Filters:
NameProjectTypeCompare
Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna/16. District HeatCOOP PED Relevant Case Study Compare
Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Uncompare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Uncompare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleSalzburg, Gneis district
Istanbul, Ozyegin University Campus
Vienna, Am Kempelenpark
Zukunftsquartier, Vienna
Maia, Sobreiro Social Housing
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabSalzburg, Gneis districtIstanbul, Ozyegin University CampusVienna, Am KempelenparkZukunftsquartier, ViennaMaia, Sobreiro Social Housing
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnoyesyesno
PED relevant case studynoyesnonono
PED Lab.nonononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyes
Annual energy surplusyesnoyesyesno
Energy communityyesnononono
Circularitynonononono
Air quality and urban comfortyesyesnonono
Electrificationnoyesnonono
Net-zero energy costnonononono
Net-zero emissionnonononono
Self-sufficiency (energy autonomous)nonononono
Maximise self-sufficiencynonononoyes
Othernoyesnoyesno
Other (A1P004)almost nZEB districtEnergy efficient; Economic feasibility ; High quality of living and comfort; Early and constant user integration for reaching the positive energy goal.
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabCompletedImplementation PhasePlanning PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date01/2010/2407/1607/1810/21
A1P007: End Date
A1P007: End date01/2410/2802/2510/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      A1P011: Geographic coordinates
      X Coordinate (longitude):13.04121629.25830016.39529216.330665-8.373557
      Y Coordinate (latitude):47.77101941.03060048.17359848.21652141.135804
      A1P012: Country
      A1P012: CountryAustriaTurkeyAustriaAustriaPortugal
      A1P013: City
      A1P013: CitySalzburgIstanbulViennaViennaMaia
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).DfbCfaCwbCfbCsb
      A1P015: District boundary
      A1P015: District boundaryGeographicGeographicGeographicVirtual
      Other
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedPrivatePrivateMixedPublic
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerSingle OwnerMultiple OwnersMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED1715622
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]199762
      A1P020: Total ground area
      A1P020: Total ground area [m²]285.400
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area00000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenoyesnonono
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenonononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernononoyesyes
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonononono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnononoyesyes
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnonononoyes
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnonononono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernonononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUyesyesnonoyes
      A1P022i: Add the value in EUR if available [EUR]
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Positive externalities,
      • Other
      • Positive externalities,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      • Positive externalities,
      • Boosting local and sustainable production
      A1P023: OtherBoosting social cooperation and social aid
      A1P024: More comments:
      A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]1
      Contact person for general enquiries
      A1P026: NameAbel MagyariCem KeskinGerhard HoferChristoph GollnerAdelina Rodrigues
      A1P027: OrganizationABUDCenter for Energy, Environment and Economy, Ozyegin Universitye7 energy innovation & engineeringFFGMaia Municipality (CM Maia) – Energy and Mobility division
      A1P028: AffiliationResearch Center / UniversityResearch Center / UniversitySME / IndustryOtherMunicipality / Public Bodies
      A1P028: Other
      A1P029: Emailmagyari.abel@abud.hucem.keskin@ozyegin.edu.trgerhard.hofer@e-sieben.atchristoph.gollner@ffg.atdscm.adelina@cm-maia.pt
      Contact person for other special topics
      A1P030: NameStrassl IngeborgM. Pınar MengüçCarolina Gonçalves (AdEPorto)
      A1P031: Emailinge.strassl@salzburg.gv.atpinar.menguc@ozyegin.edu.trcarolinagoncalves@adeporto.eu
      Pursuant to the General Data Protection RegulationYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management,
      • Indoor air quality,
      • Construction materials
      • Energy efficiency,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fields- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000YesYesNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationNot included, the campus is a non car area except emergencies
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesnonoyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.7770664
      A2P011: Windnonononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernonononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalyesnononono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnonononoyes
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnonononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnonononono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnonononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnonononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnonononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notes
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]0.8190163.5
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]-10
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnoyesnonono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
      A2P018: Windnonononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: HealthCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
      A2P022: Education
      A2P022: Mobility
      A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissions
      A2P022: Water
      A2P022: Economic developmentInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison
      A2P022: Housing and CommunityAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesnoyesyes
      A2P023: Solar thermal collectorsnonononoyes
      A2P023: Wind Turbinesnoyesnonono
      A2P023: Geothermal energy systemyesnonoyesno
      A2P023: Waste heat recoverynonononono
      A2P023: Waste to energynonononono
      A2P023: Polygenerationnonononono
      A2P023: Co-generationnoyesnonono
      A2P023: Heat Pumpnoyesnoyesyes
      A2P023: Hydrogennonononono
      A2P023: Hydropower plantnonononono
      A2P023: Biomassnonononono
      A2P023: Biogasnonononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)noyesnonoyes
      A2P024: Energy management systemyesyesnonoyes
      A2P024: Demand-side managementyesyesnonono
      A2P024: Smart electricity gridyesnononono
      A2P024: Thermal Storagenonononono
      A2P024: Electric Storagenoyesnonoyes
      A2P024: District Heating and Coolingnoyesnoyesno
      A2P024: Smart metering and demand-responsive control systemsnoyesnonoyes
      A2P024: P2P – buildingsyesnononono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnonononoyes
      A2P025: Energy efficiency measures in historic buildingsnonononono
      A2P025: High-performance new buildingsyesyesnonono
      A2P025: Smart Public infrastructure (e.g. smart lighting)nonononoyes
      A2P025: Urban data platformsnonononono
      A2P025: Mobile applications for citizensnonononono
      A2P025: Building services (HVAC & Lighting)yesyesnonoyes
      A2P025: Smart irrigationnoyesnonono
      A2P025: Digital tracking for waste disposalnonononoyes
      A2P025: Smart surveillancenoyesnonono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nonononoyes
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnononono
      A2P026: e-Mobilityyesyesnonoyes
      A2P026: Soft mobility infrastructures and last mile solutionsnoyesnonono
      A2P026: Car-free areanoyesnonono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesYesYesNo
      A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificateLEED BD+C, LEED NC CAMPUS
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategy
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods
      • Other
      A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible PricingAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesCarbon and Energy Neutrality
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourUnder LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • Local trading
      • Innovative business models,
