Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Uncompare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Lund, Brunnshög district
Jacobs Borchs Gate, Drammen
Barcelona, Santa Coloma de Gramenet
Amsterdam, Buiksloterham PED
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaLund, Brunnshög districtJacobs Borchs Gate, DrammenBarcelona, Santa Coloma de GramenetAmsterdam, Buiksloterham PED
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnoyesyes
PED relevant case studyyesnoyesnono
PED Lab.yesnononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyes
Annual energy surplusnoyesnoyesyes
Energy communitynoyesnonoyes
Circularityyesyesnonoyes
Air quality and urban comfortnoyesnoyesno
Electrificationyesyesnonoyes
Net-zero energy costnonononono
Net-zero emissionyesyesyesnoyes
Self-sufficiency (energy autonomous)nonononono
Maximise self-sufficiencyyesnononono
Othernoyesyesnono
Other (A1P004)Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;Energy efficient; Carbon-free; A drive for both non fossil fuel and non-greenhouse gas working fluids plus maximum efficiency led to deploying ammonia fjord source heat pumps
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseIn operationCompletedImplementation PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date02/16201501/0911/19
A1P007: End Date
A1P007: End date07/22204012/1210/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
  • Monitoring data available within the districts
A1P009: OtherGIS open dataset is under constructionhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    A1P011: Geographic coordinates
    X Coordinate (longitude):26.72273713.23246940076959910.2306032.164.9041
    Y Coordinate (latitude):58.38071355.7198979220719359.74133441.3952.3676
    A1P012: Country
    A1P012: CountryEstoniaSwedenNorwaySpainNetherlands
    A1P013: City
    A1P013: CityTartuLundDrammenBarcelonaAmsterdam
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).DfbDfbDfbCsaCfb
    A1P015: District boundary
    A1P015: District boundaryFunctionalGeographicGeographicFunctional
    Other
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:PrivatePublicPrivatePrivateMixed
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED182001660
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]3521715000002154228500
    A1P020: Total ground area
    A1P020: Total ground area [m²]79314415000001000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area01000
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estateyesyesnonoyes
    A1P022a: Add the value in EUR if available [EUR]650000099999999
    A1P022b: Financing - PRIVATE - ESCO schemenonononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernonoyesnono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingyesyesnonono
    A1P022d: Add the value in EUR if available [EUR]40000001000000
    A1P022e: Financing - PUBLIC - National fundingyesyesnonono
    A1P022e: Add the value in EUR if available [EUR]800000030000000
    A1P022f: Financing - PUBLIC - Regional fundingnoyesnonono
    A1P022f: Add the value in EUR if available [EUR]30000000
    A1P022g: Financing - PUBLIC - Municipal fundingnoyesnonono
    A1P022g: Add the value in EUR if available [EUR]180000000
    A1P022h: Financing - PUBLIC - Othernonononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnoyesnoyesyes
    A1P022i: Add the value in EUR if available [EUR]2000000503903
    A1P022j: Financing - RESEARCH FUNDING - Nationalnonononono
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernonononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: Other
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Positive externalities
    • Other
    • Positive externalities
    • Boosting local businesses,
    • Boosting local and sustainable production,
    • Boosting consumption of local and sustainable products
    A1P023: OtherWorld class sustainable living and research environments
    A1P024: More comments:
    A1P024: More comments:
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]25
    Contact person for general enquiries
    A1P026: NameJaanus TammMarkus PaulssonChristoph GollnerJaume SalomOmar Shafqat
    A1P027: OrganizationTartu City GovernmentCity of LundFFGIRECAmsterdam University of Applied Sciences
    A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / University
    A1P028: Other
    A1P029: EmailJaanus.tamm@tartu.eemarkus.paulsson@lund.sechristoph.gollner@ffg.atjsalom@irec.cato.shafqat@hva.nl
    Contact person for other special topics
    A1P030: NameKaspar AlevEva DalmanJoan Estrada AliberasOmar Shafqat
    A1P031: EmailKaspar.alev@tartu.eeeva.dalman@lund.sej_estrada@gencat.cato.shafqat@hva.nl
    Pursuant to the General Data Protection RegulationYesYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Indoor air quality
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies,
    • Water use,
    • Waste management,
    • Construction materials,
    • Other
    • Energy efficiency
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Water use,
    • Waste management,
    • Construction materials
    A2P001: OtherWalkability and biking
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.- Integrated energy design process of both active and passive elements - Multicriteria analysis of energy system, environmental variables, indoor comfort and economic parameters - Energy modelling - Predictive control to optimize performance within the neighbourhoodCity vision, Innovation Ateliers
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoNoYes
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceYesYesNoNo
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoYesNoNo
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationToday electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.125
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]30
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesyesnoyesyes
    A2P011: PV - specify production in GWh/annum [GWh/annum]0.05
    A2P011: Windnoyesnonono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydrononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnonononoyes
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnonononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnonononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernononoyesno
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalnonononoyes
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Solar Thermalyesnononono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
    A2P012: Biomass_heatnonononoyes
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPnoyesnonoyes
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
    A2P012: Biomass_peat_heatnonononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnonononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnonononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernonononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notes-Rooftop PV 39.1 kWp -4 pipe air-to-water heat pump to cover heating and cooling
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]0.033
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]0.030
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnonononoyes
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Coalnonononoyes
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Oilnonononoyes
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Othernonononono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnoyesnonoyes
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
    A2P018: Windnoyesnonoyes
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydronoyesnonoyes
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnoyesnonoyes
