Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Uncompare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Uncompare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
TitleSalzburg, Gneis district
Kifissia, Energy community
Oulu, Kaukovainio
Savona, The University of Genova, Savona Campus
Istanbul, Ozyegin University Campus
Oslo, Furuset project
Aveiro, Aradas district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabSalzburg, Gneis districtKifissia, Energy communityOulu, KaukovainioSavona, The University of Genova, Savona CampusIstanbul, Ozyegin University CampusOslo, Furuset projectAveiro, Aradas district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studyyesnoyesnonoyesno
PED relevant case studynoyesnonoyesnoyes
PED Lab.nononoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyesyesyes
Annual energy surplusyesnononononono
Energy communityyesyesnoyesnonoyes
Circularitynonoyesnononono
Air quality and urban comfortyesyesnonoyesnono
Electrificationnoyesyesnoyesnoyes
Net-zero energy costnonononononono
Net-zero emissionnononononoyesno
Self-sufficiency (energy autonomous)nonononononono
Maximise self-sufficiencynonononononono
Othernononoyesyesyesno
Other (A1P004)The case study can be representative as a small-scale district with multi-vector energy systemsalmost nZEB districtEnergy efficient; Sustainable neighbourhood; Social aspects/affordability
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabCompletedPlanning PhaseIn operationIn operationImplementation PhaseIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date01/2002/1410/2412/23
A1P007: End Date
A1P007: End date01/2410/2811/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
          A1P011: Geographic coordinates
          X Coordinate (longitude):13.04121623.81458825.5175950840935078.45236071159282629.25830010.896711-8.6595
          Y Coordinate (latitude):47.77101938.07734964.9928809817313244.2990045129586141.03060059.94182340.6353
          A1P012: Country
          A1P012: CountryAustriaGreeceFinlandItalyTurkeyNorwayPortugal
          A1P013: City
          A1P013: CitySalzburgMunicipality of KifissiaOuluSavonaIstanbulOsloAlveiro (Aradas)
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).DfbCsaDfcCsaCfaCfbCsb
          A1P015: District boundary
          A1P015: District boundaryGeographicVirtualGeographicGeographicGeographic
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodRegional (close to virtual)
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedMixedMixedPrivateMixedPublic
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerSingle OwnerSingle OwnerMultiple OwnersMultiple Owners
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED17615
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]19976219700
          A1P020: Total ground area
          A1P020: Total ground area [m²]6000060000285.4008700008930000
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area0000000
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenonoyesnoyesnono
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenonononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernonononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnononoyesnonoyes
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnonononononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnonoyesnononono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernonononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUyesnoyesnoyesnono
          A1P022i: Add the value in EUR if available [EUR]
          A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Positive externalities,
          • Other
          • Positive externalities,
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          A1P023: OtherBoosting social cooperation and social aidDeveloping and demonstrating new solutions
          A1P024: More comments:
          A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]55.41
          Contact person for general enquiries
          A1P026: NameAbel MagyariArtemis Giavasoglou, Kleopatra KalampokaSamuli RinneMichela RobbaCem KeskinChristoph GollnerDr. Gonçalo Homem De Almeida Rodriguez Correia
          A1P027: OrganizationABUDMunicipality of Kifissia – SPARCS local teamCity of OuluUniversity of GenovaCenter for Energy, Environment and Economy, Ozyegin UniversityFFGDelft University of Technology
          A1P028: AffiliationResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityOtherResearch Center / University
          A1P028: Other
          A1P029: Emailmagyari.abel@abud.hugiavasoglou@kifissia.grsamuli.rinne@ouka.fiMichela.robba@unige.itcem.keskin@ozyegin.edu.trchristoph.gollner@ffg.atg.correia@tudelft.nl
          Contact person for other special topics
          A1P030: NameStrassl IngeborgStavros Zapantis - vice mayorSamuli RinneYassine EnnassiriM. Pınar MengüçQiaochu Fan
          A1P031: Emailinge.strassl@salzburg.gv.atstavros.zapantis@gmail.comsamuli.rinne@ouka.fiYassine.ennassiri@edu.unige.itpinar.menguc@ozyegin.edu.trq.fan-1@tudelft.nl
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy efficiency,
          • Energy flexibility,
          • Energy production
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Water use,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Indoor air quality,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fields- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.LEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste document
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000YesNoYes
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoNoYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationNot included. However, there is a charging place for a shared EV in one building.Not included, the campus is a non car area except emergencies
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2.11.426
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.20.962
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesyesyesnoyesnono
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.77706640.1
          A2P011: Windnonononononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnonononononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnonononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnonononononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
          A2P011: Othernonononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalyesnononononono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnonononononono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnonononononono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPnonoyesnononono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
          A2P012: Biomass_peat_heatnonononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnonononononono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnonononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]0.8190162.33.5
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]-10
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonononononono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnonononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnonononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernonononononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnonoyesnoyesnono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
          A2P018: Windnonoyesnononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononoyesnononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnonoyesnononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnonoyesnononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnonononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernonononononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnonononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonoyesnononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
          A2P019: Waste heat+HPnonononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnonononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnonononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernonononononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary003.28571428571430000
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]0
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Security
          A2P022: HealthCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levelsEncouraging a healthy lifestyle
          A2P022: Education
          A2P022: MobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV chargingMode of transport; Access to public transportImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districts
          A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionCost of energy; emissions linked to energy productionEnergy efficiency in buildings; Net energy need; Gross energy need; Total energy needTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stability
