Filters:
NameProjectTypeCompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Rymdgatan’s Residential Portfolio in Borlänge, Sweden PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Uncompare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Leon, Former Sugar Factory district
City of Espoo, Espoonlahti district, Lippulaiva block
Bologna, Pilastro-Roveri district
Freiburg, Waldsee
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaLeon, Former Sugar Factory districtCity of Espoo, Espoonlahti district, Lippulaiva blockBologna, Pilastro-Roveri districtFreiburg, Waldsee
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnoyes
PED relevant case studyyesnonoyesno
PED Lab.yesnononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnonoyesyes
Annual energy surplusnoyesnonono
Energy communitynononoyesyes
Circularityyesnononono
Air quality and urban comfortnonononono
Electrificationyesnononoyes
Net-zero energy costnonononono
Net-zero emissionyesnononoyes
Self-sufficiency (energy autonomous)nonononono
Maximise self-sufficiencyyesyesyesnono
Othernonononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhasePlanning PhaseIn operationPlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date02/1612/1806/1809/1911/21
A1P007: End Date
A1P007: End date07/2212/2303/2210/2311/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • General statistical datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  •  https://makingcity.eu/wp-content/uploads/2021/12/MakingCity_D4_3_Analysis_of_FWC_candidate_areas_to_become_a_PED_Final.pdf.
  • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
  • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
  • www.lippulaiva.fi
  • Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190,
  • Barroco Fontes Cunha F., Carani C., Nucci C.A., Castro C., Santana Silva M., Andrade Torres E. (2021) Transitioning to a low carbon society through energy communities: Lessons learned from Brazil and Italy, ENERGY RESEARCH & SOCIAL SCIENCE, 2021, 75, 1-19.,
  • GRETA Project, Pilastro-Roveri case study. Available at: https://projectgreta.eu/case-study/renewable-energy-district/
  • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
  • renewable energy potential,
  • own calculations based on publicly available data,
  • Some data can be found in https://geoportal.freiburg.de/freigis/
A1P011: Geographic coordinates
X Coordinate (longitude):26.722737-5.58479524.654311.3973237.885857135842917
Y Coordinate (latitude):58.38071342.59339160.149144.50710647.986535207080045
A1P012: Country
A1P012: CountryEstoniaSpainFinlandItalyGermany
A1P013: City
A1P013: CityTartuLeonEspooBolognaFreiburg im Breisgau
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).DfbCsbDfbCfaCfb
A1P015: District boundary
A1P015: District boundaryFunctionalGeographicGeographicGeographicVirtual
Other
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:PrivateMixedPrivateMixedMixed
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED1821919622941
A1P019: Conditioned space
A1P019: Conditioned space [m²]3521716.06900112000284070
A1P020: Total ground area
A1P020: Total ground area [m²]79314473.1456916500078000004920000
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area00100
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estateyesnoyesnono
A1P022a: Add the value in EUR if available [EUR]6500000
A1P022b: Financing - PRIVATE - ESCO schemenonononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernonononono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingyesnononono
A1P022d: Add the value in EUR if available [EUR]4000000
A1P022e: Financing - PUBLIC - National fundingyesnonoyesno
A1P022e: Add the value in EUR if available [EUR]8000000
A1P022f: Financing - PUBLIC - Regional fundingnononoyesno
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingnononoyesyes
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernonononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesyes
A1P022i: Add the value in EUR if available [EUR]308875
A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyes
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononoyesno
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernonononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: Other
A1P023: Economic Targets
A1P023: Economic Targets
  • Positive externalities
  • Job creation,
  • Positive externalities,
  • Boosting local businesses
  • Job creation,
  • Positive externalities,
  • Boosting local businesses
A1P023: Other
A1P024: More comments:
A1P024: More comments:The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVsThe Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190]
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]25
Contact person for general enquiries
A1P026: NameJaanus TammBegoña Gonzalo OrdenElina EkelundProf. Danila LongoDr. Annette Steingrube
A1P027: OrganizationTartu City GovernmentMunicipality of LeonCitycon OyjUniversity of Bologna - Architecture DepartmentFraunhofer Institute for solar energy systems
A1P028: AffiliationMunicipality / Public BodiesOtherSME / IndustryResearch Center / UniversityResearch Center / University
A1P028: OtherMunicipality of Leon - ILRUV
A1P029: EmailJaanus.tamm@tartu.eebegona.gonzalo@aytoleon.esElina.ekelund@citycon.comAnnette.Steingrube@ise.fraunhofer.de
Contact person for other special topics
A1P030: NameKaspar AlevMonica Prada CorralElina Ekelund
A1P031: EmailKaspar.alev@tartu.eeMonica.Prada@ilruv.esElina.ekelund@citycon.com
Pursuant to the General Data Protection RegulationYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Waste management
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Waste management
A2P001: Other
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy efficiency: - buildings energy retrofit Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; Energy flexibility: - testing share energy solutions (public-private stakeholders) Digital technologies - smart city platform - smart energy management E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation.Energy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricEnergy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulationEnergy system modeling
