Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Uncompare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Romania, Alba Iulia PED
Vantaa, Aviapolis
Romania, Alba Iulia PED
Kladno, Sletiště (Sport Area), PED Winter Stadium
Riga, Ķīpsala, RTU smart student city
Graz, Reininghausgründe
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaRomania, Alba Iulia PEDVantaa, AviapolisRomania, Alba Iulia PEDKladno, Sletiště (Sport Area), PED Winter StadiumRiga, Ķīpsala, RTU smart student cityGraz, Reininghausgründe
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesyesnoyesyes
PED relevant case studyyesnoyesnoyesnono
PED Lab.yesnoyesnononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyes
Annual energy surplusnoyesnonoyesnono
Energy communitynoyesnoyesyesyesno
Circularityyesnoyesnononono
Air quality and urban comfortnoyesnoyesnonono
Electrificationyesyesnoyesyesnono
Net-zero energy costnonononononono
Net-zero emissionyesnononononono
Self-sufficiency (energy autonomous)noyesnoyesnoyesno
Maximise self-sufficiencyyesyesnoyesnoyesno
Othernonononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseImplementation PhasePlanning PhaseImplementation PhasePlanning PhasePlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date02/1601/2401/2301/23202201/242019
A1P007: End Date
A1P007: End date07/2212/2612/2712/2712/262025
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Historical sources,
  • GIS of the municipality,
  • Basic BEMs
  • Historical sources,
  • GIS of the municipality,
  • Basic BEMs
  • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
  • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
A1P011: Geographic coordinates
X Coordinate (longitude):26.72273723.58011209802323524.95882123.58011209802323514.0929624.0816833915.407440
Y Coordinate (latitude):58.38071346.07701527868011560.30548846.07701527868011550.1371556.9524595647.0607
A1P012: Country
A1P012: CountryEstoniaRomaniaFinlandRomaniaCzech RepublicLatviaAustria
A1P013: City
A1P013: CityTartuAlba IuliaVantaaAlba IuliaKladnoRigaGraz
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).DfbDfbDfbDfbCfbCfbDfb
A1P015: District boundary
A1P015: District boundaryFunctionalFunctionalGeographicFunctionalGeographicGeographicGeographic
OtherGeographicGeographicV1* (ca 8 buildings)
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:PrivatePublicMixedPublicMixedPublicMixed
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple Owners
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED186815100
A1P019: Conditioned space
A1P019: Conditioned space [m²]35217170000
A1P020: Total ground area
A1P020: Total ground area [m²]7931448423.4538810001192641000000
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area0000010
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estateyesnoyesnoyesnoyes
A1P022a: Add the value in EUR if available [EUR]6500000
A1P022b: Financing - PRIVATE - ESCO schemenonononoyesnono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernonoyesnononono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingyesyesnonoyesnono
A1P022d: Add the value in EUR if available [EUR]4000000
A1P022e: Financing - PUBLIC - National fundingyesyesnoyesnonoyes
A1P022e: Add the value in EUR if available [EUR]8000000
A1P022f: Financing - PUBLIC - Regional fundingnoyesnoyesnonono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingnoyesyesyesyesnoyes
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernonononononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesyesyesno
A1P022i: Add the value in EUR if available [EUR]7500000
A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesnono
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
A1P023: Economic Targets
A1P023: Economic Targets
  • Positive externalities
  • Job creation,
  • Positive externalities,
  • Other
  • Positive externalities,
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Job creation,
  • Positive externalities
  • Job creation,
  • Positive externalities
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Job creation,
  • Boosting local businesses,
  • Boosting consumption of local and sustainable products
A1P023: OtherBoosting sustainability for public schoolsBoosting sustainability for public schools
A1P024: More comments:
A1P024: More comments:The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]253.53.5
Contact person for general enquiries
A1P026: NameJaanus TammTudor DrâmbăreanEira LinkoTudor DrâmbăreanDavid ŠkorňaJudith StiekemaKatharina Schwarz
A1P027: OrganizationTartu City GovernmentMunicipality of Alba IuliaCity of VantaaMunicipality of Alba IuliaMěsto KladnoOASCStadtLABOR, Innovationen für urbane Lebensqualität GmbH
A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesOtherSME / Industry
A1P028: OtherMaria Elena SeemannMaria Elena Seemannnot for profit private organisation
A1P029: EmailJaanus.tamm@tartu.eetudor.drambarean@apulum.roeira.linko@vantaa.fitudor.drambarean@apulum.rodavid.skorna@mestokladno.czjudith@oascities.orgkatharina.schwarz@stadtlaborgraz.at
Contact person for other special topics
A1P030: NameKaspar AlevMaria-Elena SeemannMaria-Elena SeemannMichal KuzmičHans Schnitzer
A1P031: EmailKaspar.alev@tartu.eemaria.seemann@apulum.roapulmaria.seemann@apulum.romichal.kuzmic@cvut.czhans.schnitzer@stadtlaborgraz.at
Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Construction materials,
  • Other
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Water use,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
  • Energy efficiency,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Water use,
  • Indoor air quality,
  • Other
A2P001: OtherUrban Management; Air Quality
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Thermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.Pilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, coolingThermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.Trnsys, PV modelling tools, CADA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Energy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the district
A2P003: Application of ISO52000
A2P003: Application of ISO52000NoYesNoYesNoNoNo
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceYesYesYesYesYesYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoYesYes
