Name | Project | Type | Compare |
---|---|---|---|
Tartu, Estonia | V2G-QUESTS | PED Relevant Case Study | Compare |
Utrecht, the Netherlands (District of Kanaleneiland) | V2G-QUESTS | PED Relevant Case Study | Compare |
Aveiro, Portugal | V2G-QUESTS | PED Relevant Case Study | Compare |
Győr Geothermal District Heating Project | PED Relevant Case Study | Compare | |
Jacobs Borchs Gate, Drammen | PED Relevant Case Study | Compare | |
Dietenbach, Freiburg im Breisgau | PED Relevant Case Study | Compare | |
SmartEnCity, Lecce | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study | Compare |
STARDUST, Trento | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study / PED Lab | Compare |
Klimatkontrakt Hyllie, Malmö | PED Relevant Case Study | Compare | |
EnStadt:Pfaff, Kaiserslautern | PED Relevant Case Study / PED Lab | Compare | |
mySMARTlife, Helsinki | PED Relevant Case Study | Compare | |
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze | PED Relevant Case Study | Compare | |
Sinfonia, Bolzano | PED Relevant Case Study | Compare | |
Hunziker Areal, Zürich | PED Relevant Case Study | Compare | |
Hammarby Sjöstad 2.0, | PED Relevant Case Study | Compare | |
Sharing Cities, Milano | PED Relevant Case Study | Compare | |
District Heating Pozo Barredo, Mieres | PED Relevant Case Study | Compare | |
Cityfied (demo Linero), Lund | PED Relevant Case Study | Compare | |
Smart Otaniemi, Espoo | PED Relevant Case Study / PED Lab | Compare | |
Zukunftsquartier, Vienna | PED Case Study | Compare | |
Santa Chiara Open Lab, Trento | PED Case Study | Compare | |
Barrio La Pinada, Paterna | PED Case Study / PED Lab | Compare | |
Zero Village Bergen (ZVB) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Võru +CityxChange | PED Case Study | Compare | |
NTNU Campus within the Knowledge Axis, Trondheim | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Furuset project, Oslo | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Laser Valley – Land of Lights | PED Case Study | Compare | |
Ydalir project | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
NyBy – Ny Flyplass (New City – New Airport) | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fornebu, Bærum | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Case Study | Compare |
Fleuraye west, Carquefou | PED Case Study | Compare | |
Smart Energy Åland | PED Case Study | Compare | |
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Compare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Uncompare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Compare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Compare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Uncompare | |
Graz, Reininghausgründe | PED Case Study | Uncompare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Compare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Uncompare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Uncompare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Uncompare |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Uncompare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Title | Tartu, City centre area | Lund, Brunnshög district | Groningen, PED North | Innsbruck, Campagne-Areal | Kladno, Sletiště (Sport Area), PED Winter Stadium | Istanbul, Ozyegin University Campus | Barcelona, SEILAB & Energy SmartLab | Graz, Reininghausgründe |
---|---|---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | ||||||||
A1P001: Name of the PED case study / PED Lab | Tartu, City centre area | Lund, Brunnshög district | Groningen, PED North | Innsbruck, Campagne-Areal | Kladno, Sletiště (Sport Area), PED Winter Stadium | Istanbul, Ozyegin University Campus | Barcelona, SEILAB & Energy SmartLab | Graz, Reininghausgründe |
A1P002: Map / aerial view / photos / graphic details / leaflet | ||||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
|
|
| |||||
A1P003: Categorisation of the PED site | ||||||||
PED case study | no | yes | no | no | no | no | no | yes |
PED relevant case study | yes | no | no | yes | yes | yes | no | no |
PED Lab. | yes | no | yes | no | no | no | yes | no |
A1P004: Targets of the PED case study / PED Lab | ||||||||
Climate neutrality | yes | yes | yes | yes | yes | yes | no | yes |
Annual energy surplus | no | yes | yes | no | yes | no | no | no |
Energy community | no | yes | yes | no | yes | no | yes | no |
Circularity | yes | yes | yes | no | no | no | no | no |
Air quality and urban comfort | no | yes | no | no | no | yes | no | no |
Electrification | yes | yes | no | no | yes | yes | yes | no |
Net-zero energy cost | no | no | no | no | no | no | no | no |
Net-zero emission | yes | yes | yes | yes | no | no | yes | no |
Self-sufficiency (energy autonomous) | no | no | no | no | no | no | yes | no |
Maximise self-sufficiency | yes | no | no | no | no | no | no | no |
Other | no | yes | no | no | no | yes | yes | no |
Other (A1P004) | Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030; | almost nZEB district | Green IT | |||||
A1P005: Phase of the PED case study / PED Lab | ||||||||
A1P005: Project Phase of your case study/PED Lab | Implementation Phase | In operation | Implementation Phase | Completed | Planning Phase | Implementation Phase | In operation | Implementation Phase |
A1P006: Start Date | ||||||||
A1P006: Start date | 02/16 | 2015 | 12/18 | 04/16 | 2022 | 10/24 | 01/2011 | 2019 |
A1P007: End Date | ||||||||
A1P007: End date | 07/22 | 2040 | 12/23 | 04/22 | 10/28 | 02/2013 | 2025 | |
A1P008: Reference Project | ||||||||
A1P008: Reference Project | ||||||||
A1P009: Data availability | ||||||||
A1P009: Data availability |
|
|
|
|
|
|
| |
A1P009: Other | GIS open dataset is under construction | |||||||
A1P010: Sources | ||||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
|
|
| |||||
