Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Uncompare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Uncompare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Uncompare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Uncompare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Uncompare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleSalzburg, Gneis district
Valencia, Paterna, Barrio La Pinada
Graz, Reininghausgründe
Malmö, Stadium area (Stadionområdet)
Zaragoza, Actur
Trondheim, Svartlamon
Borlänge, Rymdgatan’s Residential Portfolio
Kaiserslautern, EnStadt:Pfaff
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabSalzburg, Gneis districtValencia, Paterna, Barrio La PinadaGraz, ReininghausgründeMalmö, Stadium area (Stadionområdet)Zaragoza, ActurTrondheim, SvartlamonBorlänge, Rymdgatan’s Residential PortfolioKaiserslautern, EnStadt:PfaffAalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesyesyesyesnonononono
PED relevant case studynonononoyesnoyesyesyes
PED Lab.noyesnononoyesnoyesyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyesyesyes
Annual energy surplusyesnonoyesyesnoyesnono
Energy communityyesnonononoyesyesnono
Circularitynonononononononono
Air quality and urban comfortyesnononononononono
Electrificationnonononoyesnoyesnono
Net-zero energy costnonononononononono
Net-zero emissionnoyesnonoyesnononono
Self-sufficiency (energy autonomous)nonononononononono
Maximise self-sufficiencynonononononoyesnoyes
Othernoyesnonononononono
Other (A1P004)Energy efficient; Sustainable neighbourhood; Social aspects/affordability
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabCompletedImplementation PhaseImplementation PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhaseIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date01/2001/16201901/2401/2311/2410/1711/22
A1P007: End Date
A1P007: End date01/24202512/3303/2611/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • GIS open datasets
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
  • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
        A1P011: Geographic coordinates
        X Coordinate (longitude):13.041216-0.43525315.40744012.989836-0.889110.4215.3944957.75168410.007
        Y Coordinate (latitude):47.77101939.51443447.060755.58400441.648863.436360.48660949.43606257.041028
        A1P012: Country
        A1P012: CountryAustriaSpainAustriaSwedenSpainNorwaySwedenGermanyDenmark
        A1P013: City
        A1P013: CitySalzburgPaternaGrazMalmöZaragozaTrondheimBorlängeKaiserslauternAalborg
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).DfbCsaDfbDfbBSkCfbDsbCfbDfb
        A1P015: District boundary
        A1P015: District boundaryGeographicGeographicGeographicGeographicVirtualGeographicVirtual
        Other
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedPrivateMixedMixedPublicPrivateMixedPublicPublic
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED17100610
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]1997623700
        A1P020: Total ground area
        A1P020: Total ground area [m²]10000005217003200994531308000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area000000000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonoyesnononononono
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernoyesnonononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnonoyesnonoyesnonono
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnononononononoyesno
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnonoyesyesnononoyesno
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUyesnonoyesnonononono
        A1P022i: Add the value in EUR if available [EUR]
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononononoyes
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernoyesnononononoyesno
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherGreen Financing
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Positive externalities,
        • Other
        • Job creation,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        • Positive externalities,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production
        A1P023: OtherBoosting social cooperation and social aid
        A1P024: More comments:
        A1P024: More comments:The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]0.02
        Contact person for general enquiries
        A1P026: NameAbel MagyariChristoph GollnerKatharina SchwarzChristoffer OriniusClara LorenteTatiana González Grandón; Raymundo E. Torres-OlguinJingchun ShenChristoph GollnerKristian Olesen
        A1P027: OrganizationABUDFFGStadtLABOR, Innovationen für urbane Lebensqualität GmbHThe City of MalmöCIRCENTNUHögskolan DalarnaFFGAalborg University
        A1P028: AffiliationResearch Center / UniversityOtherSME / IndustryMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityOtherResearch Center / University
        A1P028: Other
        A1P029: Emailmagyari.abel@abud.huchristoph.gollner@ffg.atkatharina.schwarz@stadtlaborgraz.atChristoffer.orinius@malmo.seCLORENTEM@FCIRCE.COMtatiana.c.g.grandon@ntnu.nojih@du.sechristoph.gollner@ffg.atKristian@plan.aau.dk
        Contact person for other special topics
        A1P030: NameStrassl IngeborgHans SchnitzerRaymundo E. Torres-OlguinXingxing ZhangAlex Søgaard Moreno
        A1P031: Emailinge.strassl@salzburg.gv.athans.schnitzer@stadtlaborgraz.atraymundo.torres-olguin@sintef.noxza@du.seasm@aalborg.dk
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy production
        • Energy efficiency,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Water use,
        • Indoor air quality,
        • Other
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        • Energy flexibility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        • Energy efficiency,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies
        A2P001: OtherUrban Management; Air Quality
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fields- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMStakeholder engagement, expert energy system analysis, future scenarios