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculationThere will be 1 EV station placed nearby the main building. This would be the link to the mobility field.The calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.There will be 1 EV station placed nearby the main building. This would be the link to the mobility field.Not yet included.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.10.9821.48000
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.0484410.35000
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVyesyesyesyesyesnoyes
A2P011: PV - specify production in GWh/annum [GWh/annum]1.1
A2P011: Windnononononoyesno
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydrononononononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnonononononono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnonononononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnononononoyesno
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernonononononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalnonoyesnononoyes
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
A2P012: Solar Thermalyesnononononoyes
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
A2P012: Biomass_heatnononononoyesno
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: Waste heat+HPnonoyesnoyesnoyes
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]1.7
A2P012: Biomass_peat_heatnonononononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnonononononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnonononononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernoyesnoyesnonono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notesOnly PVs - 940 PVs on the main buildingWaste heat from cooling the ice rink.Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.Groundwater (used for heat pumps)
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]0.0000484412.1
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]0.000113331
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnononononoyesno
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Coalnonononononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Oilnonononononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P017: Othernoyesnonononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnonoyesnononoyes
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windnonoyesnononoyes
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydrononoyesnononoyes
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnonoyesnononono
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnonononononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnonononononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernoyesnoyesnonono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnonononononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnonononononoyes
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnonoyesnononoyes
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnonoyesnononoyes
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnonononononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnonononononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnonononononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernoyesnoyesnonono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary0000000
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]980-1040.036
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Securityyesyes
A2P022: Healthyesyes
A2P022: Educationyesyes
A2P022: Mobilityyesyesx
A2P022: EnergyyesyesEnergy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balancex
A2P022: Wateryesyesx
A2P022: Economic developmentyesyesInvestment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROIx
A2P022: Housing and Communityx
A2P022: Waste
A2P022: Other
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesyesyesyesyesnoyes
A2P023: Solar thermal collectorsnoyesnoyesnonono
A2P023: Wind Turbinesnonononononono
A2P023: Geothermal energy systemnonoyesnononono
A2P023: Waste heat recoverynonoyesnoyesnoyes
A2P023: Waste to energynonoyesnononono
A2P023: Polygenerationnoyesyesyesnonono
A2P023: Co-generationnoyesnoyesnonono
A2P023: Heat Pumpnoyesyesyesyesnoyes
A2P023: Hydrogennonononononono
A2P023: Hydropower plantnonononononono
A2P023: Biomassyesnoyesnononono
A2P023: Biogasyesnononononono
A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesyesyesyes
A2P024: Energy management systemyesyesyesyesyesyesno
A2P024: Demand-side managementnoyesyesyesyesyesno
A2P024: Smart electricity gridnoyesyesyesnoyesno
A2P024: Thermal Storagenonoyesnonoyesyes
A2P024: Electric Storagenoyesyesyesnoyesno
A2P024: District Heating and Coolingyesnoyesnoyesyesyes
A2P024: Smart metering and demand-responsive control systemsnoyesyesyesyesyesno
A2P024: P2P – buildingsnoyesnoyesnonono
A2P024: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingyesyesnoyesyesnono
A2P025: Energy efficiency measures in historic buildingsnonononononono
A2P025: High-performance new buildingsnonoyesnononoyes
A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesnoyesnonoyes
A2P025: Urban data platformsyesyesnoyesyesyesno
A2P025: Mobile applications for citizensyesnonononoyesyes
A2P025: Building services (HVAC & Lighting)noyesyesyesyesyesno
A2P025: Smart irrigationnonononononoyes
A2P025: Digital tracking for waste disposalnonononononono
A2P025: Smart surveillanceyesnononononono
A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)yesyesyesyesnonoyes
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesyesyesyesnonoyes
A2P026: e-Mobilityyesyesyesyesnonoyes
A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnononoyes
A2P026: Car-free areanonononononoyes
A2P026: Other
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notesThe new mobility plan integrates the PED areaThe new mobility plan integrates the PED area- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYesYesYesYesYesNoYes
A2P028: If yes, please specify and/or enter notesNational standards apply.Energieausweis mandatory if buildings/ flats/ apartments are sold
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesYesYesNoNoYes
A2P029: If yes, please specify and/or enter notesKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Energy master planning (SECAP, etc.)
