Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Uncompare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
City of Espoo, Espoonlahti district, Lippulaiva block
Graz, Reininghausgründe
Groningen, PED South
Stor-Elvdal, Campus Evenstad
Oslo, Verksbyen
Espoo, Kera
Izmir, District of Karşıyaka
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaCity of Espoo, Espoonlahti district, Lippulaiva blockGraz, ReininghausgründeGroningen, PED SouthStor-Elvdal, Campus EvenstadOslo, VerksbyenEspoo, KeraIzmir, District of Karşıyaka
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnonoyesyesyes
PED relevant case studyyesnononoyesnoyesno
PED Lab.yesnonoyesnononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyesyesyesyes
Annual energy surplusnononoyesyesyesnoyes
Energy communitynononoyesnononono
Circularityyesnonoyesnonoyesno
Air quality and urban comfortnononononoyesnoyes
Electrificationyesnonononononono
Net-zero energy costnononononononoyes
Net-zero emissionyesnonoyesnoyesnono
Self-sufficiency (energy autonomous)nononononononono
Maximise self-sufficiencyyesyesnononononoyes
Othernonononoyesnonono
Other (A1P004)Energy-flexibility
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseIn operationImplementation PhaseImplementation PhaseIn operationImplementation PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date02/1606/18201912/1801/1307/1801/1510/22
A1P007: End Date
A1P007: End date07/2203/22202512/2312/2408/2412/3510/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • General statistical datasets
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
  • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
  • www.lippulaiva.fi
  • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
  • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
  • TNO, Hanze, RUG,
  • Ped noord book
A1P011: Geographic coordinates
X Coordinate (longitude):26.72273724.654315.4074406.59065511.07877077353174610.98617335443299224.7537777827.110049
Y Coordinate (latitude):58.38071360.149147.060753.20408761.4260442039911259.2242971664204660.2162222238.496054
A1P012: Country
A1P012: CountryEstoniaFinlandAustriaNetherlandsNorwayNorwayFinlandTurkey
A1P013: City
A1P013: CityTartuEspooGrazGroningenEvenstad, Stor-Elvdal municipalityFredrikstadEspooİzmir
A1P014: Climate Zone (Köppen Geiger classification)
A1P014: Climate Zone (Köppen Geiger classification).DfbDfbDfbCfaDwcCfbDfbCsa
A1P015: District boundary
A1P015: District boundaryFunctionalGeographicGeographicFunctionalGeographicGeographicGeographicGeographic
Other
A1P016: Ownership of the case study/PED Lab
A1P016: Ownership of the case study/PED Lab:PrivatePrivateMixedMixedPublicPrivateMixedPrivate
A1P017: Ownership of the land / physical infrastructure
A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple Owners
A1P018: Number of buildings in PED
A1P018: Number of buildings in PED189100422221
A1P019: Conditioned space
A1P019: Conditioned space [m²]352171120007.86100003550102795
A1P020: Total ground area
A1P020: Total ground area [m²]793144165000100000045.09358000032600
A1P021: Floor area ratio: Conditioned space / total ground area
A1P021: Floor area ratio: Conditioned space / total ground area01000003
A1P022: Financial schemes
A1P022a: Financing - PRIVATE - Real estateyesyesyesyesnoyesnono
A1P022a: Add the value in EUR if available [EUR]6500000
A1P022b: Financing - PRIVATE - ESCO schemenononononononono
A1P022b: Add the value in EUR if available [EUR]
A1P022c: Financing - PRIVATE - Othernononoyesnononono
A1P022c: Add the value in EUR if available [EUR]
A1P022d: Financing - PUBLIC - EU structural fundingyesnonononononono
A1P022d: Add the value in EUR if available [EUR]4000000
A1P022e: Financing - PUBLIC - National fundingyesnoyesyesyesnonono
A1P022e: Add the value in EUR if available [EUR]8000000
A1P022f: Financing - PUBLIC - Regional fundingnononononononono
A1P022f: Add the value in EUR if available [EUR]
A1P022g: Financing - PUBLIC - Municipal fundingnonoyesyesnononono
A1P022g: Add the value in EUR if available [EUR]
A1P022h: Financing - PUBLIC - Othernononononononono
A1P022h: Add the value in EUR if available [EUR]
A1P022i: Financing - RESEARCH FUNDING - EUnoyesnoyesnononoyes
A1P022i: Add the value in EUR if available [EUR]3088751193355
A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesnonoyes
A1P022j: Add the value in EUR if available [EUR]
A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
A1P022k: Add the value in EUR if available [EUR]
A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
A1P022l: Add the value in EUR if available [EUR]
A1P022: OtherMultiple different funding schemes depending on the case.