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000YesNoNoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceNoYesYesNo
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoYesNoNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculation- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)Large combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]11.9140.6777218
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]9.2900.03656148
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]00
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]90
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnoyesnononononono
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.7770664
        A2P011: Windnonononononononoyes
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononoyesnono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
        A2P011: Othernonononononononoyes
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalyesnoyesnononononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnonoyesnononononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnonononononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnonoyesnononononoyes
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]300
        A2P012: Biomass_peat_heatnonononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononoyesnono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
        A2P012: Biomass_firewood_thnonononononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesGroundwater (used for heat pumps)Very little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.8190160.318620
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.2055399
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]-10
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonononononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononoyesnoyes
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0300
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonoyesnononononono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnonoyesnononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononoyesnononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononoyesnono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonoyesnononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonoyesnononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonoyesnononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononoyesnono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary0000000.5383957219251300
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]0.0366.93
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Securitynone
        A2P022: HealthCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levelsthermal comfort diagram
        A2P022: Educationnone
        A2P022: Mobilityxnone
        A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsxyearly energy balanceYesnormalized CO2/GHG & Energy intensity
        A2P022: Waterx
        A2P022: Economic developmentInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparisonxcost of excess emissions
        A2P022: Housing and CommunityAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousnessx
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesyesyesyesyesyesyesyes
        A2P023: Solar thermal collectorsnonononononoyesnoyes
        A2P023: Wind Turbinesnonononononononono
        A2P023: Geothermal energy systemyesyesnonoyesnoyesnono
        A2P023: Waste heat recoverynonoyesyesnonoyesyesyes
        A2P023: Waste to energynonononononononoyes
        A2P023: Polygenerationnonononononononono
        A2P023: Co-generationnonononononononono
        A2P023: Heat Pumpnonoyesnoyesnoyesyesyes
        A2P023: Hydrogennonononononononono
        A2P023: Hydropower plantnonononononononono
        A2P023: Biomassnonononononononoyes
        A2P023: Biogasnonononononononono
        A2P023: OtherBatteries
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesnonoyesyesnono
        A2P024: Energy management systemyesnonoyesyesyesnonoyes
        A2P024: Demand-side managementyesnonoyesnonononoyes
        A2P024: Smart electricity gridyesnononononononoyes
        A2P024: Thermal Storagenonoyesnononoyesnoyes
        A2P024: Electric Storagenononoyesnonononoyes
        A2P024: District Heating and Coolingnoyesyesyesnonoyesnoyes
        A2P024: Smart metering and demand-responsive control systemsnononoyesnonononoyes
        A2P024: P2P – buildingsyesnonononoyesnonono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnonononononoyesyesyes
        A2P025: Energy efficiency measures in historic buildingsnonononononononono
        A2P025: High-performance new buildingsyesnoyesyesnonononono
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesnonoyesnonono
        A2P025: Urban data platformsnononononoyesnonono
        A2P025: Mobile applications for citizensnonoyesnononononono
        A2P025: Building services (HVAC & Lighting)yesnononononoyesnono
        A2P025: Smart irrigationnonoyesnononononono
        A2P025: Digital tracking for waste disposalnonononononononono
        A2P025: Smart surveillancenonononononononoyes
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nonoyesnononononono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnoyesnononononono
        A2P026: e-Mobilityyesnoyesnoyesnononono
        A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnononononono
        A2P026: Car-free areanonoyesnononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesYesNoYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateEnergieausweis mandatory if buildings/ flats/ apartments are sold
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesYesYesNoNo
        A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificateKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Smart cities strategies
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Energy master planning (SECAP, etc.)
