | no | no | no | no |
A2P026: e-Mobility | yes | no | yes | no | no |
A2P026: Soft mobility infrastructures and last mile solutions | no | no | no | no | no |
A2P026: Car-free area | no | no | no | no | no |
A2P026: Other | |||||
A2P027: Mobility strategies - Additional notes | |||||
A2P027: Mobility strategies - Additional notes | |||||
A2P028: Energy efficiency certificates | |||||
A2P028: Energy efficiency certificates | Yes | Yes | Yes | Yes | |
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate | Passive house (2 buildings, 4 200 m2, from 2015) | Two buildings are certified "Passive House new build" | NS3700 Norwegian Passive House | |
A2P029: Any other building / district certificates | |||||
A2P029: Any other building / district certificates | Yes | No | |||
A2P029: If yes, please specify and/or enter notes | Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016) | ||||
A3P001: Relevant city /national strategy | |||||
A3P001: Relevant city /national strategy |
|
|
|
| |
A3P002: Quantitative targets included in the city / national strategy | |||||
A3P002: Quantitative targets included in the city / national strategy | |||||
A3P003: Strategies towards decarbonization of the gas grid | |||||
A3P003: Strategies towards decarbonization of the gas grid |
|
| |||
A3P003: Other | District heating based mainly on heat pumps and renewable sources | ||||
A3P004: Identification of needs and priorities | |||||
A3P004: Identification of needs and priorities | -Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | The priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems. | |||
A3P005: Sustainable behaviour | |||||
A3P005: Sustainable behaviour | In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed. | -Improving the development of Net Zero Energy Buildings and Flexible Energy buildings. | |||
A3P006: Economic strategies | |||||
A3P006: Economic strategies |
|
| |||
A3P006: Other | |||||
A3P007: Social models | |||||
A3P007: Social models |
|
|
|
| |
A3P007: Other | Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies. | ||||
A3P008: Integrated urban strategies | |||||
A3P008: Integrated urban strategies |
| ||||
A3P008: Other | |||||
A3P009: Environmental strategies | |||||
A3P009: Environmental strategies |
|
|
|
| |
A3P009: Other | |||||
A3P010: Legal / Regulatory aspects | |||||
A3P010: Legal / Regulatory aspects | At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen: Lack of legal certainty and clarity with regard to the energy legislation. Lack of coherence between policy and legislation from different ministries. The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals. Lack of capacity on the distribution grid for electricity | - European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013. | Campus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates. | ||
B1P001: PED/PED relevant concept definition | |||||
B1P001: PED/PED relevant concept definition | The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating. | Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation. | The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis. | ||
B1P002: Motivation behind PED/PED relevant project development | |||||
B1P002: Motivation behind PED/PED relevant project development | In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions. | Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial. | The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being. | ||
B1P003: Environment of the case study area | |||||
B2P003: Environment of the case study area | Rural | Urban area | Suburban area | ||
B1P004: Type of district | |||||
B2P004: Type of district |
|
|
| ||
B1P005: Case Study Context | |||||
B1P005: Case Study Context |
|
|
| ||
B1P006: Year of construction | |||||
B1P006: Year of construction | 2022 | ||||
B1P007: District population before intervention - Residential | |||||
B1P007: District population before intervention - Residential | |||||
B1P008: District population after intervention - Residential | |||||
B1P008: District population after intervention - Residential | 780 | ||||
B1P009: District population before intervention - Non-residential | |||||
B1P009: District population before intervention - Non-residential | |||||
B1P010: District population after intervention - Non-residential | |||||
B1P010: District population after intervention - Non-residential | |||||
B1P011: Population density before intervention | |||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | |||||
B1P012: Population density after intervention | 0 | 0 | 0 | 0.068716412650868 | 0 |
B1P013: Building and Land Use before intervention | |||||
B1P013: Residential | no | no | no | no | no |
B1P013 - Residential: Specify the sqm [m²] | |||||
B1P013: Office | no | no | no | no | no |
B1P013 - Office: Specify the sqm [m²] | |||||
B1P013: Industry and Utility | no | no | no | no | yes |
B1P013 - Industry and Utility: Specify the sqm [m²] | whole site was used for idustry and excavation | ||||
B1P013: Commercial | no | no | no | no | no |
B1P013 - Commercial: Specify the sqm [m²] | |||||
B1P013: Institutional | no | no | no | no | no |
B1P013 - Institutional: Specify the sqm [m²] | |||||
B1P013: Natural areas | no | no | no | no | no |
B1P013 - Natural areas: Specify the sqm [m²] | |||||
B1P013: Recreational | no | no | no | no | no |
B1P013 - Recreational: Specify the sqm [m²] | |||||
B1P013: Dismissed areas | no | no | no | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | |||||
B1P013: Other | no | no | no | no | no |
B1P013 - Other: Specify the sqm [m²] | |||||
B1P014: Building and Land Use after intervention | |||||
B1P014: Residential | no | no | no | yes | yes |
B1P014 - Residential: Specify the sqm [m²] | |||||
B1P014: Office | no | no | no | no | no |
B1P014 - Office: Specify the sqm [m²] | |||||
B1P014: Industry and Utility | no | no | no | no | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | |||||
B1P014: Commercial | no | no | no | yes | no |
B1P014 - Commercial: Specify the sqm [m²] | |||||
B1P014: Institutional | no | no | no | yes | no |
B1P014 - Institutional: Specify the sqm [m²] | |||||
B1P014: Natural areas | no | no | no | no | no |
B1P014 - Natural areas: Specify the sqm [m²] | |||||
B1P014: Recreational | no | no | no | yes | no |
B1P014 - Recreational: Specify the sqm [m²] | |||||
B1P014: Dismissed areas | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | |||||
B1P014: Other | no | no | no | no | no |
B1P014 - Other: Specify the sqm [m²] | |||||
B2P001: PED Lab concept definition | |||||
