Filters:
NameProjectTypeCompare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Uncompare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleSalzburg, Gneis district
Luxembourg, Betzdorf
Zukunftsquartier, Vienna
Barcelona, SEILAB & Energy SmartLab
Vantaa, Aviapolis
Évora, Portugal
NTNU Campus within the Knowledge Axis, Trondheim
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabSalzburg, Gneis districtLuxembourg, BetzdorfZukunftsquartier, ViennaBarcelona, SEILAB & Energy SmartLabVantaa, AviapolisÉvora, PortugalNTNU Campus within the Knowledge Axis, Trondheim
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnoyesnoyesnoyes
PED relevant case studynoyesnonoyesyesno
PED Lab.nononoyesyesyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesnoyesnoyes
Annual energy surplusyesyesyesnonoyesno
Energy communityyesyesnoyesnoyesno
Circularitynoyesnonoyesnono
Air quality and urban comfortyesyesnonononono
Electrificationnoyesnoyesnonono
Net-zero energy costnonononononono
Net-zero emissionnononoyesnonoyes
Self-sufficiency (energy autonomous)nononoyesnonono
Maximise self-sufficiencynonononononono
Othernonoyesyesnonoyes
Other (A1P004)Energy efficient; Economic feasibility ; High quality of living and comfort; Early and constant user integration for reaching the positive energy goal.Green ITEnergy neutral; Energy efficient; Sustainable neighbourhood
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabCompletedImplementation PhasePlanning PhaseIn operationPlanning PhaseImplementation PhaseIn operation
A1P006: Start Date
A1P006: Start date01/2006/2307/1801/201101/2310/1901/16
A1P007: End Date
A1P007: End date01/2404/2602/201312/2709/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • General statistical datasets
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
A1P011: Geographic coordinates
X Coordinate (longitude):13.0412166.36160216.3306652.124.958821-7.90937710.396472
Y Coordinate (latitude):47.77101949.68277448.21652141.360.30548838.57080463.422280
A1P012: Country
A1P012: CountryAustriaLuxembourgAustriaSpainFinlandPortugalNorway
A1P013: City
A1P013: CitySalzburgBetzdorfViennaBarcelona and TarragonaVantaaÉvoraTrondheim
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).DfbCfbCfbCsaDfbCsaDfb
A1P015: District boundary
A1P015: District boundaryGeographicGeographicVirtualGeographicGeographic
Other
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:MixedPublicMixedPublicMixedMixedMixed
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple Owners
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED17240
A1P019: Conditioned space
A1P019: Conditioned space [m²]199762173.8
A1P020: Total ground area
A1P020: Total ground area [m²]3881000136.000
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area0000000
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estatenonononoyesnono
A1P022a: Add the value in EUR if available [EUR]
A1P022b: Financing - PRIVATE - ESCO schemenonononononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernonoyesnoyesnono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
A1P022d: Add the value in EUR if available [EUR]
A1P022e: Financing - PUBLIC - National fundingnonoyesnononono
A1P022e: Add the value in EUR if available [EUR]
A1P022f: Financing - PUBLIC - Regional fundingnonononononono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesnono
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernoyesnonononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUyesnononoyesyesno
A1P022i: Add the value in EUR if available [EUR]19998275
A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononono
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
A1P023: Economic Targets
A1P023: Economic Targets
  • Positive externalities,
  • Other
  • Other
  • Job creation,
  • Boosting local and sustainable production
  • Positive externalities,
  • Boosting local businesses,
  • Boosting local and sustainable production
A1P023: OtherBoosting social cooperation and social aid
A1P024: More comments:
A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
Contact person for general enquiries
A1P026: NameAbel MagyariJulien BertucciChristoph GollnerDr. Jaume Salom, Dra. Cristina CorcheroEira LinkoJoão Bravo DiasChristoph Gollner
A1P027: OrganizationABUDSNHBMFFGIRECCity of VantaaEDP LabelecFFG
A1P028: AffiliationResearch Center / UniversityMunicipality / Public BodiesOtherResearch Center / UniversityMunicipality / Public BodiesSME / IndustryOther
A1P028: Other
A1P029: Emailmagyari.abel@abud.hujulien.bertucci@snhbm.luchristoph.gollner@ffg.atJsalom@irec.cateira.linko@vantaa.fijoao.bravodias@edp.ptchristoph.gollner@ffg.at
Contact person for other special topics
A1P030: NameStrassl Ingeborg
A1P031: Emailinge.strassl@salzburg.gv.at
Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Water use,
  • Indoor air quality,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Construction materials,
  • Other
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Waste management,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production
A2P001: Other
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fields- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Pilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, cooling
A2P003: Application of ISO52000
A2P003: Application of ISO52000YesNoNo
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceNoNoYesYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoNoYesYes
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhThe calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVyesnonoyesyesnono
A2P011: PV - specify production in GWh/annum [GWh/annum]0.7770664
A2P011: Windnonononononono
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydrononononononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnonononononono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnonononononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnonononononono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernonononononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalyesnononoyesnono
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalnonononononono
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_heatnonononononono
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: Waste heat+HPnonononoyesnono