  • Smart cities strategies,
  • Urban Renewal Strategies,
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Urban Renewal Strategies,
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.),
  • Promotion of energy communities (REC/CEC),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategy40% reduction in emissions by 2030 according to the Covenant of MayorsCarbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),40% reduction in emissions by 2030 according to the Convenant of MayorsCarbon neutrality 2050City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Biogas,
  • Hydrogen
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps
  • Electrification of Heating System based on Heat Pumps,
  • Electrification of Cooking Methods,
  • Biogas
A3P003: Other
A3P004: Identification of needs and priorities
A3P004: Identification of needs and priorities- Thermal rehabilitation - Heat pumps - Smart system capable o various connections and data export - Usage of the energy produced by PVs placed on 3 buildings within the PEDThermal rehabilitation Heat pumps Smart system capable o various connections and data export Usage of the energy produced by PVs placed on 3 buildings within the PEDReininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices
A3P005: Sustainable behaviour
A3P005: Sustainable behaviour- Education - Replacement of the non-performant PVs - Professional maintenance of the PV system - Reduce of consumptions - Intelligent systems to recover heat - Intelligent system to permit the usage of domestic water from the heating systemEducation Replacement of the non-performant PVs Professional maintenance of the PV system Reduce of consumptions Intelligent systems to recover heat Intelligent system to permit the usage of domestic water from the heating system- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.
A3P006: Economic strategies
A3P006: Economic strategies
  • Innovative business models,
  • PPP models,
  • Life Cycle Cost,
  • Existing incentives
  • Open data business models,
  • Innovative business models,
  • Life Cycle Cost,
  • Circular economy models,
  • Demand management Living Lab
  • Innovative business models,
  • PPP models,
  • Life Cycle Cost,
  • Circular economy models
  • Open data business models,
  • Innovative business models,
  • Life Cycle Cost,
  • Circular economy models,
  • Demand management Living Lab
  • Innovative business models,
  • PPP models,
  • Existing incentives
  • Open data business models,
  • Innovative business models,
  • Demand management Living Lab
  • PPP models,
  • Local trading
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Social incentives,
  • Quality of Life,
  • Prevention of energy poverty,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Social incentives,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Prevention of energy poverty,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Social incentives,
  • Quality of Life,
  • Strategies towards social mix,
  • Affordability,
  • Prevention of energy poverty,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Affordability
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Social incentives,
  • Quality of Life,
  • Affordability,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • City Vision 2050,
  • SECAP Updates
  • Strategic urban planning,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates,
  • Building / district Certification
  • Strategic urban planning,
  • SECAP Updates
  • Strategic urban planning,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates,
  • Building / district Certification
  • Strategic urban planning,
  • City Vision 2050,
  • SECAP Updates
  • Digital twinning and visual 3D models
  • Strategic urban planning,
  • City Vision 2050,
  • Building / district Certification
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Net zero carbon footprint,
  • Carbon-free,
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Low Emission Zone,
  • Net zero carbon footprint,
  • Carbon-free,
  • Life Cycle approach,
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Cool Materials,
  • Nature Based Solutions (NBS)
  • Net zero carbon footprint,
  • Life Cycle approach,
  • Greening strategies,
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Low Emission Zone,
  • Net zero carbon footprint,
  • Carbon-free,
  • Life Cycle approach,
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Cool Materials,
  • Nature Based Solutions (NBS)
  • Net zero carbon footprint
  • Energy Neutral
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
A3P009: Other
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspectsMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionPositive energy districtNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.Positive energy districtOnsite Energy Ratio > 1ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project developmentCreation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.Creation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.Strategic, economicExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban areaUrban areaUrban areaUrban area
B1P004: Type of district
B2P004: Type of district
  • Renovation
  • Renovation
  • New construction,
  • Renovation
  • Renovation
  • New construction,
  • Renovation
  • New construction
B1P005: Case Study Context
B1P005: Case Study Context
  • Retrofitting Area
  • Retrofitting Area
  • Re-use / Transformation Area,
  • New Development
  • Retrofitting Area
  • New Development,
  • Retrofitting Area
  • New Development
B1P006: Year of construction
B1P006: Year of construction19762025
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential45000
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential10000
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential0
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P011: Population density before intervention
B1P011: Population density before intervention0000000
B1P012: Population density after intervention
B1P012: Population density after intervention0000000.01
B1P013: Building and Land Use before intervention
B1P013: Residentialyesnoyesnoyesnono
B1P013 - Residential: Specify the sqm [m²]
B1P013: Officenonoyesnoyesnono
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilitynonoyesnononoyes
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialyesnoyesnononono
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnoyesyesyesnonono
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasyesnononononoyes
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalyesnoyesnoyesnono
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnonoyesnononono
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernonononononono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialyesnoyesnoyesnoyes
B1P014 - Residential: Specify the sqm [m²]
B1P014: Officenonoyesnoyesnoyes
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynonoyesnononono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialyesnoyesnononoyes
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnoyesyesyesnonoyes
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasyesnononononoyes
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalyesnoyesnoyesnoyes
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnonononononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernonononononono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definitionNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
B2P002: Installation life time
B2P002: Installation life time
B2P003: Scale of action
B2P003: ScaleDistrictDistrict
B2P004: Operator of the installation
B2P004: Operator of the installationThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?No
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Strategic
  • Strategic
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabMunicipalityMunicipality
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Private,
  • Industrial,
  • Citizens, public, NGO
  • Academia,
  • Private,
  • Industrial,
  • Citizens, public, NGO
B2P009: Other
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Buildings,
  • Prosumers,
  • Renewable generation,
  • Energy networks,
  • Lighting,
  • E-mobility,
  • Green areas,
  • User interaction/participation,
  • Information and Communication Technologies (ICT)
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Monitoring and evaluation infrastructure,
  • Pivoting and risk-mitigating measures
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Available data,
  • Life Cycle Analysis
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Sustainability,
  • Social,
  • Economical / Financial
  • Energy,
  • Environmental,
  • Social,
  • Economical / Financial
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
  • Social models
  • Energy modelling
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important3 - Moderately important
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important2 - Slightly important
C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important5 - Very important3 - Moderately important5 - Very important3 - Moderately important5 - Very important4 - Important
C1P001: Storage systems and E-mobility market penetration2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important
C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important5 - Very important2 - Slightly important
C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important4 - Important3 - Moderately important2 - Slightly important5 - Very important4 - Important
C1P001: The ability to predict the distribution of benefits and impacts4 - Important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important4 - Important
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important5 - Very important
C1P001: Social acceptance (top-down)4 - Important3 - Moderately important4 - Important3 - Moderately important2 - Slightly important4 - Important4 - Important
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important2 - Slightly important5 - Very important5 - Very important
C1P001: Presence of integrated urban strategies and plans5 - Very important5 - Very important5 - Very important5 - Very important4 - Important4 - Important5 - Very important
C1P001: Multidisciplinary approaches available for systemic integration4 - Important2 - Slightly important4 - Important2 - Slightly important3 - Moderately important5 - Very important5 - Very important
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important5 - Very important4 - Important
C1P001: Availability of RES on site (Local RES)4 - Important4 - Important5 - Very important5 - Very important4 - Important4 - Important3 - Moderately important
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important5 - Very important5 - Very important4 - Important4 - Important5 - Very important
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situationCollaboration with the local partners
C1P002: Driving Factors
C1P002: Climate Change adaptation need5 - Very important5 - Very important4 - Important5 - Very important3 - Moderately important5 - Very important5 - Very important
C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important5 - Very important4 - Important4 - Important5 - Very important
C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant5 - Very important5 - Very important5 - Very important3 - Moderately important4 - Important4 - Important
C1P002: Urban re-development of existing built environment3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important4 - Important5 - Very important
C1P002: Economic growth need2 - Slightly important2 - Slightly important4 - Important2 - Slightly important4 - Important4 - Important3 - Moderately important
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important2 - Slightly important4 - Important5 - Very important3 - Moderately important4 - Important5 - Very important
C1P002: Territorial and market attractiveness3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important
C1P002: Energy autonomy/independence4 - Important5 - Very important3 - Moderately important5 - Very important4 - Important4 - Important3 - Moderately important
C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important3 - Moderately important4 - Important3 - Moderately important4 - Important4 - Important5 - Very important
C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important2 - Slightly important
C1P003: Lack of public participation1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important4 - Important4 - Important
C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important2 - Slightly important
C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important
C1P003: Complicated and non-comprehensive public procurement4 - Important4 - Important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important2 - Slightly important
C1P003: Fragmented and or complex ownership structure5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important2 - Slightly important2 - Slightly important2 - Slightly important5 - Very important3 - Moderately important4 - Important
C1P003: Lack of internal capacities to support energy transition4 - Important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important
C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)Fragmented financial support; lack of experimental budget for complex projects, etc.