A1P011: Geographic coordinates | ||||||||
X Coordinate (longitude): | 26.722737 | 13.232469400769599 | 6.535121 | 11.424346738140256 | 14.09296 | 29.258300 | 2.1 | 15.407440 |
Y Coordinate (latitude): | 58.380713 | 55.71989792207193 | 53.234846 | 47.271470786729104 | 50.13715 | 41.030600 | 41.3 | 47.0607 |
A1P012: Country | ||||||||
A1P012: Country | Estonia | Sweden | Netherlands | Austria | Czech Republic | Turkey | Spain | Austria |
A1P013: City | ||||||||
A1P013: City | Tartu | Lund | Groningen | Innsbruck | Kladno | Istanbul | Barcelona and Tarragona | Graz |
A1P014: Climate Zone (Köppen Geiger classification) | ||||||||
A1P014: Climate Zone (Köppen Geiger classification). | Dfb | Dfb | Cfa | Dfb | Cfb | Cfa | Csa | Dfb |
A1P015: District boundary | ||||||||
A1P015: District boundary | Functional | Geographic | Functional | Geographic | Geographic | Geographic | Virtual | Geographic |
Other | V1* (ca 8 buildings) | |||||||
A1P016: Ownership of the case study/PED Lab | ||||||||
A1P016: Ownership of the case study/PED Lab: | Private | Public | Mixed | Mixed | Mixed | Private | Public | Mixed |
A1P017: Ownership of the land / physical infrastructure | ||||||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Multiple Owners | Multiple Owners | Multiple Owners | Multiple Owners | Single Owner | Single Owner | Multiple Owners |
A1P018: Number of buildings in PED | ||||||||
A1P018: Number of buildings in PED | 18 | 200 | 7 | 4 | 8 | 15 | 0 | 100 |
A1P019: Conditioned space | ||||||||
A1P019: Conditioned space [m²] | 35217 | 1500000 | 1.01 | 22277 | ||||
A1P020: Total ground area | ||||||||
A1P020: Total ground area [m²] | 793144 | 1500000 | 17.132 | 11351 | 285.400 | 1000000 | ||
A1P021: Floor area ratio: Conditioned space / total ground area | ||||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 |
A1P022: Financial schemes | ||||||||
A1P022a: Financing - PRIVATE - Real estate | yes | yes | yes | no | yes | yes | no | yes |
A1P022a: Add the value in EUR if available [EUR] | 6500000 | 99999999 | ||||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | yes | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | ||||||||
A1P022c: Financing - PRIVATE - Other | no | no | yes | no | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | ||||||||
A1P022d: Financing - PUBLIC - EU structural funding | yes | yes | no | no | yes | no | no | no |
A1P022d: Add the value in EUR if available [EUR] | 4000000 | 1000000 | ||||||
A1P022e: Financing - PUBLIC - National funding | yes | yes | yes | no | no | no | no | yes |
A1P022e: Add the value in EUR if available [EUR] | 8000000 | 30000000 | ||||||
A1P022f: Financing - PUBLIC - Regional funding | no | yes | no | no | no | no | no | no |
A1P022f: Add the value in EUR if available [EUR] | 30000000 | |||||||
A1P022g: Financing - PUBLIC - Municipal funding | no | yes | yes | no | yes | no | no | yes |
A1P022g: Add the value in EUR if available [EUR] | 180000000 | |||||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | ||||||||
A1P022i: Financing - RESEARCH FUNDING - EU | no | yes | yes | no | yes | yes | no | no |
A1P022i: Add the value in EUR if available [EUR] | 2000000 | |||||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | no | yes | yes | no | no | no |
A1P022j: Add the value in EUR if available [EUR] | ||||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no | no | no |
A1P022k: Add the value in EUR if available [EUR] | ||||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | ||||||||
A1P022: Other | ||||||||
A1P023: Economic Targets | ||||||||
A1P023: Economic Targets |
|
|
|
|
|
|
|
|
A1P023: Other | World class sustainable living and research environments | Create affordable appartments for the citizens | ||||||
A1P024: More comments: | ||||||||
A1P024: More comments: | Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2 | In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project. | Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning. | ||||
A1P025: Estimated PED case study / PED LAB costs | ||||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | 25 | 1 | ||||||
Contact person for general enquiries | ||||||||
A1P026: Name | Jaanus Tamm | Markus Paulsson | Jasper Tonen, Elisabeth Koops | Georgios Dermentzis | David Škorňa | Cem Keskin | Dr. Jaume Salom, Dra. Cristina Corchero | Katharina Schwarz |
A1P027: Organization | Tartu City Government | City of Lund | Municipality of Groningen | University of Innsbruck | Město Kladno | Center for Energy, Environment and Economy, Ozyegin University | IREC | StadtLABOR, Innovationen für urbane Lebensqualität GmbH |
A1P028: Affiliation | Municipality / Public Bodies | Municipality / Public Bodies | Municipality / Public Bodies | Research Center / University | Municipality / Public Bodies | Research Center / University | Research Center / University | SME / Industry |
A1P028: Other | ||||||||
A1P029: Email | Jaanus.tamm@tartu.ee | markus.paulsson@lund.se | Jasper.tonen@groningen.nl | Georgios.Dermentzis@uibk.ac.at | david.skorna@mestokladno.cz | cem.keskin@ozyegin.edu.tr | Jsalom@irec.cat | katharina.schwarz@stadtlaborgraz.at |
Contact person for other special topics | ||||||||
A1P030: Name | Kaspar Alev | Eva Dalman | Michal Kuzmič | M. Pınar Mengüç | Hans Schnitzer | |||
A1P031: Email | Kaspar.alev@tartu.ee | eva.dalman@lund.se | michal.kuzmic@cvut.cz | pinar.menguc@ozyegin.edu.tr | hans.schnitzer@stadtlaborgraz.at | |||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
A2P001: Fields of application | ||||||||
A2P001: Fields of application |
|
|
|
|
|
|
|
|
