Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Schönbühel-Aggsbach, Schönbühel an der Donau
Amsterdam, Buiksloterham PED
Évora, Portugal
Romania, Alba Iulia PED
Innsbruck, Campagne-Areal
Riga, Ķīpsala, RTU smart student city
Uden, Loopkantstraat
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaSchönbühel-Aggsbach, Schönbühel an der DonauAmsterdam, Buiksloterham PEDÉvora, PortugalRomania, Alba Iulia PEDInnsbruck, Campagne-ArealRiga, Ķīpsala, RTU smart student cityUden, Loopkantstraat
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesnoyesnoyesno
PED relevant case studyyesyesnoyesnoyesnoyes
PED Lab.yesnonoyesnononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesnoyesyesyesyes
Annual energy surplusnonoyesyesyesnonoyes
Energy communitynoyesyesyesyesnoyesno
Circularityyesnoyesnonononono
Air quality and urban comfortnonononoyesnonono
Electrificationyesnoyesnoyesnonoyes
Net-zero energy costnoyesnononononono
Net-zero emissionyesnoyesnonoyesnono
Self-sufficiency (energy autonomous)nonononoyesnoyesno
Maximise self-sufficiencyyesyesnonoyesnoyesno
Othernononononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseImplementation PhaseImplementation PhaseImplementation PhaseImplementation PhaseCompletedPlanning PhaseIn operation
A1P006: Start Date
A1P006: Start date02/1611/1910/1901/2404/1601/2406/17
A1P007: End Date
A1P007: End date07/2210/2509/2412/2604/2212/2605/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: Otherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • Historical sources,
      • GIS of the municipality,
      • Basic BEMs
      • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
      • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
      • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
      • https://www.synikia.eu/no/bibliotek/
      A1P011: Geographic coordinates
      X Coordinate (longitude):26.72273715.39694.9041-7.90937723.58011209802323511.42434673814025624.081683395.6191
      Y Coordinate (latitude):58.38071348.275252.367638.57080446.07701527868011547.27147078672910456.9524595651.6606
      A1P012: Country
      A1P012: CountryEstoniaAustriaNetherlandsPortugalRomaniaAustriaLatviaNetherlands
      A1P013: City
      A1P013: CityTartuSchönbühel an der DonauAmsterdamÉvoraAlba IuliaInnsbruckRigaUden
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).DfbDfbCfbCsaDfbDfbCfbCfb
      A1P015: District boundary
      A1P015: District boundaryFunctionalGeographicFunctionalGeographicFunctionalGeographicGeographicGeographic
      OtherGeographic
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PrivatePrivateMixedMixedPublicMixedPublicPrivate
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle Owner
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED1806064151
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]3521747728500222771700002360
      A1P020: Total ground area
      A1P020: Total ground area [m²]79314424508423.45113511192643860
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area00000211
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesyesyesnonononoyes
      A1P022a: Add the value in EUR if available [EUR]65000007804440
      A1P022b: Financing - PRIVATE - ESCO schemenononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernononononononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingyesnononoyesnonono
      A1P022d: Add the value in EUR if available [EUR]4000000
      A1P022e: Financing - PUBLIC - National fundingyesyesnonoyesnonono
      A1P022e: Add the value in EUR if available [EUR]8000000
      A1P022f: Financing - PUBLIC - Regional fundingnoyesnonoyesnonono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesnonono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesnonoyesno
      A1P022i: Add the value in EUR if available [EUR]199982757500000
      A1P022j: Financing - RESEARCH FUNDING - Nationalnononononoyesnono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Positive externalities
      • Boosting local businesses,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      • Job creation,
      • Positive externalities,
      • Other
      • Job creation,
      • Other
      • Boosting local businesses,
      • Boosting local and sustainable production
      A1P023: OtherBoosting sustainability for public schoolsCreate affordable appartments for the citizens
      A1P024: More comments:
      A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]253.57804440
      Contact person for general enquiries
      A1P026: NameJaanus TammGhazal EtminanOmar ShafqatJoão Bravo DiasTudor DrâmbăreanGeorgios DermentzisJudith StiekemaTonje Healey Trulsrud
      A1P027: OrganizationTartu City GovernmentGhazal.Etminan@ait.ac.atAmsterdam University of Applied SciencesEDP LabelecMunicipality of Alba IuliaUniversity of InnsbruckOASCNorwegian University of Science and Technology (NTNU)
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversitySME / IndustryMunicipality / Public BodiesResearch Center / UniversityOtherResearch Center / University
      A1P028: OtherMaria Elena Seemannnot for profit private organisation
      A1P029: EmailJaanus.tamm@tartu.eeGhazal.Etminan@ait.ac.ato.shafqat@hva.nljoao.bravodias@edp.pttudor.drambarean@apulum.roGeorgios.Dermentzis@uibk.ac.atjudith@oascities.orgtonje.h.trulsrud@ntnu.no
      Contact person for other special topics
      A1P030: NameKaspar AlevOmar ShafqatMaria-Elena Seemann
      A1P031: EmailKaspar.alev@tartu.eeo.shafqat@hva.nlmaria.seemann@apulum.roapul
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Water use,
      • Waste management,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Construction materials
      • Energy efficiency,
      • Energy production,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Waste management,
      • Indoor air quality,
      • Construction materials
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy modelingCity vision, Innovation AteliersThermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.A suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materials
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoYesNoYesNoNoYes
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYesYesNoYesYesYesYesNo
