Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Umeå, Ålidhem district
Borlänge, Rymdgatan’s Residential Portfolio
Uden, Loopkantstraat
Kladno, Sletiště (Sport Area), PED Winter Stadium
City of Espoo, Espoonlahti district, Lippulaiva block
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
Vantaa, Aviapolis
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaUmeå, Ålidhem districtBorlänge, Rymdgatan’s Residential PortfolioUden, LoopkantstraatKladno, Sletiště (Sport Area), PED Winter StadiumCity of Espoo, Espoonlahti district, Lippulaiva blockAalborg East, Aalborg Municipality, Region of Northern Jutland, DenmarkVantaa, Aviapolis
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnononoyesnoyes
PED relevant case studyyesnoyesyesyesnoyesyes
PED Lab.yesnononononoyesyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesnoyesyes
Annual energy surplusnonoyesyesyesnonono
Energy communitynonoyesnoyesnonono
Circularityyesnonononononoyes
Air quality and urban comfortnononononononono
Electrificationyesnoyesyesyesnonono
Net-zero energy costnononononononono
Net-zero emissionyesnonononononono
Self-sufficiency (energy autonomous)nononononononono
Maximise self-sufficiencyyesnoyesnonoyesyesno
Othernononononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhasePlanning PhaseIn operationPlanning PhaseIn operationPlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date02/1610/2206/17202206/1811/2201/23
A1P007: End Date
A1P007: End date07/2209/2505/2303/2211/2512/27
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
  • Open data city platform – different dashboards,
  • General statistical datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • GIS open datasets
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Umeå Energi
    • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
    • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
    • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
    • https://www.synikia.eu/no/bibliotek/
    • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
    • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
    • www.lippulaiva.fi
    A1P011: Geographic coordinates
    X Coordinate (longitude):26.72273720.263015.3944955.619114.0929624.654310.00724.958821
    Y Coordinate (latitude):58.38071363.825860.48660951.660650.1371560.149157.04102860.305488
    A1P012: Country
    A1P012: CountryEstoniaSwedenSwedenNetherlandsCzech RepublicFinlandDenmarkFinland
    A1P013: City
    A1P013: CityTartuUmeåBorlängeUdenKladnoEspooAalborgVantaa
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).DfbDfbDsbCfbCfbDfbDfbDfb
    A1P015: District boundary
    A1P015: District boundaryFunctionalGeographicGeographicGeographicGeographicGeographicVirtualGeographic
    OtherV1* (ca 8 buildings)
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:PrivatePublicMixedPrivateMixedPrivatePublicMixed
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerSingle OwnerSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED1810189
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]352174200037002360112000
    A1P020: Total ground area
    A1P020: Total ground area [m²]7931445200099453860165000313080003881000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area01010100
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estateyesnonoyesyesyesnoyes
    A1P022a: Add the value in EUR if available [EUR]65000007804440
    A1P022b: Financing - PRIVATE - ESCO schemenonononoyesnonono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernononononononoyes
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingyesnononoyesnonono
    A1P022d: Add the value in EUR if available [EUR]4000000
    A1P022e: Financing - PUBLIC - National fundingyesnonononononono
    A1P022e: Add the value in EUR if available [EUR]8000000
    A1P022f: Financing - PUBLIC - Regional fundingnononononononono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesnonoyes
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernononononononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnonononoyesyesnoyes
    A1P022i: Add the value in EUR if available [EUR]308875
    A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesnoyesno
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Positive externalities
    • Positive externalities,
    • Boosting local businesses,
    • Boosting consumption of local and sustainable products
    • Job creation,
    • Positive externalities
    • Job creation,
    • Positive externalities,
    • Boosting local businesses
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production
    A1P023: Other
    A1P024: More comments:
    A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVs
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]257804440
    Contact person for general enquiries
    A1P026: NameJaanus TammGireesh NairJingchun ShenTonje Healey TrulsrudDavid ŠkorňaElina EkelundKristian OlesenEira Linko
    A1P027: OrganizationTartu City GovernmentUmea MunicipalityHögskolan DalarnaNorwegian University of Science and Technology (NTNU)Město KladnoCitycon OyjAalborg UniversityCity of Vantaa
    A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesSME / IndustryResearch Center / UniversityMunicipality / Public Bodies
    A1P028: Other
    A1P029: EmailJaanus.tamm@tartu.eegireesh.nair@umu.sejih@du.setonje.h.trulsrud@ntnu.nodavid.skorna@mestokladno.czElina.ekelund@citycon.comKristian@plan.aau.dkeira.linko@vantaa.fi
    Contact person for other special topics
    A1P030: NameKaspar AlevXingxing ZhangMichal KuzmičElina EkelundAlex Søgaard Moreno
    A1P031: EmailKaspar.alev@tartu.eexza@du.semichal.kuzmic@cvut.czElina.ekelund@citycon.comasm@aalborg.dk
    Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Waste management,
    • Indoor air quality,
    • Construction materials
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Construction materials,
    • Other
    A2P001: Other