A2P001: Other | Walkability and biking | Urban Management; Air Quality | ||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | ||||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Energy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP) | LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions. | Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streams | The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed. | Trnsys, PV modelling tools, CAD | LEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste document | Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35) | Energy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the district |
A2P003: Application of ISO52000 | ||||||||
A2P003: Application of ISO52000 | No | No | No | No | No | Yes | No | |
A2P004: Appliances included in the calculation of the energy balance | ||||||||
A2P004: Appliances included in the calculation of the energy balance | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes |
A2P005: Mobility included in the calculation of the energy balance | ||||||||
A2P005: Mobility included in the calculation of the energy balance | No | Yes | No | No | No | No | Yes | Yes |
A2P006: Description of how mobility is included (or not included) in the calculation | ||||||||
A2P006: Description of how mobility is included (or not included) in the calculation | Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included. | Mobility, till now, is not included in the energy model. | Not yet included. | Not included, the campus is a non car area except emergencies | – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah | - Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets) | ||
A2P007: Annual energy demand in buildings / Thermal demand | ||||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 9.1 | 25 | 2.3 | 0.39 | 1.4 | |||
A2P008: Annual energy demand in buildings / Electric Demand | ||||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 30 | 0.33 | 0.655 | 0.3 | ||||
A2P009: Annual energy demand for e-mobility | ||||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | 0 | |||||||
A2P010: Annual energy demand for urban infrastructure | ||||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | ||||||||
A2P011: Annual renewable electricity production on-site during target year | ||||||||
A2P011: PV | yes | yes | no | yes | yes | yes | yes | yes |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 0.42 | 1.1 | ||||||
A2P011: Wind | no | yes | no | no | no | no | no | no |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Hydro | no | no | no | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Biomass_el | no | no | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: PVT_el | no | no | no | no | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Other | no | no | no | no | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Annual renewable thermal production on-site during target year | ||||||||
A2P012: Geothermal | no | no | yes | no | no | no | no | yes |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Solar Thermal | yes | no | yes | no | no | no | no | yes |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | 0.5 | |||||||
A2P012: Biomass_heat | no | no | yes | no | no | no | no | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | 0.1 | |||||||
A2P012: Waste heat+HP | no | yes | yes | no | yes | no | no | yes |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | 200 | 1.7 | ||||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: PVT_th | no | no | yes | no | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Other | no | no | no | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P013: Renewable resources on-site - Additional notes | ||||||||
A2P013: Renewable resources on-site - Additional notes | Geothermal heatpump systems, Waste heat from data centers | Waste heat from cooling the ice rink. | Groundwater (used for heat pumps) | |||||
A2P014: Annual energy use | ||||||||
A2P014: Annual energy use [GWh/annum] | 0.96 | 2.1 | 3.5 | |||||
A2P015: Annual energy delivered | ||||||||
A2P015: Annual energy delivered [GWh/annum] | -2 | |||||||
A2P016: Annual non-renewable electricity production on-site during target year | ||||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | |||||||
A2P017: Annual non-renewable thermal production on-site during target year | ||||||||
A2P017: Gas | no | no | no | no | no | no | yes | no |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Coal | no | no | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Oil | no | no | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Other | no | no | no | no | no | no | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | ||||||||
A2P018: PV | no | yes | no | no | no | yes | no | yes |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | 0.00045547 | |||||||
A2P018: Wind | no | yes | no | no | no | no | no | yes |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Hydro | no | yes | no | no | no | no | no | yes |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Biomass_el | no | yes | no | no | no | no | no | no |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Biomass_peat_el | no | no | no | no | no | no | no | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: PVT_el | no | no | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Other | no | no | no | no | no | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | ||||||||
A2P019: Geothermal | no | no | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Solar Thermal | no | no | no | no | no | no | no | yes |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_heat | no | no | no | no | no | no | no | yes |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Waste heat+HP | no | no | no | no | no | no | no | yes |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: PVT_th | no | no | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_firewood_th | no | no | no | no | no | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Other | no | no | no | no | no | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P020: Share of RES on-site / RES outside the boundary | ||||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A2P021: GHG-balance calculated for the PED | ||||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | 980 | -104 | 0.036 | |||||