          A2P022: Water
          A2P022: Economic developmentInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost ComparisonTotal investments, Payback time, Economic value of savingsDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
          A2P022: Housing and CommunityAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousnessDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy povertyDelivery and proximity to amenities
          A2P022: WasteRecycling rate
          A2P022: OtherSmart Cities strategies, Quality of open dataGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public Space
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsyesnoyesyesyesnoyes
          A2P023: Solar thermal collectorsnononoyesnonono
          A2P023: Wind Turbinesnonononoyesnoyes
          A2P023: Geothermal energy systemyesnonoyesnonono
          A2P023: Waste heat recoverynonoyesnononono
          A2P023: Waste to energynonononononono
          A2P023: Polygenerationnononoyesnonono
          A2P023: Co-generationnonoyesnoyesnono
          A2P023: Heat Pumpnonoyesnoyesnono
          A2P023: Hydrogennononoyesnonono
          A2P023: Hydropower plantnonononononono
          A2P023: Biomassnonoyesnononono
          A2P023: Biogasnonononononono
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesyesyesnono
          A2P024: Energy management systemyesnoyesyesyesnoyes
          A2P024: Demand-side managementyesnononoyesnoyes
          A2P024: Smart electricity gridyesnonoyesnonoyes
          A2P024: Thermal Storagenonoyesyesnonono
          A2P024: Electric Storagenononoyesyesnoyes
          A2P024: District Heating and Coolingnonoyesyesyesnono
          A2P024: Smart metering and demand-responsive control systemsnononoyesyesnono
          A2P024: P2P – buildingsyesnononononono
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnonoyesnononoyes
          A2P025: Energy efficiency measures in historic buildingsnonononononono
          A2P025: High-performance new buildingsyesnoyesyesyesnono
          A2P025: Smart Public infrastructure (e.g. smart lighting)nonononononoyes
          A2P025: Urban data platformsnonoyesnononoyes
          A2P025: Mobile applications for citizensnonononononono
          A2P025: Building services (HVAC & Lighting)yesnoyesnoyesnono
          A2P025: Smart irrigationnonononoyesnono
          A2P025: Digital tracking for waste disposalnonononononono
          A2P025: Smart surveillancenonononoyesnono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nonoyesnononoyes
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnoyesnononoyes
          A2P026: e-Mobilityyesnoyesyesyesnoyes
          A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnoyesnono
          A2P026: Car-free areanonononoyesnono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notesShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesYesYesYes
          A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingThe obligatory buildijng energy classification
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesYesNoYes
          A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificateLEED BD+C, LEED NC CAMPUS
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies,
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Urban Renewal Strategies
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyCarbon neutrality by 2035
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods
          A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesDeveloping and demonstrating solutions for carbon neutralityCarbon and Energy Neutrality
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourE. g. visualizing energy and water consumptionUnder LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Innovative business models,
          • Local trading
          • Open data business models,
          • Innovative business models,
          • PPP models,
          • Life Cycle Cost,
          • Circular economy models
          • Demand management Living Lab
          • Innovative business models,
          • Local trading,
          • Existing incentives
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Quality of Life,
          • Strategies towards social mix,
          • Affordability,
          • Citizen/owner involvement in planning and maintenance
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Policy Forums,
          • Quality of Life,
          • Strategies towards social mix,
          • Affordability,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Co-creation / Citizen engagement strategies
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Prevention of energy poverty,
          • Digital Inclusion
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Building / district Certification
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • District Energy plans
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Strategic urban planning,
          • District Energy plans
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral,
          • Low Emission Zone
          • Energy Neutral,
          • Net zero carbon footprint
          • Low Emission Zone
          • Energy Neutral,
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Greening strategies,
          • Cool Materials
          • Energy Neutral
          • Energy Neutral,
          • Low Emission Zone,
          • Nature Based Solutions (NBS)
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionThe original idea is that the area produces at least as much it consumes.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentDeveloping systems towards carbon neutrality. Also urban renewal.The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaSuburban areaSuburban areaSuburban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • New construction,
          • Renovation
          • Renovation
          • New construction,
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • New Development
          • New Development,
          • Retrofitting Area
          • Retrofitting Area
          • New Development,
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction20242024
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential3500
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential3500
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential9800
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential9800
          B1P011: Population density before intervention
          B1P011: Population density before intervention0003400
          B1P012: Population density after intervention
          B1P012: Population density after intervention000.05833333333333334.33777154870400
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnonoyesnononono
          B1P013 - Residential: Specify the sqm [m²]
          B1P013: Officenonononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynonononononono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnonoyesnononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnonononoyesnono
          B1P013 - Institutional: Specify the sqm [m²]285.400
          B1P013: Natural areasyesnoyesnononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnonoyesnononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnonononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernonononononono
          B1P013 - Other: Specify the sqm [m²]
          B1P014: Building and Land Use after intervention
          B1P014: Residentialyesnoyesnonoyesno
          B1P014 - Residential: Specify the sqm [m²]
          B1P014: Officenononononoyesno
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynononononoyesno
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnonoyesnononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnonononoyesnono
          B1P014 - Institutional: Specify the sqm [m²]280000
          B1P014: Natural areasyesnoyesnononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnonoyesnononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnonononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernonononononono
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life time
          B2P003: Scale of action
          B2P003: Scale
          B2P004: Operator of the installation
          B2P004: Operator of the installation
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED Lab
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Other
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant4 - Important
          C1P001: Energy Communities, P2P, Prosumers concepts1 - Unimportant5 - Very important2 - Slightly important4 - Important4 - Important1 - Unimportant5 - Very important