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_peat_heatnonononononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnonononononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnonononononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernonononononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notes
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]0.819016
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]-1
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnononoyesnonono
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnonononononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnonononononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernonononononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnonononoyesnono
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windnonononoyesnono
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydrononononoyesnono
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnonononoyesnono
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnonononononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnonononononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernonononononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnonononononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnonononononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnonononoyesnono
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnonononoyesnono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnonononononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnonononononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnonononononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernonononononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary0000000
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Security
A2P022: HealthCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
A2P022: Education
A2P022: MobilityMode of transport; Access to public transport
A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsEnergy efficiency in buildings; Net energy need; Gross energy need; Total energy need
A2P022: Water
A2P022: Economic developmentInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison
A2P022: Housing and CommunityAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousnessDelivery and proximity to amenities
A2P022: Waste
A2P022: OtherGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public Space
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesnoyesyesyesyesno
A2P023: Solar thermal collectorsnononononoyesno
A2P023: Wind Turbinesnonononononono
A2P023: Geothermal energy systemyesnoyesnoyesnono
A2P023: Waste heat recoverynonononoyesnono
A2P023: Waste to energynonononoyesnono
A2P023: Polygenerationnonononoyesnono
A2P023: Co-generationnonononononono
A2P023: Heat Pumpnonoyesnoyesnono
A2P023: Hydrogennonononononono
A2P023: Hydropower plantnonononononono
A2P023: Biomassnonononoyesnono
A2P023: Biogasnonononononono
A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesyesyesno
A2P024: Energy management systemyesyesnoyesyesyesno
A2P024: Demand-side managementyesnononoyesnono
A2P024: Smart electricity gridyesnonoyesyesyesno
A2P024: Thermal Storagenonononoyesyesno
A2P024: Electric Storagenoyesnoyesyesyesno
A2P024: District Heating and Coolingnonoyesnoyesnono
A2P024: Smart metering and demand-responsive control systemsnonononoyesyesno
A2P024: P2P – buildingsyesnonononoyesno
A2P024: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingnonononononono
A2P025: Energy efficiency measures in historic buildingsnononononoyesno
A2P025: High-performance new buildingsyesyesnonoyesnono
A2P025: Smart Public infrastructure (e.g. smart lighting)nonononononono
A2P025: Urban data platformsnononononoyesno
A2P025: Mobile applications for citizensnononononoyesno
A2P025: Building services (HVAC & Lighting)yesyesnoyesyesyesno
A2P025: Smart irrigationnonononononono
A2P025: Digital tracking for waste disposalnononononoyesno
A2P025: Smart surveillancenononononoyesno
A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)nononoyesyesnono
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnononoyesnono
A2P026: e-Mobilityyesyesnonoyesyesno
A2P026: Soft mobility infrastructures and last mile solutionsnonononoyesyesno
A2P026: Car-free areanonononononono
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notesShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYesYesYesNo
A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesYesYesNo
A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificate
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Smart cities strategies
  • Smart cities strategies,
  • New development strategies
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Energy master planning (SECAP, etc.),
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategyCarbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps
A3P003: Other
A3P004: Identification of needs and priorities
A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
A3P005: Sustainable behaviour
A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.
A3P006: Economic strategies
A3P006: Economic strategies
  • Innovative business models,
  • Local trading
  • Demand management Living Lab
  • Innovative business models,
  • PPP models,
  • Life Cycle Cost,
  • Circular economy models
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Behavioural Change / End-users engagement,
  • Social incentives,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Citizen/owner involvement in planning and maintenance
  • Affordability
  • Digital Inclusion,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Building / district Certification
  • Building / district Certification
  • Strategic urban planning,
  • SECAP Updates
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Energy Neutral,
  • Low Emission Zone
  • Energy Neutral,
  • Low Emission Zone,
  • Pollutants Reduction,
  • Greening strategies
  • Net zero carbon footprint,
  • Life Cycle approach,
  • Greening strategies,
  • Nature Based Solutions (NBS)
  • Energy Neutral
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.The PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentAccording to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.POCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.
