Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Uncompare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Uncompare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleSalzburg, Gneis district
Graz, Reininghausgründe
Utrecht, Utrecht Science Park
Romania, Alba Iulia PED
Riga, Ķīpsala, RTU smart student city
Helsinki, mySMARTlife
Oslo, Furuset project
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabSalzburg, Gneis districtGraz, ReininghausgründeUtrecht, Utrecht Science ParkRomania, Alba Iulia PEDRiga, Ķīpsala, RTU smart student cityHelsinki, mySMARTlifeOslo, Furuset project
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesyesnoyesyesnoyes
PED relevant case studynonoyesnonoyesno
PED Lab.nonononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyes
Annual energy surplusyesnonoyesnonono
Energy communityyesnoyesyesyesnono
Circularitynonononononono
Air quality and urban comfortyesnonoyesnonono
Electrificationnonoyesyesnonono
Net-zero energy costnonoyesnononono
Net-zero emissionnonononononoyes
Self-sufficiency (energy autonomous)nononoyesyesnono
Maximise self-sufficiencynononoyesyesnono
Othernonoyesnononoyes
Other (A1P004)minimise grid-congestion problemsEnergy efficient; Sustainable neighbourhood; Social aspects/affordability
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabCompletedImplementation PhaseImplementation PhaseImplementation PhasePlanning PhaseCompletedIn operation
A1P006: Start Date
A1P006: Start date01/20201902/2401/2401/2411/16
A1P007: End Date
A1P007: End date01/24202512/3012/2612/2611/21
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • GIS open datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
  • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
    • Historical sources,
    • GIS of the municipality,
    • Basic BEMs
    A1P011: Geographic coordinates
    X Coordinate (longitude):13.04121615.4074405.1763231794933723.58011209802323524.0816833924.98314810.896711
    Y Coordinate (latitude):47.77101947.060752.0845691546.07701527868011556.9524595660.18794759.941823
    A1P012: Country
    A1P012: CountryAustriaAustriaNetherlandsRomaniaLatviaFinlandNorway
    A1P013: City
    A1P013: CitySalzburgGrazUtrechtAlba IuliaRigaHelsinkiOslo
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).DfbDfbCfbDfbCfbDfbCfb
    A1P015: District boundary
    A1P015: District boundaryGeographicGeographicGeographicFunctionalGeographic
    OtherGeographic
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:MixedMixedMixedPublicPublicMixedMixed
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED17100615
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]199762170000
    A1P020: Total ground area
    A1P020: Total ground area [m²]100000030000008423.45119264870000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area0000100
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estatenoyesnonononono
    A1P022a: Add the value in EUR if available [EUR]
    A1P022b: Financing - PRIVATE - ESCO schemenonononononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernonononononono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnononoyesnonono
    A1P022d: Add the value in EUR if available [EUR]
    A1P022e: Financing - PUBLIC - National fundingnoyesyesyesnonono
    A1P022e: Add the value in EUR if available [EUR]
    A1P022f: Financing - PUBLIC - Regional fundingnononoyesnonono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingnoyesnoyesnoyesno
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernonononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUyesnononoyesnono
    A1P022i: Add the value in EUR if available [EUR]7500000
    A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononono
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: Other
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Positive externalities,
    • Other
    • Job creation,
    • Boosting local businesses,
    • Boosting consumption of local and sustainable products
    • Job creation,
    • Positive externalities,
    • Other
    • Boosting local businesses,
    • Boosting local and sustainable production
    A1P023: OtherBoosting social cooperation and social aidBoosting sustainability for public schools
    A1P024: More comments:
    A1P024: More comments:The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.5
    Contact person for general enquiries
    A1P026: NameAbel MagyariKatharina SchwarzSara Herreras MartinezTudor DrâmbăreanJudith StiekemaChristoph GollnerChristoph Gollner
    A1P027: OrganizationABUDStadtLABOR, Innovationen für urbane Lebensqualität GmbHUniversity of Applied Science UtrechtMunicipality of Alba IuliaOASCFFGFFG
    A1P028: AffiliationResearch Center / UniversitySME / IndustryResearch Center / UniversityMunicipality / Public BodiesOtherOtherOther
    A1P028: OtherMaria Elena Seemannnot for profit private organisation
    A1P029: Emailmagyari.abel@abud.hukatharina.schwarz@stadtlaborgraz.atSara.herrerasmartinez@hu.nltudor.drambarean@apulum.rojudith@oascities.orgchristoph.gollner@ffg.atchristoph.gollner@ffg.at
    Contact person for other special topics
    A1P030: NameStrassl IngeborgHans SchnitzerMaria-Elena Seemann
    A1P031: Emailinge.strassl@salzburg.gv.athans.schnitzer@stadtlaborgraz.atmaria.seemann@apulum.roapul
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production
    • Energy efficiency,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Water use,
    • Indoor air quality,
    • Other
    • Energy efficiency,
    • Energy flexibility,
    • Energy production
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production
    A2P001: OtherUrban Management; Air Quality
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fields- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtThermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000YesNoYesNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceNoYesYesYes
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoYesNoYes
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculation- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)There will be 1 EV station placed nearby the main building. This would be the link to the mobility field.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.9828000
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.0484415000
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]2.35
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesyesnoyesnonono
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.7770664
    A2P011: Windnonononoyesnono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydrononononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnonononononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnonononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnonononoyesnono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernonononononono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalyesyesnonononono
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Solar Thermalnoyesnonononono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_heatnonononoyesnono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPnoyesnonononono
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_peat_heatnonononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnonononononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnonononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernononoyesnonono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesGroundwater (used for heat pumps)Only PVs - 940 PVs on the main buildingConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]0.8190160.000048441
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]0.000113331
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]-1