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnonononoyes
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnonononoyes
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernonononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnonononoyes
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnonononoyes
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnonononoyes
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnonononoyes
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnonononoyes
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnonononoyes
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnonononoyes
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernonononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary00000
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]980250
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Security
    A2P022: HealthCarbon Dioxide (CO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
    A2P022: Education
    A2P022: MobilityMaximum 1/3 transport with car
    A2P022: EnergyLocal energy production 150% of energy needNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissions
    A2P022: Water
    A2P022: Economic development: Investment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison
    A2P022: Housing and Community50% rental apartments and 50% owner apartments: Access to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness
    A2P022: Waste
    A2P022: Other
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsyesyesnoyesyes
    A2P023: Solar thermal collectorsnoyesnonono
    A2P023: Wind Turbinesnoyesnonono
    A2P023: Geothermal energy systemnoyesnonoyes
    A2P023: Waste heat recoverynoyesnonoyes
    A2P023: Waste to energynonononoyes
    A2P023: Polygenerationnoyesnonono
    A2P023: Co-generationnonononono
    A2P023: Heat Pumpnoyesyesyesyes
    A2P023: Hydrogennoyesnonono
    A2P023: Hydropower plantnonononono
    A2P023: Biomassyesnononoyes
    A2P023: Biogasyesnononoyes
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnonoyes
    A2P024: Energy management systemyesyesnoyesyes
    A2P024: Demand-side managementnoyesnoyesyes
    A2P024: Smart electricity gridnoyesnonoyes
    A2P024: Thermal Storagenoyesnonoyes
    A2P024: Electric Storagenoyesnonoyes
    A2P024: District Heating and Coolingyesyesyesnoyes
    A2P024: Smart metering and demand-responsive control systemsnoyesnonoyes
    A2P024: P2P – buildingsnonononoyes
    A2P024: Other
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingyesnononoyes
    A2P025: Energy efficiency measures in historic buildingsnonononoyes
    A2P025: High-performance new buildingsnoyesnoyesyes
    A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesnonoyes
    A2P025: Urban data platformsyesyesnonoyes
    A2P025: Mobile applications for citizensyesnononoyes
    A2P025: Building services (HVAC & Lighting)noyesnoyesyes
    A2P025: Smart irrigationnonononoyes
    A2P025: Digital tracking for waste disposalnoyesnonoyes
    A2P025: Smart surveillanceyesnononono
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)yesnononoyes
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesyesnonoyes
    A2P026: e-Mobilityyesyesnonoyes
    A2P026: Soft mobility infrastructures and last mile solutionsnoyesnonoyes
    A2P026: Car-free areanoyesnonoyes
    A2P026: Other
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notesWalkability
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesYesYes
    A2P028: If yes, please specify and/or enter notesMiljöbyggnad silver/guldEnergy Performance Certificate
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoNo
    A2P029: If yes, please specify and/or enter notes
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.)
    • Climate change adaption plan/strategy (e.g. Climate City contract)
    • Smart cities strategies,
    • Energy master planning (SECAP, etc.),
    • New development strategies,
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyCity strategy: Net climate neutrality 2030
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Biogas,
    • Hydrogen
    • Electrification of Heating System based on Heat Pumps
    • Electrification of Heating System based on Heat Pumps,
    • Electrification of Cooking Methods,
    • Biogas,
    • Hydrogen
    A3P003: OtherNo gas grid in Brunnshög
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesLocal waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviourNeed to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Innovative business models,
    • PPP models,
    • Life Cycle Cost,
    • Existing incentives
    • PPP models,
    • Other
    • Innovative business models,
    • Life Cycle Cost,
    • Circular economy models,
    • Demand management Living Lab,
    • Local trading,
    • Existing incentives
    A3P006: OtherAttractivenes
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Policy Forums,
    • Social incentives,
    • Quality of Life,
    • Prevention of energy poverty,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Quality of Life,
    • Strategies towards social mix
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Behavioural Change / End-users engagement,
    • Citizen Social Research,
    • Social incentives,
    • Quality of Life,
    • Digital Inclusion,
    • Citizen/owner involvement in planning and maintenance,
    • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • City Vision 2050,
    • SECAP Updates
    • Strategic urban planning,
    • Digital twinning and visual 3D models,
    • District Energy plans,
    • City Vision 2050,
    • SECAP Updates,
    • Building / district Certification
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Net zero carbon footprint,
    • Carbon-free,
    • Pollutants Reduction,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    • Net zero carbon footprint,
    • Greening strategies,
    • Sustainable Urban drainage systems (SUDS),
    • Nature Based Solutions (NBS)
    • Energy Neutral,
    • Carbon-free
    • Energy Neutral,
    • Life Cycle approach
    A3P009: Other
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsThe municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.Regulatory sandbox
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionVision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.Functional PED
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentThe aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.Brown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaUrban areaUrban areaSuburban areaUrban areaUrban area
    B1P004: Type of district
    B2P004: Type of district
    • Renovation
    • New construction
    • Renovation
    • New construction
    • New construction
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Retrofitting Area
    • New Development
    • Retrofitting Area
    • New Development
    • New Development
    B1P006: Year of construction
    B1P006: Year of construction
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential45000
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential18000
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential2000
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential22000
    B1P011: Population density before intervention
    B1P011: Population density before intervention00000
    B1P012: Population density after intervention
    B1P012: Population density after intervention00.026666666666667000
    B1P013: Building and Land Use before intervention
    B1P013: Residentialyesnonoyesno
    B1P013 - Residential: Specify the sqm [m²]
    B1P013: Officenoyesnonono
    B1P013 - Office: Specify the sqm [m²]60000