B2P001: PED Lab concept definition | Groningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city. | addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation | |||
B2P002: Installation life time | |||||
B2P002: Installation life time | The MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact. | ||||
B2P003: Scale of action | |||||
B2P003: Scale | District | Virtual | |||
B2P004: Operator of the installation | |||||
B2P004: Operator of the installation | The Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties. | IREC | |||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | |||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | Groningen does not have a strategy to reuse and recyle materials | ||||
B2P006: Circular Economy Approach | |||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | No | No | |||
B2P006: Other | |||||
B2P007: Motivation for developing the PED Lab | |||||
B2P007: Motivation for developing the PED Lab |
|
| |||
B2P007: Other | |||||
B2P008: Lead partner that manages the PED Lab | |||||
B2P008: Lead partner that manages the PED Lab | Municipality | Research center/University | |||
B2P008: Other | |||||
B2P009: Collaborative partners that participate in the PED Lab | |||||
B2P009: Collaborative partners that participate in the PED Lab |
| ||||
B2P009: Other | research companies, monitoring company, ict company | ||||
B2P010: Synergies between the fields of activities | |||||
B2P010: Synergies between the fields of activities | |||||
B2P011: Available facilities to test urban configurations in PED Lab | |||||
B2P011: Available facilities to test urban configurations in PED Lab |
|
| |||
B2P011: Other | |||||
B2P012: Incubation capacities of PED Lab | |||||
B2P012: Incubation capacities of PED Lab |
|
| |||
B2P013: Availability of the facilities for external people | |||||
B2P013: Availability of the facilities for external people | |||||
B2P014: Monitoring measures | |||||
B2P014: Monitoring measures |
|
| |||
B2P015: Key Performance indicators | |||||
B2P015: Key Performance indicators |
|
| |||
B2P016: Execution of operations | |||||
B2P016: Execution of operations | |||||
B2P017: Capacities | |||||
B2P017: Capacities | - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. | ||||
B2P018: Relations with stakeholders | |||||
B2P018: Relations with stakeholders | |||||
B2P019: Available tools | |||||
B2P019: Available tools |
|
| |||
B2P019: Available tools | |||||
B2P020: External accessibility | |||||
B2P020: External accessibility | |||||
C1P001: Unlocking Factors | |||||
C1P001: Recent technological improvements for on-site RES production | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 5 - Very important |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 4 - Important |
C1P001: Energy Communities, P2P, Prosumers concepts | 4 - Important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant |
C1P001: Storage systems and E-mobility market penetration | 4 - Important | 5 - Very important | 5 - Very important | 2 - Slightly important | 1 - Unimportant |
C1P001: Decreasing costs of innovative materials | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 5 - Very important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P001: The ability to predict Multiple Benefits | 3 - Moderately important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P001: The ability to predict the distribution of benefits and impacts | 3 - Moderately important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 5 - Very important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 1 - Unimportant |
C1P001: Social acceptance (top-down) | 3 - Moderately important | 1 - Unimportant | 4 - Important | 4 - Important | 1 - Unimportant |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 4 - Important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 1 - Unimportant |
C1P001: Presence of integrated urban strategies and plans | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant |
C1P001: Multidisciplinary approaches available for systemic integration | 2 - Slightly important | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 4 - Important | 1 - Unimportant |
C1P001: Availability of RES on site (Local RES) | 4 - Important | 4 - Important | 5 - Very important | 3 - Moderately important | 5 - Very important |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P001: Any other UNLOCKING FACTORS (if any) | |||||
C1P002: Driving Factors | |||||
C1P002: Climate Change adaptation need | 2 - Slightly important | 4 - Important | 3 - Moderately important | 5 - Very important | 1 - Unimportant |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 3 - Moderately important | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P002: Urban re-development of existing built environment | 4 - Important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P002: Economic growth need | 2 - Slightly important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 1 - Unimportant | 4 - Important | 1 - Unimportant | 3 - Moderately important | 4 - Important |
C1P002: Territorial and market attractiveness | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important |
C1P002: Energy autonomy/independence | 2 - Slightly important | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant |
C1P002: Any other DRIVING FACTOR | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P002: Any other DRIVING FACTOR (if any) | Earthquakes due to gas extraction | ||||
C1P003: Administrative barriers | |||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 3 - Moderately important | 4 - Important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant |
C1P003: Lack of good cooperation and acceptance among partners | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant |
C1P003: Lack of public participation | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P003: Lack of institutions/mechanisms to disseminate information | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P003:Long and complex procedures for authorization of project activities | 4 - Important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant |
C1P003: Complicated and non-comprehensive public procurement | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant |
C1P003: Fragmented and or complex ownership structure | 4 - Important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 5 - Very important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P003: Lack of internal capacities to support energy transition | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P003: Any other Administrative BARRIER (if any) | |||||