A2P003: Application of ISO52000
A2P003: Application of ISO52000NoNoYesYesYes
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceYesNoYesNoYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoYes
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculationMobility is not included in the energy model.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.13.495.5135.715
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.575.831.76
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVyesyesyesyesno
A2P011: PV - specify production in GWh/annum [GWh/annum]1.240.54
A2P011: Windnonononono
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydronoyesnonono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]1.28
A2P011: Biomass_elnonononono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_peat_elnonononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnoyesnonono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.28
A2P011: Othernonononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalnonoyesnono
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
A2P012: Solar Thermalyesnonoyesno
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
A2P012: Biomass_heatnononoyesno
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: Waste heat+HPnonononono
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_peat_heatnonononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnoyesnonono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnonononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernoyesnonono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notes53 MW PV potential in all three quarters; no other internal renewable energy potentials known
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]11.3132.5
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]5.76
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnonononono
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
A2P017: Coalnonononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
A2P017: Oilnonononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
A2P017: Othernonononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnonononono
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
A2P018: Windnonononono
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydrononononono
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnonononono
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnonononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnonononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernonoyesnono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.26
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnonononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnonononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnonononono
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnonononono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnonononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnonononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnonononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernonononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary001.053231939163500
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]9800
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & Security
A2P022: Health
A2P022: Education
A2P022: Mobilityyes
A2P022: EnergyOn-site energy ratioyes
A2P022: Water
A2P022: Economic development
A2P022: Housing and Communityyes
A2P022: Waste
A2P022: Other
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesyesyesyesyes
A2P023: Solar thermal collectorsnoyesnoyesyes
A2P023: Wind Turbinesnonononono
A2P023: Geothermal energy systemnonoyesyesyes
A2P023: Waste heat recoverynonoyesnoyes
A2P023: Waste to energynononoyesyes
A2P023: Polygenerationnonononono
A2P023: Co-generationnononoyesyes
A2P023: Heat Pumpnoyesnoyesyes
A2P023: Hydrogennonononoyes
A2P023: Hydropower plantnoyesnonoyes
A2P023: Biomassyesnononoyes
A2P023: Biogasyesnononoyes
A2P023: Other
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesyes
A2P024: Energy management systemyesyesyesnoyes
A2P024: Demand-side managementnoyesnonoyes
A2P024: Smart electricity gridnonoyesnoyes
A2P024: Thermal Storagenonoyesnoyes
A2P024: Electric Storagenonoyesyesyes
A2P024: District Heating and Coolingyesnonoyesyes
A2P024: Smart metering and demand-responsive control systemsnonononoyes
A2P024: P2P – buildingsnoyesnonoyes
A2P024: Other
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingyesyesnoyesyes
A2P025: Energy efficiency measures in historic buildingsnoyesnonoyes
A2P025: High-performance new buildingsnonoyesyesno
A2P025: Smart Public infrastructure (e.g. smart lighting)yesnoyesyesno
A2P025: Urban data platformsyesyesnonoyes
A2P025: Mobile applications for citizensyesnonoyesno
A2P025: Building services (HVAC & Lighting)nonoyesyesno
A2P025: Smart irrigationnonononono
A2P025: Digital tracking for waste disposalnononoyesno
A2P025: Smart surveillanceyesnonoyesno
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)yesyesnoyesyes
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnoyesyesyes
A2P026: e-Mobilityyesyesyesyesyes
A2P026: Soft mobility infrastructures and last mile solutionsnoyesnoyesyes
A2P026: Car-free areanonononono
A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notes
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYesYesYesYesNo
A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Spain it is mandatory in order to buy or rent a house or a dwelling)Energy Performance Certificate => Energy efficiency class B (2018 version)Energy Performance Certificate for each dwelling
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesNoYesNoNo
A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Energy master planning (SECAP, etc.)