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Simulation tools: City Energy Analyst and PolysunLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsTrnsys, PV modelling tools, CADEnergy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricStakeholder engagement, expert energy system analysis, future scenariosPilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, cooling
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoNoNoYesNoYesNoNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceYesYesYesNoYesYesNo
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationnot includedNot yet included.Mobility is not included in the energy model.Large combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.The calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.10.67770.1481.45.5218
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]00.036560.1090.35.8148
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]0
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesyesnoyesyesyesnoyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.2490.0581.10.54
    A2P011: Windnonononononoyesno
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydronononononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnononononononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnononononononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnonoyesnonononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
    A2P011: Othernonononononoyesno
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalnononoyesnoyesnoyes
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
    A2P012: Solar Thermalyesnonononononono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
    A2P012: Biomass_heatnononononononono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPnonononoyesnoyesyes
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]1.7300
    A2P012: Biomass_peat_heatnononononononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnonoyesnonononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
    A2P012: Biomass_firewood_thnononononononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernononononononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notes*Annual energy use below is presentedin primary energy consumptionWaste heat from cooling the ice rink.Very little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]6.10.3180.1942.111.3620
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]0.20550.03685.76399
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnononononononono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Coalnononononononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Oilnononononononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
    A2P017: Othernonoyesnononoyesno
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0300
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnononononononoyes
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnononononononoyes
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydronononononononoyes
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnononononononoyes
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnononononononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnononononononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernonoyesnonoyesnono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.1875.26
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnononononononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnononononononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnoyesnononononoyes
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnoyesnononononoyes
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnononononononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnononononononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnononononononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernonoyesnonononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary000.53839572192513001.053231939163500
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]9806.93-0.00043-1040
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & SecuritynonePersonal Safety
    A2P022: Healththermal comfort diagramHealthy community
    A2P022: Educationnone
    A2P022: MobilitynoneSustainable mobility
    A2P022: EnergyEnergynormalized CO2/GHG & Energy intensityNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionEnergy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balanceOn-site energy ratio
    A2P022: Water
    A2P022: Economic developmentcost of excess emissionscapital costs, operational cots, overall economic performance (5 KPIs)Investment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROI
    A2P022: Housing and Communitydemographic composition, diverse community, social cohesion
    A2P022: Waste
    A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesyesyesyesyesyesyes
    A2P023: Solar thermal collectorsnonoyesnononoyesno
    A2P023: Wind Turbinesnononononononono
    A2P023: Geothermal energy systemnonoyesyesnoyesnoyes
    A2P023: Waste heat recoverynonoyesnoyesyesyesyes
    A2P023: Waste to energynonononononoyesyes
    A2P023: Polygenerationnononononononoyes
    A2P023: Co-generationnononononononono
    A2P023: Heat Pumpnonoyesyesyesnoyesyes
    A2P023: Hydrogennononononononono
    A2P023: Hydropower plantnononononononono
    A2P023: Biomassyesnononononoyesyes
    A2P023: Biogasyesnonononononono
    A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesnoyesyesnoyes
    A2P024: Energy management systemyesnonoyesyesyesyesyes
    A2P024: Demand-side managementnoyesnoyesyesnoyesyes
    A2P024: Smart electricity gridnononononoyesyesyes
    A2P024: Thermal Storagenonoyesnonoyesyesyes
    A2P024: Electric Storagenononononoyesyesyes
    A2P024: District Heating and Coolingyesnoyesnoyesnoyesyes
    A2P024: Smart metering and demand-responsive control systemsnononoyesyesnoyesyes
    A2P024: P2P – buildingsnononononononono
    A2P024: OtherDistrict HeatingThe technological solutions can vary within the PED Lab area and will be specified case by case.