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • New development strategies,
        • National / international city networks addressing sustainable urban development and climate neutrality
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCity level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supplyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Reduction of 1018000 tons CO2 by 2030
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps,
        • Biogas
        A3P003: Other
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesReininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared officesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.Decarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • Local trading
        • PPP models,
        • Local trading
        • Innovative business models
        • Local trading,
        • Existing incentives
        • Open data business models,
        • Life Cycle Cost,
        • Circular economy models,
        • Local trading
        • Life Cycle Cost,
        • Circular economy models
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Strategies towards social mix,
        • Citizen/owner involvement in planning and maintenance
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Quality of Life,
        • Affordability,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building
        • Co-creation / Citizen engagement strategies
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Affordability,
        • Digital Inclusion
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Policy Forums,
        • Citizen/owner involvement in planning and maintenance
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Building / district Certification
        • Strategic urban planning,
        • City Vision 2050,
        • Building / district Certification
        • Strategic urban planning,
        • District Energy plans
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • Building / district Certification
        • Strategic urban planning,
        • District Energy plans
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Low Emission Zone
        • Energy Neutral
        • Pollutants Reduction,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Energy Neutral
        • Low Emission Zone
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Sustainable Urban drainage systems (SUDS)
        • Energy Neutral,
        • Carbon-free
        • Energy Neutral,
        • Net zero carbon footprint
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.Current energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their own
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionReininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.The large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentThe Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.Borlänge city has committed to become the carbon-neutral city by 2030.The area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaSuburban areaSuburban areaUrban areaUrban areaUrban areaSuburban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction
        • New construction
        • New construction
        • Renovation
        • Renovation
        • New construction,
        • Renovation
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • New Development
        • New Development
        • New Development
        • Retrofitting Area
        • Re-use / Transformation Area,
        • Retrofitting Area
        • Re-use / Transformation Area,
        • New Development,
        • Retrofitting Area
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction202420251990
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential010016.931
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential10000100
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential06
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential6
        B1P011: Population density before intervention
        B1P011: Population density before intervention000000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention000.010000.01065862242332800
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnonononononoyesnono
        B1P013 - Residential: Specify the sqm [m²]4360
        B1P013: Officenonononononononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonoyesnonononoyesno
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonononononononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasyesnoyesnononononono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnonononononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononoyesnono
        B1P013 - Other: Specify the sqm [m²]706
        B1P014: Building and Land Use after intervention
        B1P014: Residentialyesyesyesnononoyesyesno
        B1P014 - Residential: Specify the sqm [m²]4360
        B1P014: Officenonoyesnonononoyesno
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynononononononoyesno
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnoyesyesnononononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnoyesyesnononononono
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasyesnoyesnononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnonoyesnonononoyesno
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononoyesyesno
        B1P014 - Other: Specify the sqm [m²]706
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionAn ongoing process and dialogue with local stakeholders to determine the future development of the area.
        B2P002: Installation life time
        B2P002: Installation life timeNo new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.
        B2P003: Scale of action
        B2P003: ScaleDistrictDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installationKristian Olesen
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?No
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Civic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Citizens, public, NGO
        • Academia,
        • Private
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholdersStakeholder participation supported by socio-economic research
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important
        C1P001: Energy Communities, P2P, Prosumers concepts1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P001: Storage systems and E-mobility market penetration1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P001: Decreasing costs of innovative materials1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
        C1P001: Financial mechanisms to reduce costs and maximize benefits1 - Unimportant1 - Unimportant2 - Slightly important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important
        C1P001: The ability to predict Multiple Benefits1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
        C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important2 - Slightly important4 - Important1 - Unimportant4 - Important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important
        C1P001: Social acceptance (top-down)1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important
        C1P001: Presence of integrated urban strategies and plans1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
        C1P001: Multidisciplinary approaches available for systemic integration1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important2 - Slightly important5 - Very important1 - Unimportant5 - Very important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant1 - Unimportant4 - Important2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important
        C1P001: Availability of RES on site (Local RES)1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant2 - Slightly important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important5 - Very important4 - Important5 - Very important1 - Unimportant2 - Slightly important
        C1P002: Climate Change mitigation need (local RES production and efficiency)1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important
        C1P002: Urban re-development of existing built environment1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important
        C1P002: Economic growth need1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Territorial and market attractiveness1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Energy autonomy/independence1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant4 - Important
        C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important
        C1P003: Lack of public participation1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important
        C1P003:Long and complex procedures for authorization of project activities1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant5 - Very important
        C1P003: Complicated and non-comprehensive public procurement1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
        C1P003: Fragmented and or complex ownership structure1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important5 - Very important4 - Important4 - Important1 - Unimportant3 - Moderately important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
        C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
        C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant2 - Slightly important
        C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant
        C1P005: Regulatory instability1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
        C1P005: Non-effective regulations1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important
        C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
        C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P005: Insufficient or insecure financial incentives1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers2 - Slightly important
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important
        C1P007: Deficient planning1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
        C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important
        C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant4 - Important2 - Slightly important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
        C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant2 - Slightly important
        C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important
        C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important
        C1P008: Low acceptance of new projects and technologies1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
        C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant2 - Slightly important
        C1P008: Lack of trust beyond social network1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important5 - Very important1 - Unimportant1 - Unimportant
        C1P008: Rebound effect1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important
        C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important
        C1P008: Exclusion of socially disadvantaged groups1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important
        C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important
        C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
        C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important
        C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important
        C1P010: Economic crisis1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
        C1P010: Risk and uncertainty1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important
        C1P010: Lack of consolidated and tested business models1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
        C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important
        C1P011: Energy price distortion1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading
        C1P012: Financial/Funding
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Analyst, ICT and Big Data
        • Planning/leading,
        • Monitoring/operation/management
        • None
        C1P012: Business process management
        • None
        • None
        C1P012: Urban Services providers
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Real Estate developers
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        C1P012: Design/Construction companies
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • None
        C1P012: End‐users/Occupants/Energy Citizens
        • Design/demand aggregation
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Other
        • None
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)