          C1P001: Storage systems and E-mobility market penetration1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important
          C1P001: Decreasing costs of innovative materials1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
          C1P001: Financial mechanisms to reduce costs and maximize benefits1 - Unimportant4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important
          C1P001: The ability to predict Multiple Benefits1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant4 - Important
          C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
          C1P001: Social acceptance (top-down)1 - Unimportant5 - Very important5 - Very important3 - Moderately important4 - Important1 - Unimportant4 - Important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important
          C1P001: Presence of integrated urban strategies and plans1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important
          C1P001: Multidisciplinary approaches available for systemic integration1 - Unimportant3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important
          C1P001: Availability of RES on site (Local RES)1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders1 - Unimportant4 - Important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need1 - Unimportant4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important
          C1P002: Climate Change mitigation need (local RES production and efficiency)1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P002: Urban re-development of existing built environment1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important
          C1P002: Economic growth need1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
          C1P002: Territorial and market attractiveness1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important4 - Important1 - Unimportant4 - Important
          C1P002: Energy autonomy/independence1 - Unimportant5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant5 - Very important
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities1 - Unimportant4 - Important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant4 - Important
          C1P003: Lack of good cooperation and acceptance among partners1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important
          C1P003: Lack of public participation1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant5 - Very important
          C1P003: Lack of institutions/mechanisms to disseminate information1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
          C1P003:Long and complex procedures for authorization of project activities1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy1 - Unimportant4 - Important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
          C1P003: Complicated and non-comprehensive public procurement1 - Unimportant4 - Important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
          C1P003: Fragmented and or complex ownership structure1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
          C1P003: Lack of internal capacities to support energy transition1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant4 - Important
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant4 - Important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
          C1P004: Lacking or fragmented local political commitment and support on the long term1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant4 - Important
          C1P004: Lack of Cooperation & support between national-regional-local entities1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant4 - Important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies1 - Unimportant4 - Important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant5 - Very important
          C1P005: Regulatory instability1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant4 - Important
          C1P005: Non-effective regulations1 - Unimportant4 - Important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
          C1P005: Unfavorable local regulations for innovative technologies1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important
          C1P005: Building code and land-use planning hindering innovative technologies1 - Unimportant4 - Important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant4 - Important
          C1P005: Insufficient or insecure financial incentives1 - Unimportant4 - Important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant5 - Very important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation1 - Unimportant4 - Important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important
          C1P005: Shortage of proven and tested solutions and examples1 - Unimportant2 - Slightly important2 - Slightly important4 - Important1 - Unimportant4 - Important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriersAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel1 - Unimportant4 - Important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important
          C1P007: Deficient planning1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important
          C1P007: Retrofitting work in dwellings in occupied state1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P007: Lack of well-defined process1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important
          C1P007: Inaccuracy in energy modelling and simulation1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important
          C1P007: Lack/cost of computational scalability1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P007: Grid congestion, grid instability1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important
          C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
          C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
          C1P007: Difficult definition of system boundaries1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia1 - Unimportant4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important
          C1P008: Lack of values and interest in energy optimization measurements1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important
          C1P008: Low acceptance of new projects and technologies1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
          C1P008: Difficulty of finding and engaging relevant actors1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
          C1P008: Lack of trust beyond social network1 - Unimportant4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant5 - Very important
          C1P008: Rebound effect1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P008: Hostile or passive attitude towards environmentalism1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
          C1P008: Exclusion of socially disadvantaged groups1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
          C1P008: Non-energy issues are more important and urgent for actors1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant4 - Important
          C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant5 - Very important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant4 - Important
          C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
          C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important
          C1P009: High costs of design, material, construction, and installation1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
          C1P010: Insufficient external financial support and funding for project activities1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant4 - Important
          C1P010: Economic crisis1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
          C1P010: Risk and uncertainty1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant4 - Important
          C1P010: Lack of consolidated and tested business models1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant5 - Very important
          C1P010: Limited access to capital and cost disincentives1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant4 - Important
          C1P011: Energy price distortion1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Analyst, ICT and Big Data
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Business process management
          • Planning/leading,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Urban Services providers
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Real Estate developers
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Design/Construction companies
          • Design/demand aggregation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: End‐users/Occupants/Energy Citizens
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Industry/SME/eCommerce
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)