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important
C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant2 - Slightly important
C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
C1P005: Regulatory instability3 - Moderately important4 - Important5 - Very important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
C1P005: Non-effective regulations4 - Important2 - Slightly important4 - Important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important
C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important
C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
C1P005: Insufficient or insecure financial incentives3 - Moderately important4 - Important5 - Very important4 - Important5 - Very important3 - Moderately important4 - Important
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important3 - Moderately important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important2 - Slightly important
C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel3 - Moderately important4 - Important3 - Moderately important4 - Important4 - Important4 - Important2 - Slightly important
C1P007: Deficient planning1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important2 - Slightly important
C1P007: Retrofitting work in dwellings in occupied state5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
C1P007: Lack of well-defined process3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important4 - Important
C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important
C1P007: Lack/cost of computational scalability3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important
C1P007: Grid congestion, grid instability2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant
C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
C1P007: Difficult definition of system boundaries5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transition
C1P008: Social and Cultural barriers
C1P008: Inertia4 - Important4 - Important4 - Important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important
C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important4 - Important3 - Moderately important4 - Important4 - Important3 - Moderately important4 - Important
C1P008: Low acceptance of new projects and technologies2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important
C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important
C1P008: Lack of trust beyond social network2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important
C1P008: Rebound effect3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important
C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important4 - Important
C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important
C1P009: Lack of awareness among authorities2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important
C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important
C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important4 - Important5 - Very important5 - Very important3 - Moderately important4 - Important
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs5 - Very important4 - Important3 - Moderately important4 - Important4 - Important4 - Important3 - Moderately important
C1P010: Insufficient external financial support and funding for project activities5 - Very important5 - Very important2 - Slightly important5 - Very important4 - Important3 - Moderately important2 - Slightly important
C1P010: Economic crisis3 - Moderately important4 - Important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important4 - Important
C1P010: Risk and uncertainty4 - Important2 - Slightly important4 - Important2 - Slightly important4 - Important3 - Moderately important2 - Slightly important
C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important5 - Very important4 - Important4 - Important3 - Moderately important2 - Slightly important
C1P010: Limited access to capital and cost disincentives4 - Important4 - Important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important
C1P011: Energy price distortion3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important5 - Very important4 - Important
C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important5 - Very important4 - Important
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading
  • Planning/leading
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Research & Innovation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Financial/Funding
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Analyst, ICT and Big Data
  • Planning/leading,
  • Monitoring/operation/management
  • Design/demand aggregation
  • Planning/leading,
  • Monitoring/operation/management
  • Planning/leading,
  • Monitoring/operation/management
C1P012: Business process management
  • Planning/leading
  • Monitoring/operation/management
  • None
C1P012: Urban Services providers
  • Construction/implementation
  • Design/demand aggregation
  • Planning/leading,
  • Monitoring/operation/management
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Real Estate developers
  • None
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Design/Construction companies
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Design/demand aggregation
  • Design/demand aggregation
  • Design/demand aggregation
C1P012: Social/Civil Society/NGOs
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
  • Design/demand aggregation,
  • Monitoring/operation/management
C1P012: Industry/SME/eCommerce
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Other
  • None
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)