A2P022: KPIs related to the PED case study / PED Lab | ||||||||
A2P022: Safety & Security | ||||||||
A2P022: Health | indoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold. | |||||||
A2P022: Education | ||||||||
A2P022: Mobility | Maximum 1/3 transport with car | x | ||||||
A2P022: Energy | Local energy production 150% of energy need | Space heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production. | Energy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balance | x | ||||
A2P022: Water | x | |||||||
A2P022: Economic development | Investment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROI | x | ||||||
A2P022: Housing and Community | 50% rental apartments and 50% owner apartments | x | ||||||
A2P022: Waste | ||||||||
A2P022: Other | ||||||||
A2P023: Technological Solutions / Innovations - Energy Generation | ||||||||
A2P023: Photovoltaics | yes | yes | yes | yes | yes | yes | yes | yes |
A2P023: Solar thermal collectors | no | yes | yes | no | no | no | no | no |
A2P023: Wind Turbines | no | yes | no | no | no | yes | no | no |
A2P023: Geothermal energy system | no | yes | yes | no | no | no | no | no |
A2P023: Waste heat recovery | no | yes | yes | no | yes | no | no | yes |
A2P023: Waste to energy | no | no | yes | no | no | no | no | no |
A2P023: Polygeneration | no | yes | no | no | no | no | no | no |
A2P023: Co-generation | no | no | no | no | no | yes | no | no |
A2P023: Heat Pump | no | yes | yes | yes | yes | yes | no | yes |
A2P023: Hydrogen | no | yes | no | no | no | no | no | no |
A2P023: Hydropower plant | no | no | no | no | no | no | no | no |
A2P023: Biomass | yes | no | no | no | no | no | no | no |
A2P023: Biogas | yes | no | no | no | no | no | no | no |
A2P023: Other | ||||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | ||||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | yes | yes | yes | no | yes | yes | yes | yes |
A2P024: Energy management system | yes | yes | yes | no | yes | yes | yes | no |
A2P024: Demand-side management | no | yes | yes | no | yes | yes | no | no |
A2P024: Smart electricity grid | no | yes | no | no | no | no | yes | no |
A2P024: Thermal Storage | no | yes | yes | yes | no | no | no | yes |
A2P024: Electric Storage | no | yes | yes | no | no | yes | yes | no |
A2P024: District Heating and Cooling | yes | yes | yes | yes | yes | yes | no | yes |
A2P024: Smart metering and demand-responsive control systems | no | yes | yes | no | yes | yes | no | no |
A2P024: P2P – buildings | no | no | no | yes | no | no | no | no |
A2P024: Other | ||||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | ||||||||
A2P025: Deep Retrofitting | yes | no | no | no | yes | no | no | no |
A2P025: Energy efficiency measures in historic buildings | no | no | yes | no | no | no | no | no |
A2P025: High-performance new buildings | no | yes | yes | yes | no | yes | no | yes |
A2P025: Smart Public infrastructure (e.g. smart lighting) | yes | yes | yes | no | no | no | no | yes |
A2P025: Urban data platforms | yes | yes | yes | no | yes | no | no | no |
A2P025: Mobile applications for citizens | yes | no | no | no | no | no | no | yes |
A2P025: Building services (HVAC & Lighting) | no | yes | no | yes | yes | yes | yes | no |
A2P025: Smart irrigation | no | no | no | no | no | yes | no | yes |
A2P025: Digital tracking for waste disposal | no | yes | no | no | no | no | no | no |
A2P025: Smart surveillance | yes | no | no | no | no | yes | no | no |
A2P025: Other | ||||||||
A2P026: Technological Solutions / Innovations - Mobility | ||||||||
A2P026: Efficiency of vehicles (public and/or private) | yes | no | no | no | no | no | yes | yes |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | yes | yes | no | no | no | no | no | yes |
A2P026: e-Mobility | yes | yes | yes | no | no | yes | no | yes |
A2P026: Soft mobility infrastructures and last mile solutions | no | yes | no | no | no | yes | no | yes |
A2P026: Car-free area | no | yes | no | no | no | yes | no | yes |
A2P026: Other | ||||||||
A2P027: Mobility strategies - Additional notes | ||||||||
A2P027: Mobility strategies - Additional notes | Walkability | - Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management | ||||||
A2P028: Energy efficiency certificates | ||||||||
A2P028: Energy efficiency certificates | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
A2P028: If yes, please specify and/or enter notes | Miljöbyggnad silver/guld | Energy Performance Certificate | Two buildings are certified "Passive House new build" | National standards apply. | Energieausweis mandatory if buildings/ flats/ apartments are sold | |||
A2P029: Any other building / district certificates | ||||||||
A2P029: Any other building / district certificates | No | No | No | Yes | Yes | |||
A2P029: If yes, please specify and/or enter notes | LEED BD+C, LEED NC CAMPUS | Klimaaktiv standard Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold | ||||||
A3P001: Relevant city /national strategy | ||||||||
A3P001: Relevant city /national strategy |
|
|
|
|
|
|
|
|
A3P002: Quantitative targets included in the city / national strategy | ||||||||
A3P002: Quantitative targets included in the city / national strategy | City strategy: Net climate neutrality 2030 | Carbon neutrality 2050 | City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply | |||||
A3P003: Strategies towards decarbonization of the gas grid | ||||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
|
|
|
|
| ||
A3P003: Other | No gas grid in Brunnshög | District heating based mainly on heat pumps and renewable sources | Boiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing | |||||