A1P023: Economic Targets
A1P023: Economic Targets
  • Positive externalities
  • Job creation,
  • Positive externalities,
  • Boosting local businesses
  • Job creation,
  • Boosting local businesses,
  • Boosting consumption of local and sustainable products
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Boosting local businesses,
  • Boosting local and sustainable production
  • Job creation,
  • Positive externalities,
  • Boosting local businesses,
  • Boosting local and sustainable production,
  • Boosting consumption of local and sustainable products
  • Positive externalities,
  • Boosting local and sustainable production
A1P023: OtherCircular economy
A1P024: More comments:
A1P024: More comments:The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVsThe “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.
A1P025: Estimated PED case study / PED LAB costs
A1P025: Estimated PED case study / PED LAB costs [mil. EUR]25
Contact person for general enquiries
A1P026: NameJaanus TammElina EkelundKatharina SchwarzJasper Tonen, Elisabeth KoopsÅse Lekang SørensenTonje Healey TrulsrudJoni MäkinenOzlem Senyol
A1P027: OrganizationTartu City GovernmentCitycon OyjStadtLABOR, Innovationen für urbane Lebensqualität GmbHMunicipality of GroningenSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesNorwegian University of Science and technology (NTNU)City of EspooKarsiyaka Municipality
A1P028: AffiliationMunicipality / Public BodiesSME / IndustrySME / IndustryMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public Bodies
A1P028: Other
A1P029: EmailJaanus.tamm@tartu.eeElina.ekelund@citycon.comkatharina.schwarz@stadtlaborgraz.atJasper.tonen@groningen.nlase.sorensen@sintef.notonje.h.trulsrud@ntnu.nojoni.makinen@espoo.fiozlemkocaer2@gmail.com
Contact person for other special topics
A1P030: NameKaspar AlevElina EkelundHans SchnitzerHasan Burak Cavka
A1P031: EmailKaspar.alev@tartu.eeElina.ekelund@citycon.comhans.schnitzer@stadtlaborgraz.athasancavka@iyte.edu.tr
Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
A2P001: Fields of application
A2P001: Fields of application
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies
  • Energy efficiency,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Water use,
  • Indoor air quality,
  • Other
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Waste management
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Urban comfort (pollution, heat island, noise level etc.),
  • Digital technologies,
  • Indoor air quality
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • E-mobility,
  • Digital technologies,
  • Waste management,
  • Construction materials
  • Energy efficiency,
  • Energy flexibility,
  • Energy production,
  • Urban comfort (pollution, heat island, noise level etc.)
A2P001: OtherUrban Management; Air Quality
A2P002: Tools/strategies/methods applied for each of the above-selected fields
A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.Energy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilation- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)Methods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.
A2P003: Application of ISO52000
A2P003: Application of ISO52000NoYesNoNoNoYesNoYes
A2P004: Appliances included in the calculation of the energy balance
A2P004: Appliances included in the calculation of the energy balanceYesYesYesNoYesNoNoYes
A2P005: Mobility included in the calculation of the energy balance
A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoYesNoNoNo
A2P006: Description of how mobility is included (or not included) in the calculation
A2P006: Description of how mobility is included (or not included) in the calculationMobility is not included in the energy model.- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)Mobility, till now, is not included in the energy model.At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.Mobility is not included in the calculations.