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.)
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Urban Renewal Strategies,
  • Energy master planning (SECAP, etc.),
  • Promotion of energy communities (REC/CEC),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategyRelevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.City level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal;Climate neutrality by 2035
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Biogas,
  • Hydrogen
  • Electrification of Heating System based on Heat Pumps,
  • Electrification of Cooking Methods
  • Electrification of Heating System based on Heat Pumps,
  • Biogas,
  • Hydrogen
A3P003: Other
A3P004: Identification of needs and priorities
A3P004: Identification of needs and priorities- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.Bologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility.Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level
A3P005: Sustainable behaviour
A3P005: Sustainable behaviourFor Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.Bologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri.Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy
A3P006: Economic strategies
A3P006: Economic strategies
  • Innovative business models,
  • PPP models,
  • Life Cycle Cost,
  • Existing incentives
  • Innovative business models
  • Innovative business models,
  • PPP models,
  • Circular economy models,
  • Demand management Living Lab,
  • Existing incentives
  • Demand management Living Lab,
  • Local trading,
  • Existing incentives
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Social incentives,
  • Quality of Life,
  • Prevention of energy poverty,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Behavioural Change / End-users engagement,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Co-creation / Citizen engagement strategies
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Affordability,
  • Prevention of energy poverty,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
A3P007: Other
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • City Vision 2050,
  • SECAP Updates
  • Strategic urban planning,
  • City Vision 2050,
  • SECAP Updates
  • Building / district Certification
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • City Vision 2050,
  • SECAP Updates,
  • Building / district Certification
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • District Energy plans
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Net zero carbon footprint,
  • Carbon-free,
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
  • Other
  • Energy Neutral,
  • Low Emission Zone,
  • Net zero carbon footprint,
  • Life Cycle approach,
  • Pollutants Reduction,
  • Greening strategies
A3P009: OtherCarbon free in terms of energy
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspects- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021PEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionLippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.Pilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case study
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project development- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersPilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030.City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regard
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban areaSuburban area
B1P004: Type of district
B2P004: Type of district
  • Renovation
  • New construction,
  • Renovation
  • New construction
  • Renovation
  • Renovation
B1P005: Case Study Context
B1P005: Case Study Context
  • Retrofitting Area
  • Re-use / Transformation Area,
  • Retrofitting Area,
  • Preservation Area
  • Re-use / Transformation Area,
  • New Development
  • Retrofitting Area
  • Retrofitting Area
B1P006: Year of construction
B1P006: Year of construction2022
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential45005898
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential5898
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential
B1P011: Population density before intervention
B1P011: Population density before intervention00000
B1P012: Population density after intervention
B1P012: Population density after intervention00000.0011987804878049
B1P013: Building and Land Use before intervention
B1P013: Residentialyesyesnoyesyes
B1P013 - Residential: Specify the sqm [m²]
B1P013: Officenononoyesyes
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilitynononoyesyes
B1P013 - Industry and Utility: Specify the sqm [m²]
B1P013: Commercialyesnoyesyesyes
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnononoyesyes
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasyesnoyesyesyes
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalyesnonoyesyes
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnononoyesno
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernoyesnonono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialyesyesyesyesyes
B1P014 - Residential: Specify the sqm [m²]
B1P014: Officenononoyesyes
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynononoyesyes
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialyesnoyesyesyes
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnononoyesyes
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasyesnonoyesyes
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalyesnonoyesyes
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnononoyesno
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernoyesnonono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definition
B2P002: Installation life time
B2P002: Installation life time
B2P003: Scale of action
B2P003: ScaleDistrict
B2P004: Operator of the installation
B2P004: Operator of the installation
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?No
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Strategic
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabMunicipality
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Private,
  • Industrial,
  • Citizens, public, NGO
B2P009: Other
