Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Uncompare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Uncompare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Uncompare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
TitleGroningen, PED North
Kifissia, Energy community
Stor-Elvdal, Campus Evenstad
Tartu, City centre area
Vienna, Am Kempelenpark
Zaragoza, Actur
Espoo, Leppävaara district, Sello center
Schönbühel-Aggsbach, Schönbühel an der Donau
Istanbul, Ozyegin University Campus
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabGroningen, PED NorthKifissia, Energy communityStor-Elvdal, Campus EvenstadTartu, City centre areaVienna, Am KempelenparkZaragoza, ActurEspoo, Leppävaara district, Sello centerSchönbühel-Aggsbach, Schönbühel an der DonauIstanbul, Ozyegin University Campus
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonononoyesnoyesnono
PED relevant case studynoyesyesyesnoyesnoyesyes
PED Lab.yesnonoyesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyesyesyesyesyes
Annual energy surplusyesnoyesnoyesyesnonono
Energy communityyesyesnononononoyesno
Circularityyesnonoyesnonononono
Air quality and urban comfortnoyesnonononononoyes
Electrificationnoyesnoyesnoyesnonoyes
Net-zero energy costnononononononoyesno
Net-zero emissionyesnonoyesnoyesnonono
Self-sufficiency (energy autonomous)nonononononononono
Maximise self-sufficiencynononoyesnonoyesyesno
Othernonoyesnononononoyes
Other (A1P004)Energy-flexibilityalmost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhaseIn operationImplementation PhasePlanning PhasePlanning PhaseImplementation PhaseImplementation PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date12/1801/1302/1607/1601/2309/1910/24
A1P007: End Date
A1P007: End date12/2312/2407/2202/2510/2210/28
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • General statistical datasets
  • Monitoring data available within the districts
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
    • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
    • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf
        A1P011: Geographic coordinates
        X Coordinate (longitude):6.53512123.81458811.07877077353174626.72273716.395292-0.889124.810115.396929.258300
        Y Coordinate (latitude):53.23484638.07734961.4260442039911258.38071348.17359841.648860.217948.275241.030600
        A1P012: Country
        A1P012: CountryNetherlandsGreeceNorwayEstoniaAustriaSpainFinlandAustriaTurkey
        A1P013: City
        A1P013: CityGroningenMunicipality of KifissiaEvenstad, Stor-Elvdal municipalityTartuViennaZaragozaEspooSchönbühel an der DonauIstanbul
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CfaCsaDwcDfbCwbBSkDfbDfbCfa
        A1P015: District boundary
        A1P015: District boundaryFunctionalVirtualGeographicFunctionalGeographicGeographicGeographicGeographicGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedPublicPrivatePrivatePublicPrivatePrivate
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersSingle Owner
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED72218665015
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]1.011000035217267956477
        A1P020: Total ground area
        A1P020: Total ground area [m²]17.132793144530002450285.400
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area000000500
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estateyesnonoyesnononoyesyes
        A1P022a: Add the value in EUR if available [EUR]6500000
        A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Otheryesnononononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnononoyesnonononono
        A1P022d: Add the value in EUR if available [EUR]4000000
        A1P022e: Financing - PUBLIC - National fundingyesnoyesyesnononoyesno
        A1P022e: Add the value in EUR if available [EUR]8000000
        A1P022f: Financing - PUBLIC - Regional fundingnononononononoyesno
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingyesnononononononono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUyesnononononoyesnoyes
        A1P022i: Add the value in EUR if available [EUR]629000
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Positive externalities
        • Job creation,
        • Positive externalities,
        • Boosting local businesses
        • Positive externalities,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        A1P023: Other
        A1P024: More comments:
        A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]251
        Contact person for general enquiries
        A1P026: NameJasper Tonen, Elisabeth KoopsArtemis Giavasoglou, Kleopatra KalampokaÅse Lekang SørensenJaanus TammGerhard HoferClara LorenteJaano JuhmenGhazal EtminanCem Keskin
        A1P027: OrganizationMunicipality of GroningenMunicipality of Kifissia – SPARCS local teamSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesTartu City Governmente7 energy innovation & engineeringCIRCESIEMENS - Data Center ForumGhazal.Etminan@ait.ac.atCenter for Energy, Environment and Economy, Ozyegin University
        A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesSME / IndustryResearch Center / UniversitySME / IndustryResearch Center / UniversityResearch Center / University
        A1P028: Other
        A1P029: EmailJasper.tonen@groningen.nlgiavasoglou@kifissia.grase.sorensen@sintef.noJaanus.tamm@tartu.eegerhard.hofer@e-sieben.atCLORENTEM@FCIRCE.COMJaano.juhmen@siemens.comGhazal.Etminan@ait.ac.atcem.keskin@ozyegin.edu.tr
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorKaspar AlevM. Pınar Mengüç
        A1P031: Emailstavros.zapantis@gmail.comKaspar.alev@tartu.eepinar.menguc@ozyegin.edu.tr