A2P007: Annual energy demand in buildings / Thermal demand
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.15.51.860.770.1654.53.862
A2P008: Annual energy demand in buildings / Electric Demand
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]5.81.450.760.05319.41.226
A2P009: Annual energy demand for e-mobility
A2P009: Annual energy demand for e-mobility [GWh/annum]
A2P010: Annual energy demand for urban infrastructure
A2P010: Annual energy demand for urban infrastructure [GWh/annum]
A2P011: Annual renewable electricity production on-site during target year
A2P011: PVyesyesyesnoyesyesyesyes
A2P011: PV - specify production in GWh/annum [GWh/annum]0.540.0650.1841.028
A2P011: Windnononononononono
A2P011: Wind - specify production in GWh/annum [GWh/annum]
A2P011: Hydronononononononono
A2P011: Hydro - specify production in GWh/annum [GWh/annum]
A2P011: Biomass_elnonononoyesnonono
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
A2P011: Biomass_peat_elnononononononono
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
A2P011: PVT_elnononononononono
A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
A2P011: Othernononononononono
A2P011: Other - specify production in GWh/annum [GWh/annum]
A2P012: Annual renewable thermal production on-site during target year
A2P012: Geothermalnoyesyesyesnononono
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
A2P012: Solar Thermalyesnoyesyesyesnonono
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.50.045
A2P012: Biomass_heatnononoyesyesnonono
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
A2P012: Waste heat+HPnonoyesyesnonoyesno
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_peat_heatnononononononono
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
A2P012: PVT_thnononoyesnononono
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Biomass_firewood_thnononononononono
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
A2P012: Othernononononononono
A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
A2P013: Renewable resources on-site - Additional notes
A2P013: Renewable resources on-site - Additional notesGroundwater (used for heat pumps)Geothermal heatpump systems, Waste heat from data centersListed values are measurements from 2018. Renewable energy share is increasing.Local energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.
A2P014: Annual energy use
A2P014: Annual energy use [GWh/annum]11.31.50078.85.088
A2P015: Annual energy delivered
A2P015: Annual energy delivered [GWh/annum]5.76115.4
A2P016: Annual non-renewable electricity production on-site during target year
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
A2P017: Annual non-renewable thermal production on-site during target year
A2P017: Gasnononononononoyes
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
A2P017: Coalnononononononono
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
A2P017: Oilnononononononono
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
A2P017: Othernononononononono
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
A2P018: Annual renewable electricity imports from outside the boundary during target year
A2P018: PVnonoyesnonononoyes
A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
A2P018: Windnonoyesnonononono
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
A2P018: Hydrononoyesnonononono
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_elnononononononono
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Biomass_peat_elnononononononono
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
A2P018: PVT_elnononononononono
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
A2P018: Othernoyesnononononono
A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.26
A2P019: Annual renewable thermal imports from outside the boundary during target year
A2P019: Geothermalnononononononono
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Solar Thermalnonoyesnonononono
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_heatnonoyesnonononono
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: Waste heat+HPnonoyesnonononono
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_peat_heatnononononononono
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
A2P019: PVT_thnononononononono
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Biomass_firewood_thnononononononono
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
A2P019: Othernononononononono
A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
A2P020: Share of RES on-site / RES outside the boundary
A2P020: Share of RES on-site / RES outside the boundary01.0532319391635000001.4540311173975
A2P021: GHG-balance calculated for the PED
A2P021: GHG-balance calculated for the PED [tCO2/annum]98000.036-6.035450000
A2P022: KPIs related to the PED case study / PED Lab
A2P022: Safety & SecurityPersonal Safety
A2P022: HealthHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)
A2P022: Education
A2P022: MobilityxSustainable mobility
A2P022: EnergyOn-site energy ratioxEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissions
A2P022: Waterx
A2P022: Economic developmentxEconomic Performance: capital costs, operational costs, overall performance
A2P022: Housing and Communityxdemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousness
A2P022: Waste
A2P022: OtherSmartness and Flexibility
A2P023: Technological Solutions / Innovations - Energy Generation
A2P023: Photovoltaicsyesyesyesyesyesyesyesyes
A2P023: Solar thermal collectorsnononoyesyesnonono
A2P023: Wind Turbinesnononononononono
A2P023: Geothermal energy systemnoyesnoyesnoyesnono
A2P023: Waste heat recoverynoyesyesyesnonoyesno
A2P023: Waste to energynononoyesnononono
A2P023: Polygenerationnononononononono
A2P023: Co-generationnonononoyesnonono
A2P023: Heat Pumpnonoyesyesnoyesyesyes
A2P023: Hydrogennononononononono
A2P023: Hydropower plantnononononononono
A2P023: Biomassyesnononoyesnonono
A2P023: Biogasyesnonononononono
A2P023: OtherThe Co-generation is biomass based.