A3P004: Identification of needs and priorities | ||||||||
A3P004: Identification of needs and priorities | Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars. | The priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems. | Carbon and Energy Neutrality | -Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | Reininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices | |||
A3P005: Sustainable behaviour | ||||||||
A3P005: Sustainable behaviour | Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection. | In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed. | Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package. | -Improving the development of Net Zero Energy Buildings and Flexible Energy buildings. | - citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus. | |||
A3P006: Economic strategies | ||||||||
A3P006: Economic strategies |
|
|
|
|
|
| ||
A3P006: Other | Attractivenes | |||||||
A3P007: Social models | ||||||||
A3P007: Social models |
|
|
|
|
|
|
| |
A3P007: Other | ||||||||
A3P008: Integrated urban strategies | ||||||||
A3P008: Integrated urban strategies |
|
|
|
|
|
| ||
A3P008: Other | ||||||||
A3P009: Environmental strategies | ||||||||
A3P009: Environmental strategies |
|
|
|
|
|
|
|
|
A3P009: Other | ||||||||
A3P010: Legal / Regulatory aspects | ||||||||
A3P010: Legal / Regulatory aspects | The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions. | At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen: Lack of legal certainty and clarity with regard to the energy legislation. Lack of coherence between policy and legislation from different ministries. The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals. Lack of capacity on the distribution grid for electricity | ISO 45001, ISO 14001, ISO 50001, Zero Waste Policy | - European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013. | Mobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city. | |||
B1P001: PED/PED relevant concept definition | ||||||||
B1P001: PED/PED relevant concept definition | Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods. | Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation. | Onsite Energy Ratio > 1 | The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED. | Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability. | |||
B1P002: Motivation behind PED/PED relevant project development | ||||||||
B1P002: Motivation behind PED/PED relevant project development | The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development. | Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial. | Strategic, economic | The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency. | The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well. | |||
B1P003: Environment of the case study area | ||||||||
B2P003: Environment of the case study area | Urban area | Urban area | Urban area | Urban area | Suburban area | Urban area | ||
B1P004: Type of district | ||||||||
B2P004: Type of district |
|
|
|
|
|
| ||
B1P005: Case Study Context | ||||||||
B1P005: Case Study Context |
|
|
|
|
|
| ||
B1P006: Year of construction | ||||||||
B1P006: Year of construction | 2022 | 2024 | 2025 | |||||
B1P007: District population before intervention - Residential | ||||||||
B1P007: District population before intervention - Residential | 4500 | 0 | 0 | |||||
B1P008: District population after intervention - Residential | ||||||||
B1P008: District population after intervention - Residential | 18000 | 780 | 10000 | |||||
B1P009: District population before intervention - Non-residential | ||||||||
B1P009: District population before intervention - Non-residential | 2000 | 9800 | 0 | |||||
B1P010: District population after intervention - Non-residential | ||||||||
B1P010: District population after intervention - Non-residential | 22000 | 9800 | ||||||
B1P011: Population density before intervention | ||||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 34 | 0 | 0 |
B1P012: Population density after intervention | ||||||||
B1P012: Population density after intervention | 0 | 0.026666666666667 | 0 | 0.068716412650868 | 0 | 34.337771548704 | 0 | 0.01 |
B1P013: Building and Land Use before intervention | ||||||||
B1P013: Residential | yes | no | no | no | yes | no | no | no |
B1P013 - Residential: Specify the sqm [m²] | ||||||||
B1P013: Office | no | yes | no | no | yes | no | no | no |
B1P013 - Office: Specify the sqm [m²] | 60000 | |||||||
B1P013: Industry and Utility | no | no | no | no | no | no | no | yes |
B1P013 - Industry and Utility: Specify the sqm [m²] | ||||||||
B1P013: Commercial | yes | no | no | no | no | no | no | no |
B1P013 - Commercial: Specify the sqm [m²] | ||||||||
B1P013: Institutional | no | no | no | no | no | yes | no | no |
B1P013 - Institutional: Specify the sqm [m²] | 285.400 | |||||||
B1P013: Natural areas | yes | yes | no | no | no | no | no | yes |
B1P013 - Natural areas: Specify the sqm [m²] | 2000000 | |||||||
B1P013: Recreational | yes | no | no | no | yes | no | no | no |
B1P013 - Recreational: Specify the sqm [m²] | ||||||||
B1P013: Dismissed areas | no | no | no | no | no | no | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | ||||||||
B1P013: Other | no | yes | no | no | no | no | no | no |
B1P013 - Other: Specify the sqm [m²] | Outdoor parking: 100000 | |||||||
B1P014: Building and Land Use after intervention | ||||||||
B1P014: Residential | yes | yes | no | yes | yes | no | no | yes |
B1P014 - Residential: Specify the sqm [m²] | 600000 | |||||||
B1P014: Office | no | yes | no | no | yes | no | no | yes |
B1P014 - Office: Specify the sqm [m²] | 650000 | |||||||
B1P014: Industry and Utility | no | no | no | no | no | no | no | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | ||||||||