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoNoYesNoNoYesNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationThere will be 1 EV station placed nearby the main building. This would be the link to the mobility field.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.not included
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.10.0660.9820.3980000.148
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.0120.0484410.65550000.109
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]0
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesyesnoyesyesnoyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.420.058
      A2P011: Windnonononononoyesno
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonoyesnonononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonononononoyesno
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernononononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnonoyesnonononoyes
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalyesnonononononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
      A2P012: Biomass_heatnonoyesnononoyesno
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnonoyesnonononono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnononononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononoyesnonono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesOnly PVs - 940 PVs on the main buildingConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.*Annual energy use below is presentedin primary energy consumption
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]0.0790.0000484410.960.194
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]0.00110.000113331-20.0368
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonoyesnononoyesno
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonoyesnonononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonoyesnonononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononoyesnonono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnoyesyesnonononono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnoyesyesnonononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronoyesyesnonononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnoyesyesnonononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonoyesnonononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonoyesnonononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononoyesnonono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonoyesnonononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonoyesnonononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonoyesnonononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonoyesnonononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonoyesnonononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonoyesnonononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnoyesyesnonononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononoyesnonono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00000000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]9804250-0.00043
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & SecurityyesPersonal Safety
      A2P022: Healthyesindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.Healthy community
      A2P022: Educationyes
      A2P022: MobilityyesSustainable mobility
      A2P022: EnergyyesSpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.NOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emission
      A2P022: Wateryes
      A2P022: Economic developmentyescapital costs, operational cots, overall economic performance (5 KPIs)
      A2P022: Housing and CommunitySpecify the associated KPIsdemographic composition, diverse community, social cohesion
      A2P022: Waste
      A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesyesyesyesnoyes
      A2P023: Solar thermal collectorsnononoyesyesnonono
      A2P023: Wind Turbinesnononononononono
      A2P023: Geothermal energy systemnonoyesnonononoyes
      A2P023: Waste heat recoverynonoyesnonononono
      A2P023: Waste to energynonoyesnonononono
      A2P023: Polygenerationnonononoyesnonono
      A2P023: Co-generationnonononoyesnonono
      A2P023: Heat Pumpnoyesyesnoyesyesnoyes
      A2P023: Hydrogennononononononono
      A2P023: Hydropower plantnononononononono
      A2P023: Biomassyesnoyesnonononono
      A2P023: Biogasyesnoyesnonononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesnoyesyesyesnoyesno
      A2P024: Energy management systemyesyesyesyesyesnoyesyes
      A2P024: Demand-side managementnonoyesnoyesnoyesyes
      A2P024: Smart electricity gridnonoyesyesyesnoyesno
      A2P024: Thermal Storagenonoyesyesnoyesyesno
      A2P024: Electric Storagenonoyesyesyesnoyesno
      A2P024: District Heating and Coolingyesnoyesnonoyesyesno
      A2P024: Smart metering and demand-responsive control systemsnonoyesyesyesnoyesyes
      A2P024: P2P – buildingsnoyesyesyesyesyesnono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingyesyesyesnoyesnonono
      A2P025: Energy efficiency measures in historic buildingsnoyesyesyesnononono
      A2P025: High-performance new buildingsnonoyesnonoyesnoyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesnoyesnoyesnonono
      A2P025: Urban data platformsyesnoyesyesyesnoyesno
      A2P025: Mobile applications for citizensyesnoyesyesnonoyesno
      A2P025: Building services (HVAC & Lighting)nonoyesyesyesyesyesyes
      A2P025: Smart irrigationnonoyesnonononono
      A2P025: Digital tracking for waste disposalnonoyesyesnononono
      A2P025: Smart surveillanceyesnonoyesnononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)yesnoyesnoyesnonono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnoyesnoyesnonono
      A2P026: e-Mobilityyesnoyesyesyesnonono
      A2P026: Soft mobility infrastructures and last mile solutionsnonoyesyesnononono
      A2P026: Car-free areanonoyesnonononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesThe new mobility plan integrates the PED area
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesNoYesYesNoYes
      A2P028: If yes, please specify and/or enter notesTwo buildings are certified "Passive House new build"EPC = 0, energy neutral building
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoYesNoNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.)
      • Promotion of energy communities (REC/CEC)
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies
      • Smart cities strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategy40% reduction in emissions by 2030 according to the Covenant of Mayors
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Biogas,
      • Hydrogen
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas,
      • Hydrogen
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps,
      • Other
      A3P003: OtherDistrict heating based mainly on heat pumps and renewable sources
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and priorities- Thermal rehabilitation - Heat pumps - Smart system capable o various connections and data export - Usage of the energy produced by PVs placed on 3 buildings within the PEDThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviour- Education - Replacement of the non-performant PVs - Professional maintenance of the PV system - Reduce of consumptions - Intelligent systems to recover heat - Intelligent system to permit the usage of domestic water from the heating system
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Existing incentives
      • Local trading,
      • Existing incentives
      • Innovative business models,
      • Life Cycle Cost,
      • Circular economy models,
      • Demand management Living Lab,
      • Local trading,
      • Existing incentives
      • Open data business models,
      • Innovative business models,
      • Life Cycle Cost,
      • Circular economy models,
      • Demand management Living Lab
      • Open data business models,
      • Innovative business models,
      • Demand management Living Lab
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Social incentives,
      • Quality of Life,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Quality of Life,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Social incentives,
      • Quality of Life,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Social incentives,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Social incentives,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies
      • Co-creation / Citizen engagement strategies,
      • Social incentives,
      • Quality of Life
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Digital twinning and visual 3D models
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Net zero carbon footprint,
      • Carbon-free,
      • Pollutants Reduction,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Carbon-free
      • Energy Neutral,
      • Life Cycle approach
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Carbon-free,
      • Life Cycle approach,
      • Pollutants Reduction,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Cool Materials,
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Low Emission Zone
      • Energy Neutral
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsRegulatory sandbox
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionFunctional PEDThe PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.Positive energy districtExtremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentBrown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.POCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.Creation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaRurbanUrban areaUrban areaUrban areaUrban areaUrban areaSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • Renovation
      • New construction
      • Renovation
      • Renovation
      • New construction
      • New construction
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Retrofitting Area
      • Retrofitting Area,
      • Preservation Area
      • New Development
      • Preservation Area
      • Retrofitting Area
      • Re-use / Transformation Area,
      • New Development
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction19762022
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential4500
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential780
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention00000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention000000.06871641265086800
      B1P013: Building and Land Use before intervention
      B1P013: Residentialyesyesnononononono
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officenoyesnononononono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynonoyesnonononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialyesnonononononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononoyesnonono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasyesnonononononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalyesnonononononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialyesyesyesnonoyesnoyes
      B1P014 - Residential: Specify the sqm [m²]2394
      B1P014: Officenoyesyesnonononono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialyesnoyesnonoyesnono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnonononoyesyesnono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasyesnonononononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalyesnoyesnonoyesnono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definition
      B2P002: Installation life time
      B2P002: Installation life time
      B2P003: Scale of action
      B2P003: ScaleDistrictDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installation
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?No
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      B2P009: Other
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Prosumers,
      • Renewable generation,
      • Energy networks,
      • Lighting,
      • E-mobility,
      • Green areas,
      • User interaction/participation,
      • Information and Communication Technologies (ICT)
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • E-mobility,
      • Social interactions,
      • Circular economy models
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Pivoting and risk-mitigating measures
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Available data,
      • Life Cycle Analysis
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Sustainability,
      • Social,
      • Economical / Financial
      • Energy
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Social models
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important2 - Slightly important5 - Very important3 - Moderately important4 - Important2 - Slightly important5 - Very important1 - Unimportant