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Waste management
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.Energy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy modelingLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste document
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNoNoYes
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYesYesYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoYesNoNoNoNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationMobility, till now, is not included in the energy model.At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.Not included, the campus is a non car area except emergencies
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.30.779.10.066
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.330.760.012
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVnoyesyesyesnononoyesyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.065
        A2P011: Windnonononononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonoyesnononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
        A2P011: Biomass_peat_elnonononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernonononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalyesnononononononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalyesnoyesyesnonononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.0450.5
        A2P012: Biomass_heatyesnoyesnononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.10.35
        A2P012: Waste heat+HPyesnononononononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnonononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thyesnononononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centersListed values are measurements from 2018. Renewable energy share is increasing.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]1.5000.0793.5
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]10.0011
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonononononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononononononoyesyes
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
        A2P018: Windnononononononoyesno
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononononononoyesno
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononononononoyesno
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonononononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononononononoyesno
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary000000000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]9804
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Health
        A2P022: Education
        A2P022: Mobility
        A2P022: Energy
        A2P022: Water
        A2P022: Economic development
        A2P022: Housing and CommunitySpecify the associated KPIs
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesnoyesyesnoyesnoyesyes
        A2P023: Solar thermal collectorsyesnoyesnononononono
        A2P023: Wind Turbinesnonononononononoyes
        A2P023: Geothermal energy systemyesnonononoyesnonono
        A2P023: Waste heat recoveryyesnononononononono
        A2P023: Waste to energyyesnononononononono
        A2P023: Polygenerationnonononononononono
        A2P023: Co-generationnonoyesnononononoyes
        A2P023: Heat Pumpyesnonononoyesnoyesyes
        A2P023: Hydrogennonononononononono
        A2P023: Hydropower plantnonononononononono
        A2P023: Biomassnonoyesyesnonononono
        A2P023: Biogasnononoyesnonononono
        A2P023: OtherThe Co-generation is biomass based.
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)yesnoyesyesnonononoyes
        A2P024: Energy management systemyesnoyesyesnoyesnoyesyes
        A2P024: Demand-side managementyesnoyesnononononoyes
        A2P024: Smart electricity gridnonononononononono
        A2P024: Thermal Storageyesnoyesnononononono
        A2P024: Electric Storageyesnoyesnononononoyes
        A2P024: District Heating and Coolingyesnoyesyesnonononoyes
        A2P024: Smart metering and demand-responsive control systemsyesnoyesnononononoyes
        A2P024: P2P – buildingsnononononononoyesno
        A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnononoyesnononoyesno
        A2P025: Energy efficiency measures in historic buildingsyesnonononononoyesno
        A2P025: High-performance new buildingsyesnoyesnononononoyes
        A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonoyesnonononono
        A2P025: Urban data platformsyesnonoyesnonononono
        A2P025: Mobile applications for citizensnononoyesnonononono
        A2P025: Building services (HVAC & Lighting)nonononononononoyes
        A2P025: Smart irrigationnonononononononoyes
        A2P025: Digital tracking for waste disposalnonononononononono
        A2P025: Smart surveillancenononoyesnonononoyes
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nononoyesnonononono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnonononono
        A2P026: e-Mobilityyesnoyesyesnoyesnonoyes
        A2P026: Soft mobility infrastructures and last mile solutionsnonononononononoyes
        A2P026: Car-free areanonononononononoyes
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesYesYesYesYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingPassive house (2 buildings, 4 200 m2, from 2015)
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesYesNoYes
        A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)LEED BD+C, LEED NC CAMPUS
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Promotion of energy communities (REC/CEC),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Energy master planning (SECAP, etc.)