      • PPP models,
      • Existing incentives
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Citizen/owner involvement in planning and maintenance
      • Co-creation / Citizen engagement strategies,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Building / district Certification
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral,
      • Low Emission Zone
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Greening strategies,
      • Cool Materials
      • Energy Neutral,
      • Net zero carbon footprint,
      • Pollutants Reduction
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionThe campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentThe purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaSuburban areaSuburban areaUrban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • Renovation
      • Renovation
      • New construction,
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • New Development
      • Retrofitting Area
      • Re-use / Transformation Area,
      • New Development
      • New Development,
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction20242024
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential9800
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential9800
      B1P011: Population density before intervention
      B1P011: Population density before intervention034000
      B1P012: Population density after intervention
      B1P012: Population density after intervention034.337771548704000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnononoyesno
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officenonoyesyesno
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynononoyesno
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnonoyesnono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnoyesnonono
      B1P013 - Institutional: Specify the sqm [m²]285.400
      B1P013: Natural areasyesnononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnonononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernonononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialyesnoyesyesno
      B1P014 - Residential: Specify the sqm [m²]
      B1P014: Officenonoyesyesno
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononoyesno
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnonoyesnono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnoyesnonono
      B1P014 - Institutional: Specify the sqm [m²]280000
      B1P014: Natural areasyesnononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnonononono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnonononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernonononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definition
      B2P002: Installation life time
      B2P002: Installation life timePermanent installation
      B2P003: Scale of action
      B2P003: ScaleDistrictVirtual
      B2P004: Operator of the installation
      B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?No
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO,
      • Other
      B2P009: OtherEnergy Agency
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Energy storage,
      • Efficiency measures,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Ambient measures,
      • Social interactions
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Environmental,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
      B2P017: Capacities
      B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models,
      • Fundraising and accessing resources,
      • Matching actors
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Energy Communities, P2P, Prosumers concepts1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Storage systems and E-mobility market penetration1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Decreasing costs of innovative materials1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P001: Financial mechanisms to reduce costs and maximize benefits1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P001: The ability to predict Multiple Benefits1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Social acceptance (top-down)1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Presence of integrated urban strategies and plans1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important
      C1P001: Multidisciplinary approaches available for systemic integration1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Availability of RES on site (Local RES)1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P002: Urban re-development of existing built environment1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P002: Economic growth need1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P002: Territorial and market attractiveness1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P002: Energy autonomy/independence1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P002: Any other DRIVING FACTOR1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
      C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P003: Lack of public participation1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P003:Long and complex procedures for authorization of project activities1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
      C1P003: Complicated and non-comprehensive public procurement1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P003: Fragmented and or complex ownership structure1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
      C1P003: Lack of internal capacities to support energy transition1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P003: Any other Administrative BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P004: Any other Political BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P005: Regulatory instability1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P005: Non-effective regulations1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P005: Insufficient or insecure financial incentives1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
      C1P005: Shortage of proven and tested solutions and examples1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriersAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P007: Deficient planning1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
      C1P007: Lack of well-defined process1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P007: Lack/cost of computational scalability1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
      C1P007: Grid congestion, grid instability1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P007: Difficult definition of system boundaries1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P007: Any other Thecnical BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P008: Low acceptance of new projects and technologies1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P008: Lack of trust beyond social network1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P008: Rebound effect1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
      C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P008: Exclusion of socially disadvantaged groups1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P008: Any other Social BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P009: Lack of awareness among authorities1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P009: High costs of design, material, construction, and installation1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P010: Insufficient external financial support and funding for project activities1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P010: Economic crisis1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P010: Risk and uncertainty1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P010: Lack of consolidated and tested business models1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P010: Limited access to capital and cost disincentives1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P010: Any other Financial BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
      C1P011: Energy price distortion1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
      C1P011: Any other Market BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Analyst, ICT and Big Data
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Urban Services providers
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Real Estate developers
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Design/Construction companies
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: End‐users/Occupants/Energy Citizens
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)