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Buildings,
  • Prosumers,
  • Renewable generation,
  • Energy networks,
  • Lighting,
  • E-mobility,
  • Green areas,
  • User interaction/participation,
  • Information and Communication Technologies (ICT)
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Monitoring and evaluation infrastructure,
  • Pivoting and risk-mitigating measures
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Available data,
  • Life Cycle Analysis
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Sustainability,
  • Social,
  • Economical / Financial
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
  • Social models
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibility
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important
C1P001: Storage systems and E-mobility market penetration2 - Slightly important1 - Unimportant4 - Important3 - Moderately important4 - Important
C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant5 - Very important5 - Very important2 - Slightly important
C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important
C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important
C1P001: Social acceptance (top-down)4 - Important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant2 - Slightly important4 - Important4 - Important
C1P001: Presence of integrated urban strategies and plans5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important
C1P001: Multidisciplinary approaches available for systemic integration4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant5 - Very important4 - Important4 - Important
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)
C1P002: Driving Factors
C1P002: Climate Change adaptation need5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important
C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important
C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
C1P002: Economic growth need2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
C1P002: Energy autonomy/independence4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important
C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant4 - Important4 - Important4 - Important
C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important
C1P003: Lack of public participation1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
C1P003: Fragmented and or complex ownership structure5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important
C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important
C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant2 - Slightly important4 - Important4 - Important
C1P005: Regulatory instability3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
C1P005: Non-effective regulations4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant
C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important
C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
C1P005: Insufficient or insecure financial incentives3 - Moderately important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important
C1P007: Deficient planning1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
C1P007: Retrofitting work in dwellings in occupied state5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important
C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
C1P007: Grid congestion, grid instability2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
C1P007: Difficult definition of system boundaries5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)
C1P008: Social and Cultural barriers
C1P008: Inertia4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
C1P008: Low acceptance of new projects and technologies2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
C1P008: Lack of trust beyond social network2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
C1P008: Rebound effect3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant
C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important
C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
C1P009: High costs of design, material, construction, and installation5 - Very important1 - Unimportant4 - Important4 - Important4 - Important
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)
C1P010: Financial barriers
C1P010: Hidden costs5 - Very important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
C1P010: Insufficient external financial support and funding for project activities5 - Very important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
C1P010: Economic crisis3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important
C1P010: Risk and uncertainty4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important
C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important
C1P010: Limited access to capital and cost disincentives4 - Important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives4 - Important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
C1P011: Energy price distortion3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading
C1P012: Research & Innovation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation
  • Planning/leading,
  • Design/demand aggregation
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Financial/Funding
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Design/demand aggregation,
  • Construction/implementation
  • None
C1P012: Analyst, ICT and Big Data
  • Planning/leading,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • None
C1P012: Business process management
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • None
  • None
C1P012: Urban Services providers
  • Construction/implementation
  • None
  • Planning/leading,
  • Design/demand aggregation
  • None
C1P012: Real Estate developers
  • None
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • None
  • None
C1P012: Design/Construction companies
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Social/Civil Society/NGOs
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Industry/SME/eCommerce
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • None
C1P012: Other
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)