    B1P013: Industry and Utilitynonononoyes
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialyesnononono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnonononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasyesyesnonono
    B1P013 - Natural areas: Specify the sqm [m²]2000000
    B1P013: Recreationalyesnononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnonononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernoyesnonono
    B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
    B1P014: Building and Land Use after intervention
    B1P014: Residentialyesyesnoyesyes
    B1P014 - Residential: Specify the sqm [m²]600000
    B1P014: Officenoyesnonoyes
    B1P014 - Office: Specify the sqm [m²]650000
    B1P014: Industry and Utilitynonononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialyesnononoyes
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnoyesnonono
    B1P014 - Institutional: Specify the sqm [m²]50000
    B1P014: Natural areasyesnononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalyesyesnonoyes
    B1P014 - Recreational: Specify the sqm [m²]400000
    B1P014: Dismissed areasnonononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernonononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definition
    B2P002: Installation life time
    B2P002: Installation life time
    B2P003: Scale of action
    B2P003: ScaleDistrictDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installation
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?No
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Strategic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabMunicipality
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private,
    • Industrial,
    • Citizens, public, NGO
    B2P009: Other
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Prosumers,
    • Renewable generation,
    • Energy networks,
    • Lighting,
    • E-mobility,
    • Green areas,
    • User interaction/participation,
    • Information and Communication Technologies (ICT)
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Monitoring and evaluation infrastructure,
    • Pivoting and risk-mitigating measures
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    • Available data,
    • Life Cycle Analysis
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy,
    • Sustainability,
    • Social,
    • Economical / Financial
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    • Social models
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
    C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P001: Storage systems and E-mobility market penetration2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P001: Decreasing costs of innovative materials3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P001: The ability to predict Multiple Benefits3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P001: The ability to predict the distribution of benefits and impacts4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P001: Social acceptance (top-down)4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P001: Presence of integrated urban strategies and plans5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P001: Multidisciplinary approaches available for systemic integration4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
    C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
    C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P002: Territorial and market attractiveness3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P002: Energy autonomy/independence4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
    C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Lack of public participation1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003:Long and complex procedures for authorization of project activities5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Fragmented and or complex ownership structure5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P005: Regulatory instability3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P005: Non-effective regulations4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Insufficient or insecure financial incentives3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
    C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers?
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Deficient planning1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P007: Retrofitting work in dwellings in occupied state5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Lack of well-defined process3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
    C1P007: Grid congestion, grid instability2 - Slightly important4 - Important1 - Unimportant1 - Unimportant5 - Very important
    C1P007: Negative effects of project intervention on the natural environment1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Difficult definition of system boundaries5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Low acceptance of new projects and technologies2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Lack of trust beyond social network2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Rebound effect3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Exclusion of socially disadvantaged groups2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P009: Lack of awareness among authorities2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
    C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P010: Insufficient external financial support and funding for project activities5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Economic crisis3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P010: Risk and uncertainty4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
    C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P010: Limited access to capital and cost disincentives4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P011: Energy price distortion3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
    C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Planning/leading,
    • Monitoring/operation/management
    • Monitoring/operation/management
    C1P012: Research & Innovation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation
    • Monitoring/operation/management
    C1P012: Financial/Funding
    • Design/demand aggregation,
    • Construction/implementation
    • Construction/implementation
    C1P012: Analyst, ICT and Big Data
    • Planning/leading,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Construction/implementation
    C1P012: Business process management
    • Planning/leading
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: Urban Services providers
    • Construction/implementation
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Real Estate developers
    • None
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    C1P012: Design/Construction companies
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation
    • Design/demand aggregation,
    • Construction/implementation
    C1P012: End‐users/Occupants/Energy Citizens
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Monitoring/operation/management
    • Design/demand aggregation
    C1P012: Social/Civil Society/NGOs
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • None
    C1P012: Industry/SME/eCommerce
    • Planning/leading,
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Design/demand aggregation,
    • Construction/implementation,
    • Monitoring/operation/management
    • Construction/implementation
    C1P012: Other
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)