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategy
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas
        • Biogas,
        • Hydrogen
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods
        A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesCarbon and Energy Neutrality
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • Blockchain
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Existing incentives
        • Local trading,
        • Existing incentives
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Citizen Social Research,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance
        • Behavioural Change / End-users engagement,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
        • Other
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Social incentives,
        • Quality of Life,
        • Prevention of energy poverty,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral
        • Low Emission Zone
        • Net zero carbon footprint,
        • Carbon-free,
        • Pollutants Reduction,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Carbon-free
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Greening strategies,
        • Cool Materials
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.ISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentIn line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaRuralUrban areaUrban areaUrban areaRurbanSuburban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction,
        • Renovation
        • Renovation
        • Renovation
        • Renovation
        • Renovation
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Retrofitting Area
        • Retrofitting Area
        • Re-use / Transformation Area,
        • New Development
        • Retrofitting Area
        • Retrofitting Area,
        • Preservation Area
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction2024
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential4500
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential9800
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential9800
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000000034
        B1P012: Population density after intervention
        B1P012: Population density after intervention0000000034.337771548704
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnononoyesnononoyesno
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officenonononoyesnonoyesno
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonononononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnononoyesyesnononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononononoyes
        B1P013 - Institutional: Specify the sqm [m²]285.400
        B1P013: Natural areasnononoyesnonononono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnononoyesnonononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnononoyesyesnonoyesno
        B1P014 - Residential: Specify the sqm [m²]
        B1P014: Officenonononoyesnonoyesno
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonononononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnononoyesyesnononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonononononononoyes
        B1P014 - Institutional: Specify the sqm [m²]280000
        B1P014: Natural areasnononoyesnonononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnononoyesnonononono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
        B2P002: Installation life time
        B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
        B2P003: Scale of action
        B2P003: ScaleDistrictDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Civic
        • Strategic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipalityMunicipality
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Other
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO
        B2P009: Otherresearch companies, monitoring company, ict company
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Waste management,
        • Lighting,
        • E-mobility,
        • Information and Communication Technologies (ICT),
        • Social interactions,
        • Business models
        • Buildings,
        • Prosumers,
        • Renewable generation,
        • Energy networks,
        • Lighting,
        • E-mobility,
        • Green areas,
        • User interaction/participation,
        • Information and Communication Technologies (ICT)
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Tools for prototyping and modelling
        • Monitoring and evaluation infrastructure,
        • Pivoting and risk-mitigating measures
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Execution plan,
        • Available data,
        • Type of measured data,
        • Equipment,
        • Level of access
        • Available data,
        • Life Cycle Analysis
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Social,
        • Economical / Financial
        • Energy,
        • Sustainability,
        • Social,
        • Economical / Financial
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling,
        • Social models,
        • Business and financial models
        • Social models
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P001: Energy Communities, P2P, Prosumers concepts4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important4 - Important
        C1P001: Storage systems and E-mobility market penetration4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P001: Decreasing costs of innovative materials5 - Very important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
        C1P001: Financial mechanisms to reduce costs and maximize benefits5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important
        C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
        C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important
        C1P001: Social acceptance (top-down)3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important
        C1P001: Multidisciplinary approaches available for systemic integration2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need2 - Slightly important4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Urban re-development of existing built environment4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P002: Economic growth need2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Territorial and market attractiveness2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P002: Energy autonomy/independence2 - Slightly important5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Any other DRIVING FACTOR4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important
        C1P003: Lack of public participation1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P003: Lack of institutions/mechanisms to disseminate information2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P003:Long and complex procedures for authorization of project activities4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Complicated and non-comprehensive public procurement3 - Moderately important4 - Important2 - Slightly important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P003: Fragmented and or complex ownership structure4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important5 - Very important
        C1P003: Lack of internal capacities to support energy transition1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important
        C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important4 - Important5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important
        C1P005: Regulatory instability3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P005: Non-effective regulations3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
        C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P005: Insufficient or insecure financial incentives3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation2 - Slightly important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriersAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P007: Deficient planning2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P007: Retrofitting work in dwellings in occupied state2 - Slightly important4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P007: Lack of well-defined process3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Inaccuracy in energy modelling and simulation4 - Important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important
        C1P007: Lack/cost of computational scalability1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Grid congestion, grid instability4 - Important4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P007: Energy retrofitting work in dense and/or historical urban environment3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
        C1P007: Difficult definition of system boundaries1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important
        C1P007: Any other Thecnical BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
        C1P008: Social and Cultural barriers
        C1P008: Inertia2 - Slightly important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P008: Low acceptance of new projects and technologies2 - Slightly important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P008: Difficulty of finding and engaging relevant actors2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important
        C1P008: Lack of trust beyond social network4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important
        C1P008: Rebound effect2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
        C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P008: Exclusion of socially disadvantaged groups5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important
        C1P008: Non-energy issues are more important and urgent for actors4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P008: Hostile or passive attitude towards energy collaboration2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P009: Lack of awareness among authorities2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
        C1P010: Financial barriers
        C1P010: Hidden costs2 - Slightly important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P010: Insufficient external financial support and funding for project activities3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P010: Economic crisis1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P010: Risk and uncertainty3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P010: Limited access to capital and cost disincentives2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P011: Energy price distortion4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Analyst, ICT and Big Data
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Planning/leading,
        • Monitoring/operation/management
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Business process management
        • Planning/leading
        • Planning/leading
        • Planning/leading
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Urban Services providers
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Construction/implementation
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Real Estate developers
        • Construction/implementation
        • Planning/leading,
        • Monitoring/operation/management
        • None
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Construction/implementation
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: End‐users/Occupants/Energy Citizens
        • None
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Planning/leading,
        • Design/demand aggregation
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)