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingyesyesyesnoyesnoyesno
    A2P025: Energy efficiency measures in historic buildingsnononononononono
    A2P025: High-performance new buildingsnononoyesnoyesnoyes
    A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonononoyesnono
    A2P025: Urban data platformsyesnononoyesnonono
    A2P025: Mobile applications for citizensyesnonononononono
    A2P025: Building services (HVAC & Lighting)nonoyesyesyesyesnoyes
    A2P025: Smart irrigationnononononononono
    A2P025: Digital tracking for waste disposalnononononononono
    A2P025: Smart surveillanceyesnononononoyesno
    A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)yesnonononononoyes
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonononoyesnoyes
    A2P026: e-Mobilityyesnonononoyesnoyes
    A2P026: Soft mobility infrastructures and last mile solutionsnononononononoyes
    A2P026: Car-free areanononononononono
    A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notes
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesNoYesYesYesYesYes
    A2P028: If yes, please specify and/or enter notesEPC = 0, energy neutral buildingNational standards apply.Energy Performance Certificate => Energy efficiency class B (2018 version)
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoNoNoYesNo
    A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.)
    • Smart cities strategies,
    • Energy master planning (SECAP, etc.),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Smart cities strategies,
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Carbon neutrality 2050Relevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.Reduction of 1018000 tons CO2 by 2030Carbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Biogas,
    • Hydrogen
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps,
    • Biogas
    A3P003: OtherNA
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.Decarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.For Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Existing incentives
    • Open data business models,
    • Life Cycle Cost,
    • Circular economy models,
    • Local trading
    • Innovative business models,
    • PPP models,
    • Existing incentives
    • Innovative business models
    • Life Cycle Cost,
    • Circular economy models
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Circular economy models
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Social incentives,
    • Quality of Life,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement
    • Strategies towards (local) community-building,
    • Behavioural Change / End-users engagement,
    • Social incentives,
    • Affordability,
    • Digital Inclusion
    • Co-creation / Citizen engagement strategies,
    • Social incentives,
    • Quality of Life
    • Strategies towards (local) community-building,
    • Affordability
    • Co-creation / Citizen engagement strategies
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Policy Forums,
    • Citizen/owner involvement in planning and maintenance
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Quality of Life,
    • Strategies towards social mix,
    • Affordability,
    • Prevention of energy poverty,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • City Vision 2050,
    • SECAP Updates
    • District Energy plans
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • District Energy plans,
    • Building / district Certification
    • Strategic urban planning,
    • City Vision 2050,
    • SECAP Updates
    • Building / district Certification
    • Strategic urban planning,
    • District Energy plans
    • Strategic urban planning,
    • SECAP Updates
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Net zero carbon footprint,
    • Carbon-free,
    • Pollutants Reduction,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    • Carbon-free
    • Low Emission Zone,
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Sustainable Urban drainage systems (SUDS)
    • Net zero carbon footprint
    • Other
    • Energy Neutral,
    • Net zero carbon footprint
    • Net zero carbon footprint,
    • Life Cycle approach,
    • Greening strategies,
    • Nature Based Solutions (NBS)
    A3P009: OtherCarbon free in terms of energy
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspects- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021Current energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their own
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.Onsite Energy Ratio > 1Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.The large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.Strategic, economic- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersThe area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaUrban areaUrban areaSuburban areaUrban area
    B1P004: Type of district
    B2P004: Type of district
    • Renovation
    • Renovation
    • Renovation
    • New construction
    • New construction,
    • Renovation
    • New construction
    • Renovation
    • New construction,
    • Renovation
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Retrofitting Area
    • Retrofitting Area
    • Re-use / Transformation Area,
    • Retrofitting Area
    • New Development
    • New Development,
    • Retrofitting Area
    • Re-use / Transformation Area,
    • New Development
    • Retrofitting Area
    • Re-use / Transformation Area,
    • New Development
    B1P006: Year of construction
    B1P006: Year of construction19902022
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential450010016.931
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential100
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential6
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential6
    B1P011: Population density before intervention
    B1P011: Population density before intervention00000000
    B1P012: Population density after intervention
    B1P012: Population density after intervention000.01065862242332800000
    B1P013: Building and Land Use before intervention
    B1P013: Residentialyesyesyesnoyesnonoyes
    B1P013 - Residential: Specify the sqm [m²]4360
    B1P013: Officenonononoyesnonoyes
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilitynononononononoyes
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialyesnonononoyesnoyes
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnononononononoyes
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasyesnonononoyesnono
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalyesnononoyesnonoyes
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnononononononoyes
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernonoyesnonononono
    B1P013 - Other: Specify the sqm [m²]706
    B1P014: Building and Land Use after intervention
    B1P014: Residentialyesyesyesyesyesyesnoyes
    B1P014 - Residential: Specify the sqm [m²]43602394
    B1P014: Officenonononoyesnonoyes
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynononononononoyes
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialyesnonononoyesnoyes
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnononononononoyes
    B1P014 - Institutional: Specify the sqm [m²]
    B1P014: Natural areasyesnonononononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalyesnononoyesnonoyes
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnononononononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernonoyesnonononono
    B1P014 - Other: Specify the sqm [m²]706
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definitionAn ongoing process and dialogue with local stakeholders to determine the future development of the area.Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
    B2P002: Installation life time
    B2P002: Installation life timeNo new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.