B1P014: Commercial | yes | no | no | yes | no | no | no | yes |
B1P014 - Commercial: Specify the sqm [m²] | ||||||||
B1P014: Institutional | no | yes | no | yes | no | yes | no | yes |
B1P014 - Institutional: Specify the sqm [m²] | 50000 | 280000 | ||||||
B1P014: Natural areas | yes | no | no | no | no | no | no | yes |
B1P014 - Natural areas: Specify the sqm [m²] | ||||||||
B1P014: Recreational | yes | yes | no | yes | yes | no | no | yes |
B1P014 - Recreational: Specify the sqm [m²] | 400000 | |||||||
B1P014: Dismissed areas | no | no | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | ||||||||
B1P014: Other | no | no | no | no | no | no | no | no |
B1P014 - Other: Specify the sqm [m²] | ||||||||
B2P001: PED Lab concept definition | ||||||||
B2P001: PED Lab concept definition | Groningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city. | addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation | ||||||
B2P002: Installation life time | ||||||||
B2P002: Installation life time | The MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact. | |||||||
B2P003: Scale of action | ||||||||
B2P003: Scale | District | District | Virtual | |||||
B2P004: Operator of the installation | ||||||||
B2P004: Operator of the installation | The Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties. | IREC | ||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | Groningen does not have a strategy to reuse and recyle materials | |||||||
B2P006: Circular Economy Approach | ||||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | No | No | No | |||||
B2P006: Other | ||||||||
B2P007: Motivation for developing the PED Lab | ||||||||
B2P007: Motivation for developing the PED Lab |
|
|
| |||||
B2P007: Other | ||||||||
B2P008: Lead partner that manages the PED Lab | ||||||||
B2P008: Lead partner that manages the PED Lab | Municipality | Municipality | Research center/University | |||||
B2P008: Other | ||||||||
B2P009: Collaborative partners that participate in the PED Lab | ||||||||
B2P009: Collaborative partners that participate in the PED Lab |
|
| ||||||
B2P009: Other | research companies, monitoring company, ict company | |||||||
B2P010: Synergies between the fields of activities | ||||||||
B2P010: Synergies between the fields of activities | ||||||||
B2P011: Available facilities to test urban configurations in PED Lab | ||||||||
B2P011: Available facilities to test urban configurations in PED Lab |
|
|
| |||||
B2P011: Other | ||||||||
B2P012: Incubation capacities of PED Lab | ||||||||
B2P012: Incubation capacities of PED Lab |
|
|
| |||||
B2P013: Availability of the facilities for external people | ||||||||
B2P013: Availability of the facilities for external people | ||||||||
B2P014: Monitoring measures | ||||||||
B2P014: Monitoring measures |
|
|
| |||||
B2P015: Key Performance indicators | ||||||||
B2P015: Key Performance indicators |
|
|
| |||||
B2P016: Execution of operations | ||||||||
B2P016: Execution of operations | ||||||||
B2P017: Capacities | ||||||||
B2P017: Capacities | - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. | |||||||
B2P018: Relations with stakeholders | ||||||||
B2P018: Relations with stakeholders | ||||||||
B2P019: Available tools | ||||||||
B2P019: Available tools |
|
|
| |||||
B2P019: Available tools | ||||||||
B2P020: External accessibility | ||||||||
B2P020: External accessibility | ||||||||
C1P001: Unlocking Factors | ||||||||
C1P001: Recent technological improvements for on-site RES production | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 4 - Important | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 4 - Important | 5 - Very important | 1 - Unimportant | 2 - Slightly important |
C1P001: Energy Communities, P2P, Prosumers concepts | 3 - Moderately important | 5 - Very important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 4 - Important |
C1P001: Storage systems and E-mobility market penetration | 2 - Slightly important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 3 - Moderately important | 4 - Important | 5 - Very important | 2 - Slightly important |
C1P001: Decreasing costs of innovative materials | 3 - Moderately important | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 3 - Moderately important | 2 - Slightly important |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 4 - Important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 4 - Important | 5 - Very important | 5 - Very important | 2 - Slightly important |
C1P001: The ability to predict Multiple Benefits | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 4 - Important | 4 - Important | 4 - Important |
C1P001: The ability to predict the distribution of benefits and impacts | 4 - Important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 4 - Important | 4 - Important | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 5 - Very important |
C1P001: Social acceptance (top-down) | 4 - Important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 4 - Important |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 3 - Moderately important | 5 - Very important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 5 - Very important |
C1P001: Presence of integrated urban strategies and plans | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important |
C1P001: Multidisciplinary approaches available for systemic integration | 4 - Important | 5 - Very important | 2 - Slightly important | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important | 5 - Very important |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important |
C1P001: Availability of RES on site (Local RES) | 4 - Important | 5 - Very important | 4 - Important | 3 - Moderately important | 4 - Important | 5 - Very important | 4 - Important | 3 - Moderately important |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 4 - Important | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P001: Any other UNLOCKING FACTORS (if any) | Collaboration with the local partners | |||||||