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnonononoyesnono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Coalnonononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Oilnonononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Othernononoyesnonono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnoyesnonononono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnoyesnonononono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydronoyesnonononono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnonononononono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnonononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnonononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernononoyesnonono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnonononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnoyesnonononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnoyesnonononono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnoyesnonononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnonononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnonononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnonononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernononoyesnonono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary0000000
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]0.036
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Securityyes
    A2P022: HealthCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levelsyes
    A2P022: Educationyes
    A2P022: MobilityxyesMode of transport; Access to public transport
    A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsxyesEnergy efficiency in buildings; Net energy need; Gross energy need; Total energy need
    A2P022: Waterxyes
    A2P022: Economic developmentInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparisonxyes
    A2P022: Housing and CommunityAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousnessxDelivery and proximity to amenities
    A2P022: Waste
    A2P022: OtherGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public Space
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesnonono
    A2P023: Solar thermal collectorsnononoyesnoyesno
    A2P023: Wind Turbinesnonononononono
    A2P023: Geothermal energy systemyesnoyesnonoyesno
    A2P023: Waste heat recoverynoyesnononoyesno
    A2P023: Waste to energynonononononono
    A2P023: Polygenerationnononoyesnonono
    A2P023: Co-generationnononoyesnonono
    A2P023: Heat Pumpnoyesyesyesnoyesno
    A2P023: Hydrogennonononononono
    A2P023: Hydropower plantnonononononono
    A2P023: Biomassnonononononono
    A2P023: Biogasnonononononono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesyesyesno
    A2P024: Energy management systemyesnoyesyesyesnono
    A2P024: Demand-side managementyesnonoyesyesnono
    A2P024: Smart electricity gridyesnonoyesyesyesno
    A2P024: Thermal Storagenoyesyesnoyesnono
    A2P024: Electric Storagenononoyesyesnono
    A2P024: District Heating and Coolingnoyesyesnoyesyesno
    A2P024: Smart metering and demand-responsive control systemsnononoyesyesyesno
    A2P024: P2P – buildingsyesnonoyesnonono
    A2P024: Other
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnonoyesyesnonono
    A2P025: Energy efficiency measures in historic buildingsnonononononono
    A2P025: High-performance new buildingsyesyesnonononono
    A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnoyesnoyesno
    A2P025: Urban data platformsnononoyesyesnono
    A2P025: Mobile applications for citizensnoyesnonoyesnono
    A2P025: Building services (HVAC & Lighting)yesnonoyesyesnono
    A2P025: Smart irrigationnoyesnonononono
    A2P025: Digital tracking for waste disposalnonononononono
    A2P025: Smart surveillancenonononononono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)noyesnoyesnonono
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesyesnoyesnonono
    A2P026: e-Mobilityyesyesnoyesnoyesno
    A2P026: Soft mobility infrastructures and last mile solutionsnoyesnonononono
    A2P026: Car-free areanoyesnonononono
    A2P026: Other
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notesShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District managementThe new mobility plan integrates the PED area
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesYesNo
    A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateEnergieausweis mandatory if buildings/ flats/ apartments are sold
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesYesYesYesNo
    A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificateKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Smart cities strategies,
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies
    • Urban Renewal Strategies
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyCity level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply40% reduction in emissions by 2030 according to the Covenant of Mayors
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas
    • Electrification of Heating System based on Heat Pumps
    A3P003: Other
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesReininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices- Thermal rehabilitation - Heat pumps - Smart system capable o various connections and data export - Usage of the energy produced by PVs placed on 3 buildings within the PED
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviour- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.- Education - Replacement of the non-performant PVs - Professional maintenance of the PV system - Reduce of consumptions - Intelligent systems to recover heat - Intelligent system to permit the usage of domestic water from the heating system
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Innovative business models,
    • Local trading
    • PPP models,
    • Local trading
    • Open data business models,
    • Innovative business models,
    • Life Cycle Cost,
    • Circular economy models,
    • Demand management Living Lab
    • Open data business models,
    • Innovative business models,
    • Demand management Living Lab
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Behavioural Change / End-users engagement,
    • Social incentives,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Citizen/owner involvement in planning and maintenance
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Social incentives,
    • Quality of Life,
    • Affordability,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Social incentives,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Building / district Certification
    • Strategic urban planning,
    • City Vision 2050,
    • Building / district Certification
    • District Energy plans
    • Strategic urban planning,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates,
    • Building / district Certification
    • Digital twinning and visual 3D models
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Energy Neutral,
    • Low Emission Zone
    • Pollutants Reduction,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    • Energy Neutral
    • Energy Neutral,
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Carbon-free,
    • Life Cycle approach,
    • Pollutants Reduction,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Cool Materials,
    • Nature Based Solutions (NBS)
    • Energy Neutral
    • Carbon-free
    • Energy Neutral
    A3P009: Other
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionReininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.Positive energy districtExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentThe Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.Creation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaSuburban areaUrban areaUrban areaUrban areaUrban area
    B1P004: Type of district
    B2P004: Type of district
    • New construction
    • New construction
    • Renovation
    • New construction,
    • Renovation
    • New construction,
    • Renovation
    B1P005: Case Study Context
    B1P005: Case Study Context
    • New Development
    • New Development
    • Retrofitting Area
    • Re-use / Transformation Area,
    • New Development,
    • Retrofitting Area
    • New Development,
    • Retrofitting Area
    B1P006: Year of construction
    B1P006: Year of construction202420251976
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential0
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential10000
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential0
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P011: Population density before intervention