    B2P003: Scale of action
    B2P003: ScaleDistrictDistrictDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installationKristian OlesenThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Strategic
    • Civic
    • Strategic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipalityResearch center/UniversityMunicipality
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Citizens, public, NGO
    • Academia,
    • Private
    • Academia,
    • Private,
    • Industrial,
    • Citizens, public, NGO
    B2P009: Other
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Prosumers,
    • Renewable generation,
    • Energy networks,
    • Lighting,
    • E-mobility,
    • Green areas,
    • User interaction/participation,
    • Information and Communication Technologies (ICT)
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Monitoring and evaluation infrastructure,
    • Pivoting and risk-mitigating measures
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    • Available data,
    • Life Cycle Analysis
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy,
    • Sustainability,
    • Social,
    • Economical / Financial
    • Energy,
    • Environmental,
    • Social,
    • Economical / Financial
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    • Social models
    • Energy modelling
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important2 - Slightly important5 - Very important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important
    C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
    C1P001: Storage systems and E-mobility market penetration2 - Slightly important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important3 - Moderately important5 - Very important
    C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
    C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important5 - Very important4 - Important3 - Moderately important
    C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important4 - Important2 - Slightly important4 - Important
    C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important3 - Moderately important
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
    C1P001: Social acceptance (top-down)4 - Important1 - Unimportant5 - Very important5 - Very important2 - Slightly important2 - Slightly important4 - Important4 - Important
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant4 - Important4 - Important2 - Slightly important2 - Slightly important4 - Important5 - Very important
    C1P001: Presence of integrated urban strategies and plans5 - Very important1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important
    C1P001: Multidisciplinary approaches available for systemic integration4 - Important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant5 - Very important4 - Important
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important
    C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important2 - Slightly important5 - Very important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important
    C1P001: Any other UNLOCKING FACTORS (if any)Collaboration with the local partnersReal-estate market situation
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important5 - Very important2 - Slightly important4 - Important
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important4 - Important5 - Very important
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important
    C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
    C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important4 - Important
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important
    C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important
    C1P002: Energy autonomy/independence4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
    C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important4 - Important4 - Important
    C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important5 - Very important
    C1P003: Lack of public participation1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
    C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant
    C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
    C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P003: Fragmented and or complex ownership structure5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important
    C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important2 - Slightly important
    C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipalityFragmented financial support; lack of experimental budget for complex projects, etc.
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important
    C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
    C1P005: Regulatory instability3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
    C1P005: Non-effective regulations4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important
    C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important3 - Moderately important
    C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important2 - Slightly important
    C1P005: Insufficient or insecure financial incentives3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important4 - Important5 - Very important
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
    C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers2 - Slightly important
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important3 - Moderately important
    C1P007: Deficient planning1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
    C1P007: Retrofitting work in dwellings in occupied state5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant
    C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
    C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
    C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Grid congestion, grid instability2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important
    C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
    C1P007: Difficult definition of system boundaries5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transition
    C1P008: Social and Cultural barriers
    C1P008: Inertia4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
    C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important3 - Moderately important
    C1P008: Low acceptance of new projects and technologies2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant
    C1P008: Lack of trust beyond social network2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Rebound effect3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
    C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important
    C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important
    C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important
    C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important4 - Important
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant
    C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important2 - Slightly important
    C1P009: High costs of design, material, construction, and installation5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important2 - Slightly important4 - Important3 - Moderately important
    C1P010: Insufficient external financial support and funding for project activities5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important2 - Slightly important
    C1P010: Economic crisis3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
    C1P010: Risk and uncertainty4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important3 - Moderately important5 - Very important4 - Important
    C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important
    C1P010: Limited access to capital and cost disincentives4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important2 - Slightly important
    C1P011: Energy price distortion3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important2 - Slightly important
    C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Planning/leading
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation
    • Design/demand aggregation
    C1P012: Financial/Funding
    • Design/demand aggregation,
    • Construction/implementation
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • Planning/leading,
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Monitoring/operation/management
    • Design/demand aggregation
    C1P012: Business process management
    • Planning/leading
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Urban Services providers
    • Construction/implementation
    • None
    • Design/demand aggregation
    • None
    C1P012: Real Estate developers
    • None
    • Design/demand aggregation
    • Planning/leading,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Design/Construction companies
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • None
    • Planning/leading,
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    C1P012: Social/Civil Society/NGOs
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Construction/implementation
    C1P012: Other
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)