C1P002: Driving Factors | ||||||||
C1P002: Climate Change adaptation need | 5 - Very important | 5 - Very important | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 5 - Very important | 4 - Important | 5 - Very important |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 5 - Very important | 5 - Very important | 3 - Moderately important | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 4 - Important |
C1P002: Urban re-development of existing built environment | 3 - Moderately important | 5 - Very important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 4 - Important | 4 - Important | 5 - Very important |
C1P002: Economic growth need | 2 - Slightly important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 4 - Important | 4 - Important | 3 - Moderately important |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 4 - Important | 5 - Very important |
C1P002: Territorial and market attractiveness | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 4 - Important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 5 - Very important |
C1P002: Energy autonomy/independence | 4 - Important | 1 - Unimportant | 2 - Slightly important | 4 - Important | 4 - Important | 5 - Very important | 5 - Very important | 3 - Moderately important |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P002: Any other DRIVING FACTOR (if any) | Earthquakes due to gas extraction | |||||||
C1P003: Administrative barriers | ||||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 4 - Important | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important |
C1P003: Lack of good cooperation and acceptance among partners | 2 - Slightly important | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 5 - Very important | 1 - Unimportant | 2 - Slightly important |
C1P003: Lack of public participation | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | 2 - Slightly important | 4 - Important |
C1P003: Lack of institutions/mechanisms to disseminate information | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 3 - Moderately important | 2 - Slightly important |
C1P003:Long and complex procedures for authorization of project activities | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 3 - Moderately important |
C1P003: Complicated and non-comprehensive public procurement | 4 - Important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 3 - Moderately important | 2 - Slightly important |
C1P003: Fragmented and or complex ownership structure | 5 - Very important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important | 4 - Important | 4 - Important |
C1P003: Lack of internal capacities to support energy transition | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important | 4 - Important | 3 - Moderately important |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 5 - Very important | 1 - Unimportant |
C1P003: Any other Administrative BARRIER (if any) | Fragmented financial support; lack of experimental budget for complex projects, etc. | |||||||
C1P004: Policy barriers | ||||||||
C1P004: Lack of long-term and consistent energy plans and policies | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 2 - Slightly important |
C1P004: Lacking or fragmented local political commitment and support on the long term | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | 1 - Unimportant | 2 - Slightly important |
C1P004: Lack of Cooperation & support between national-regional-local entities | 3 - Moderately important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 5 - Very important | 2 - Slightly important | 3 - Moderately important |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P004: Any other Political BARRIER (if any) | Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc. | |||||||
C1P005: Legal and Regulatory barriers | ||||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 5 - Very important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant |
C1P005: Regulatory instability | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 1 - Unimportant |
C1P005: Non-effective regulations | 4 - Important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 4 - Important | 2 - Slightly important | 3 - Moderately important |
C1P005: Unfavorable local regulations for innovative technologies | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 4 - Important | 4 - Important | 4 - Important |
C1P005: Building code and land-use planning hindering innovative technologies | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | 3 - Moderately important | 2 - Slightly important |
C1P005: Insufficient or insecure financial incentives | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 4 - Important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important |
C1P005: Shortage of proven and tested solutions and examples | 2 - Slightly important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 4 - Important | 2 - Slightly important |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 4 - Important | 1 - Unimportant |
C1P005: Any other Legal and Regulatory BARRIER (if any) | ||||||||
C1P006: Environmental barriers | ||||||||
C1P006: Environmental barriers | ? | Urban area very high buildings (and apartment) density and thus, less available space for renewable sources. | Air Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important) | |||||
C1P007: Technical barriers | ||||||||
C1P007: Lack of skilled and trained personnel | 3 - Moderately important | 5 - Very important | 4 - Important | 2 - Slightly important | 4 - Important | 5 - Very important | 5 - Very important | 2 - Slightly important |