    B1P011: Population density before intervention0000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention00.0100000
    B1P013: Building and Land Use before intervention
    B1P013: Residentialnononononoyesno
    B1P013 - Residential: Specify the sqm [m²]
    B1P013: Officenononononoyesno
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilitynoyesnonononono
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnonononononono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnononoyesnonono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasyesyesnonononono
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalnonononononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnonononononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernonononononono
    B1P013 - Other: Specify the sqm [m²]
    B1P014: Building and Land Use after intervention
    B1P014: Residentialyesyesnononoyesyes
    B1P014 - Residential: Specify the sqm [m²]
    B1P014: Officenoyesnononoyesyes
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynonononononoyes
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnoyesnonononono
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnoyesnoyesnonono
    B1P014 - Institutional: Specify the sqm [m²]
    B1P014: Natural areasyesyesnonononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnoyesnonononono
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnonononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernonononononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definition
    B2P002: Installation life time
    B2P002: Installation life time
    B2P003: Scale of action
    B2P003: ScaleDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installation
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED Lab
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Other
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    • Energy modelling
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant2 - Slightly important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Energy Communities, P2P, Prosumers concepts1 - Unimportant4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Storage systems and E-mobility market penetration1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
    C1P001: Decreasing costs of innovative materials1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P001: Financial mechanisms to reduce costs and maximize benefits1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: The ability to predict Multiple Benefits1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Social acceptance (top-down)1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Presence of integrated urban strategies and plans1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
    C1P001: Multidisciplinary approaches available for systemic integration1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
    C1P001: Availability of RES on site (Local RES)1 - Unimportant3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)Grid congestion which limits electrification possibilities
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant
    C1P002: Climate Change mitigation need (local RES production and efficiency)1 - Unimportant5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
    C1P002: Urban re-development of existing built environment1 - Unimportant5 - Very important4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
    C1P002: Economic growth need1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
    C1P002: Territorial and market attractiveness1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant
    C1P002: Energy autonomy/independence1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
    C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P003: Lack of public participation1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
    C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P003:Long and complex procedures for authorization of project activities1 - Unimportant5 - Very important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P003: Complicated and non-comprehensive public procurement1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P003: Fragmented and or complex ownership structure1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P003: Lack of internal capacities to support energy transition1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)Financial cuts announced to high-education institutes announced by the Dutch government might affect sustainability plans or key organisation of the PED project
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P005: Regulatory instability1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P005: Non-effective regulations1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P005: Insufficient or insecure financial incentives1 - Unimportant4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P005: Shortage of proven and tested solutions and examples1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
    C1P007: Deficient planning1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
    C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Lack of well-defined process1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
    C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Lack/cost of computational scalability1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P007: Grid congestion, grid instability1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
    C1P007: Negative effects of project intervention on the natural environment1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P007: Difficult definition of system boundaries1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Low acceptance of new projects and technologies1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
    C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Lack of trust beyond social network1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Rebound effect1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Exclusion of socially disadvantaged groups1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P009: Lack of awareness among authorities1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P009: High costs of design, material, construction, and installation1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
    C1P010: Insufficient external financial support and funding for project activities1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P010: Economic crisis1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P010: Risk and uncertainty1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P010: Lack of consolidated and tested business models1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P010: Limited access to capital and cost disincentives1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P011: Energy price distortion1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
    C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading
    • Planning/leading
    C1P012: Research & Innovation
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Financial/Funding
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    C1P012: Analyst, ICT and Big Data
    • Planning/leading,
    • Monitoring/operation/management
    • Planning/leading,
    • Monitoring/operation/management
    C1P012: Business process management
    • None
    • Monitoring/operation/management
    C1P012: Urban Services providers
    • Planning/leading,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Monitoring/operation/management
    C1P012: Real Estate developers
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Construction/implementation
    C1P012: Design/Construction companies
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • Design/demand aggregation
    • Design/demand aggregation
    C1P012: Social/Civil Society/NGOs
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Design/demand aggregation
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Construction/implementation
    C1P012: Other
    • None
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)