      C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important5 - Very important3 - Moderately important5 - Very important5 - Very important3 - Moderately important5 - Very important3 - Moderately important
      C1P001: Storage systems and E-mobility market penetration2 - Slightly important4 - Important3 - Moderately important4 - Important3 - Moderately important2 - Slightly important4 - Important4 - Important
      C1P001: Decreasing costs of innovative materials3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
      C1P001: The ability to predict Multiple Benefits3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
      C1P001: The ability to predict the distribution of benefits and impacts4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important
      C1P001: Social acceptance (top-down)4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important5 - Very important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important2 - Slightly important4 - Important2 - Slightly important3 - Moderately important5 - Very important4 - Important
      C1P001: Presence of integrated urban strategies and plans5 - Very important3 - Moderately important3 - Moderately important5 - Very important5 - Very important4 - Important4 - Important3 - Moderately important
      C1P001: Multidisciplinary approaches available for systemic integration4 - Important1 - Unimportant4 - Important5 - Very important2 - Slightly important4 - Important5 - Very important5 - Very important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant
      C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important3 - Moderately important4 - Important5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important2 - Slightly important4 - Important5 - Very important3 - Moderately important4 - Important4 - Important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need5 - Very important5 - Very important5 - Very important5 - Very important5 - Very important5 - Very important5 - Very important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important4 - Important5 - Very important4 - Important4 - Important5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important
      C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important4 - Important4 - Important
      C1P002: Economic growth need2 - Slightly important2 - Slightly important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important3 - Moderately important4 - Important5 - Very important
      C1P002: Territorial and market attractiveness3 - Moderately important3 - Moderately important4 - Important3 - Moderately important5 - Very important4 - Important4 - Important2 - Slightly important
      C1P002: Energy autonomy/independence4 - Important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant
      C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P003: Lack of public participation1 - Unimportant4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Fragmented and or complex ownership structure5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important2 - Slightly important3 - Moderately important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
      C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P005: Regulatory instability3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Non-effective regulations4 - Important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Insufficient or insecure financial incentives3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important4 - Important1 - Unimportant
      C1P007: Deficient planning1 - Unimportant4 - Important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state5 - Very important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
      C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Grid congestion, grid instability2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Difficult definition of system boundaries5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Low acceptance of new projects and technologies2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Lack of trust beyond social network2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Rebound effect3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P009: Lack of awareness among authorities2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P009: High costs of design, material, construction, and installation5 - Very important4 - Important3 - Moderately important4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P010: Insufficient external financial support and funding for project activities5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P010: Economic crisis3 - Moderately important4 - Important4 - Important3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant
      C1P010: Risk and uncertainty4 - Important3 - Moderately important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
      C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P010: Limited access to capital and cost disincentives4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P011: Energy price distortion3 - Moderately important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Planning/leading
      • Planning/leading
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading
      • Planning/leading,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Analyst, ICT and Big Data
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading
      • Construction/implementation
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading
      • Planning/leading
      • Monitoring/operation/management
      C1P012: Urban Services providers
      • Construction/implementation
      • Planning/leading
      • Construction/implementation
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Real Estate developers
      • None
      • Planning/leading
      • Planning/leading
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Design/Construction companies
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation
      C1P012: End‐users/Occupants/Energy Citizens
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation
      • Design/demand aggregation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      • Planning/leading
      • Design/demand aggregation
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)