C1P007: Deficient planning | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 5 - Very important | 5 - Very important | 2 - Slightly important |
C1P007: Retrofitting work in dwellings in occupied state | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P007: Lack of well-defined process | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 4 - Important | 4 - Important |
C1P007: Inaccuracy in energy modelling and simulation | 2 - Slightly important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 5 - Very important | 2 - Slightly important |
C1P007: Lack/cost of computational scalability | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 4 - Important | 2 - Slightly important |
C1P007: Grid congestion, grid instability | 2 - Slightly important | 4 - Important | 4 - Important | 1 - Unimportant | 4 - Important | 5 - Very important | 5 - Very important | 1 - Unimportant |
C1P007: Negative effects of project intervention on the natural environment | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 2 - Slightly important |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant |
C1P007: Difficult definition of system boundaries | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P007: Any other Thecnical BARRIER (if any) | Inadequate regulation towards energy transition | |||||||
C1P008: Social and Cultural barriers | ||||||||
C1P008: Inertia | 4 - Important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 4 - Important | 3 - Moderately important |
C1P008: Lack of values and interest in energy optimization measurements | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important |
C1P008: Low acceptance of new projects and technologies | 2 - Slightly important | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 3 - Moderately important |
C1P008: Difficulty of finding and engaging relevant actors | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 4 - Important | 5 - Very important | 4 - Important |
C1P008: Lack of trust beyond social network | 2 - Slightly important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 3 - Moderately important | 3 - Moderately important |
C1P008: Rebound effect | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 2 - Slightly important |
C1P008: Hostile or passive attitude towards environmentalism | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 5 - Very important | 1 - Unimportant |
C1P008: Exclusion of socially disadvantaged groups | 2 - Slightly important | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant |
C1P008: Non-energy issues are more important and urgent for actors | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important |
C1P008: Hostile or passive attitude towards energy collaboration | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 1 - Unimportant |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P008: Any other Social BARRIER (if any) | ||||||||
C1P009: Information and Awareness barriers | ||||||||
C1P009: Insufficient information on the part of potential users and consumers | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 2 - Slightly important |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important |
C1P009: Lack of awareness among authorities | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 5 - Very important | 2 - Slightly important | 2 - Slightly important |
C1P009: Information asymmetry causing power asymmetry of established actors | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important |
C1P009: High costs of design, material, construction, and installation | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P009: Any other Information and Awareness BARRIER (if any) | ||||||||
C1P010: Financial barriers | ||||||||
C1P010: Hidden costs | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 4 - Important | 5 - Very important | 3 - Moderately important |
C1P010: Insufficient external financial support and funding for project activities | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 5 - Very important | 5 - Very important | 2 - Slightly important |
C1P010: Economic crisis | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important |
C1P010: Risk and uncertainty | 4 - Important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 5 - Very important | 5 - Very important | 2 - Slightly important |
C1P010: Lack of consolidated and tested business models | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 4 - Important | 5 - Very important | 2 - Slightly important |
C1P010: Limited access to capital and cost disincentives | 4 - Important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 2 - Slightly important | |
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P010: Any other Financial BARRIER (if any) | ||||||||
C1P011: Market barriers | ||||||||
C1P011: Split incentives | 4 - Important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important | 4 - Important | 2 - Slightly important |
C1P011: Energy price distortion | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 4 - Important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P011: Any other Market BARRIER (if any) | ||||||||
C1P012: Stakeholders involved | ||||||||
C1P012: Government/Public Authorities |
|
|
|
|
|
|
| |
C1P012: Research & Innovation |
|
|
|
|
|
|
| |
C1P012: Financial/Funding |
|
|
|
|
|
| ||
C1P012: Analyst, ICT and Big Data |
|
|
|
|
|
| ||
C1P012: Business process management |
|
|
|
|
| |||
C1P012: Urban Services providers |
|
|
|
|
|
|
| |
C1P012: Real Estate developers |
|
|
|
|
|
|
| |
C1P012: Design/Construction companies |
|
|
|
|
|
| ||
C1P012: End‐users/Occupants/Energy Citizens |
|
|
|
|
|
|
| |
C1P012: Social/Civil Society/NGOs |
|
|
|
|
|
| ||
C1P012: Industry/SME/eCommerce |
|
|
|
|
|
| ||
C1P012: Other |
|
| ||||||
C1P012: Other (if any) | ||||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)