B1P003: Environment of the case study area
B2P003: Environment of the case study areaSuburban areaRuralUrban areaUrban areaUrban areaUrban area
B1P004: Type of district
B2P004: Type of district
  • New construction
  • New construction,
  • Renovation
  • New construction,
  • Renovation
  • New construction,
  • Renovation
  • Renovation
  • New construction,
  • Renovation
B1P005: Case Study Context
B1P005: Case Study Context
  • New Development
  • New Development
  • New Development,
  • Retrofitting Area
  • Re-use / Transformation Area,
  • New Development
  • Preservation Area
  • Re-use / Transformation Area,
  • New Development,
  • Retrofitting Area
B1P006: Year of construction
B1P006: Year of construction2024
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P011: Population density before intervention
B1P011: Population density before intervention0000000
B1P012: Population density after intervention
B1P012: Population density after intervention0000000
B1P013: Building and Land Use before intervention
B1P013: Residentialnonoyesnoyesnono
B1P013 - Residential: Specify the sqm [m²]
B1P013: Officenonoyesnoyesnono
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilitynonoyesnoyesnono
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialnonononoyesnono
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnonononoyesnono
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasyesnononononono
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalnonononoyesnono
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnonononoyesnono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernonononononono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialyesnoyesnoyesnono
B1P014 - Residential: Specify the sqm [m²]
B1P014: Officenonoyesnoyesnono
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynonoyesnoyesnono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialnonononoyesnono
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnonononoyesnono
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasyesnononononono
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalnonononoyesnono
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnonononononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernonononononoyes
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility AggregationNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
B2P002: Installation life time
B2P002: Installation life time
B2P003: Scale of action
B2P003: ScaleDistrictVirtualDistrictDistrictCampus
B2P004: Operator of the installation
B2P004: Operator of the installationIRECThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?No
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Strategic,
  • Private
  • Strategic
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabResearch center/UniversityMunicipality
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Private,
  • Industrial,
  • Citizens, public, NGO
B2P009: Other
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Demand-side management,
  • Energy storage,
  • Energy networks,
  • Efficiency measures,
  • Information and Communication Technologies (ICT)
  • Buildings,
  • Demand-side management,
  • Prosumers,
  • Renewable generation,
  • Energy storage,
  • Energy networks,
  • Waste management,
  • E-mobility,
  • Social interactions,
  • Circular economy models
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Monitoring and evaluation infrastructure,
  • Tools for prototyping and modelling,
  • Tools, spaces, events for testing and validation
  • Monitoring and evaluation infrastructure,
  • Tools for prototyping and modelling,
  • Tools, spaces, events for testing and validation
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Equipment
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Environmental
  • Energy,
  • Environmental,
  • Social,
  • Economical / Financial
  • Energy
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
  • Energy modelling
  • Energy modelling
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
C1P001: Energy Communities, P2P, Prosumers concepts1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
C1P001: Storage systems and E-mobility market penetration1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant
C1P001: Decreasing costs of innovative materials1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
C1P001: Financial mechanisms to reduce costs and maximize benefits1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant
C1P001: The ability to predict Multiple Benefits1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant
C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P001: Social acceptance (top-down)1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
C1P001: Presence of integrated urban strategies and plans1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant
C1P001: Multidisciplinary approaches available for systemic integration1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant
C1P001: Availability of RES on site (Local RES)1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important1 - Unimportant
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situation
C1P002: Driving Factors
C1P002: Climate Change adaptation need1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant
C1P002: Climate Change mitigation need (local RES production and efficiency)1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant
C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
C1P002: Urban re-development of existing built environment1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant
C1P002: Economic growth need1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant
C1P002: Territorial and market attractiveness1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
C1P002: Energy autonomy/independence1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant
C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
C1P003: Lack of public participation1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
C1P003:Long and complex procedures for authorization of project activities1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Complicated and non-comprehensive public procurement1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant
C1P003: Fragmented and or complex ownership structure1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant
C1P003: Lack of internal capacities to support energy transition1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant
C1P005: Regulatory instability1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
C1P005: Non-effective regulations1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant
C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant
C1P005: Insufficient or insecure financial incentives1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important2 - Slightly important1 - Unimportant
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important5 - Very important1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant
C1P007: Deficient planning1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant
C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
C1P007: Lack of well-defined process1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Lack/cost of computational scalability1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)
C1P008: Social and Cultural barriers
C1P008: Inertia1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
C1P008: Low acceptance of new projects and technologies1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant
C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Lack of trust beyond social network1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Rebound effect1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
C1P008: Exclusion of socially disadvantaged groups1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant
C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
C1P010: Economic crisis1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
C1P010: Risk and uncertainty1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important1 - Unimportant
C1P010: Lack of consolidated and tested business models1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant
C1P011: Energy price distortion1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading
C1P012: Research & Innovation
  • Design/demand aggregation
C1P012: Financial/Funding
C1P012: Analyst, ICT and Big Data
  • Design/demand aggregation
C1P012: Business process management
C1P012: Urban Services providers
C1P012: Real Estate developers
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Design/Construction companies
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • Monitoring/operation/management
C1P012: Social/Civil Society/NGOs
C1P012: Industry/SME/eCommerce
  • Construction/implementation
C1P012: Other
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)