C1P004: Policy barriers | |||||
C1P004: Lack of long-term and consistent energy plans and policies | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P004: Lacking or fragmented local political commitment and support on the long term | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P004: Lack of Cooperation & support between national-regional-local entities | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P004: Any other Political BARRIER (if any) | |||||
C1P005: Legal and Regulatory barriers | |||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important |
C1P005: Regulatory instability | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P005: Non-effective regulations | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 5 - Very important |
C1P005: Unfavorable local regulations for innovative technologies | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P005: Building code and land-use planning hindering innovative technologies | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P005: Insufficient or insecure financial incentives | 3 - Moderately important | 5 - Very important | 4 - Important | 1 - Unimportant | 1 - Unimportant |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P005: Shortage of proven and tested solutions and examples | 2 - Slightly important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P005: Any other Legal and Regulatory BARRIER (if any) | |||||
C1P006: Environmental barriers | |||||
C1P006: Environmental barriers | Urban area very high buildings (and apartment) density and thus, less available space for renewable sources. | ||||
C1P007: Technical barriers | |||||
C1P007: Lack of skilled and trained personnel | 4 - Important | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant |
C1P007: Deficient planning | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Retrofitting work in dwellings in occupied state | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P007: Lack of well-defined process | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P007: Inaccuracy in energy modelling and simulation | 4 - Important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P007: Lack/cost of computational scalability | 1 - Unimportant | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant |
C1P007: Grid congestion, grid instability | 4 - Important | 5 - Very important | 5 - Very important | 1 - Unimportant | 1 - Unimportant |
C1P007: Negative effects of project intervention on the natural environment | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Difficult definition of system boundaries | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant |
C1P007: Any other Thecnical BARRIER (if any) | Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges. | ||||
C1P008: Social and Cultural barriers | |||||
C1P008: Inertia | 2 - Slightly important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Lack of values and interest in energy optimization measurements | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P008: Low acceptance of new projects and technologies | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P008: Difficulty of finding and engaging relevant actors | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Lack of trust beyond social network | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Rebound effect | 2 - Slightly important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Hostile or passive attitude towards environmentalism | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Exclusion of socially disadvantaged groups | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Non-energy issues are more important and urgent for actors | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant |
C1P008: Hostile or passive attitude towards energy collaboration | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Any other Social BARRIER (if any) | |||||
C1P009: Information and Awareness barriers | |||||
C1P009: Insufficient information on the part of potential users and consumers | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P009: Lack of awareness among authorities | 2 - Slightly important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 1 - Unimportant |
C1P009: Information asymmetry causing power asymmetry of established actors | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P009: High costs of design, material, construction, and installation | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant |
C1P009: Any other Information and Awareness BARRIER (if any) | Different interests - Grid/energy stakeholders and building stakeholders | ||||
C1P010: Financial barriers | |||||
C1P010: Hidden costs | 2 - Slightly important | 5 - Very important | 5 - Very important | 1 - Unimportant | 1 - Unimportant |
C1P010: Insufficient external financial support and funding for project activities | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant | 1 - Unimportant |
C1P010: Economic crisis | 1 - Unimportant | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant |
C1P010: Risk and uncertainty | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant | 4 - Important |
C1P010: Lack of consolidated and tested business models | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant | 1 - Unimportant |
C1P010: Limited access to capital and cost disincentives | 2 - Slightly important | 4 - Important | 1 - Unimportant | 1 - Unimportant | |
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P010: Any other Financial BARRIER (if any) | |||||
C1P011: Market barriers | |||||
C1P011: Split incentives | 5 - Very important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P011: Energy price distortion | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P011: Any other Market BARRIER (if any) | |||||
C1P012: Stakeholders involved | |||||
C1P012: Government/Public Authorities |
|
|
|
| |
C1P012: Research & Innovation |
|
|
|
| |
C1P012: Financial/Funding |
|
|
| ||
C1P012: Analyst, ICT and Big Data |
|
|
| ||
C1P012: Business process management |
|
| |||
C1P012: Urban Services providers |
|
| |||
C1P012: Real Estate developers |
|
|
|
| |
C1P012: Design/Construction companies |
|
|
|
| |
C1P012: End‐users/Occupants/Energy Citizens |
|
|
| ||
C1P012: Social/Civil Society/NGOs |
|
|
| ||
C1P012: Industry/SME/eCommerce |
|
|
| ||
C1P012: Other |
| ||||
C1P012: Other (if any) | |||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)