A2P024: Technological Solutions / Innovations - Energy Flexibility
A2P024: A2P024: Information and Communication Technologies (ICT)yesyesyesyesyesyesyesno
A2P024: Energy management systemyesyesnoyesyesyesyesno
A2P024: Demand-side managementnonononoyesyesyesno
A2P024: Smart electricity gridnoyesnonononoyesno
A2P024: Thermal Storagenoyesyesyesyesnonono
A2P024: Electric Storagenoyesnoyesyesnonono
A2P024: District Heating and Coolingyesnoyesyesyesnoyesno
A2P024: Smart metering and demand-responsive control systemsnononoyesyesyesnono
A2P024: P2P – buildingsnononononononono
A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
A2P025: Technological Solutions / Innovations - Energy Efficiency
A2P025: Deep Retrofittingyesnonononononoyes
A2P025: Energy efficiency measures in historic buildingsnononoyesnononono
A2P025: High-performance new buildingsnoyesyesyesyesyesyesno
A2P025: Smart Public infrastructure (e.g. smart lighting)yesyesyesyesnonoyesno
A2P025: Urban data platformsyesnonoyesnonoyesno
A2P025: Mobile applications for citizensyesnoyesnonononono
A2P025: Building services (HVAC & Lighting)noyesnononoyesyesyes
A2P025: Smart irrigationnonoyesnonononono
A2P025: Digital tracking for waste disposalnononononononono
A2P025: Smart surveillanceyesnonononononono
A2P025: Other
A2P026: Technological Solutions / Innovations - Mobility
A2P026: Efficiency of vehicles (public and/or private)yesnoyesnononoyesno
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesyesyesnononoyesno
A2P026: e-Mobilityyesyesyesyesyesnoyesno
A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnononoyesno
A2P026: Car-free areanonoyesnonononono
A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
A2P027: Mobility strategies - Additional notes
A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
A2P028: Energy efficiency certificates
A2P028: Energy efficiency certificatesYesYesYesYesYesYesNoNo
A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate => Energy efficiency class B (2018 version)Energieausweis mandatory if buildings/ flats/ apartments are soldEnergy Performance CertificatePassive house (2 buildings, 4 200 m2, from 2015)NS3700 Norwegian Passive House
A2P029: Any other building / district certificates
A2P029: Any other building / district certificatesYesYesYesNoNo
A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)Klimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/goldZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
A3P001: Relevant city /national strategy
A3P001: Relevant city /national strategy
  • Energy master planning (SECAP, etc.)
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Smart cities strategies,
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Energy master planning (SECAP, etc.),
  • New development strategies,
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Promotion of energy communities (REC/CEC),
  • National / international city networks addressing sustainable urban development and climate neutrality
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract)
  • Energy master planning (SECAP, etc.),
  • Climate change adaption plan/strategy (e.g. Climate City contract),
  • National / international city networks addressing sustainable urban development and climate neutrality
A3P002: Quantitative targets included in the city / national strategy
A3P002: Quantitative targets included in the city / national strategyRelevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supplyKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.
A3P003: Strategies towards decarbonization of the gas grid
A3P003: Strategies towards decarbonization of the gas grid
  • Biogas,
  • Hydrogen
  • Electrification of Heating System based on Heat Pumps,
  • Electrification of Cooking Methods,
  • Biogas
  • Electrification of Heating System based on Heat Pumps,
  • Electrification of Cooking Methods,
  • Biogas
  • Electrification of Heating System based on Heat Pumps
A3P003: Other
A3P004: Identification of needs and priorities
A3P004: Identification of needs and priorities- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.Reininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared officesAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.
A3P005: Sustainable behaviour
A3P005: Sustainable behaviourFor Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.
A3P006: Economic strategies
A3P006: Economic strategies
  • Innovative business models,
  • PPP models,
  • Life Cycle Cost,
  • Existing incentives
  • Innovative business models
  • PPP models,
  • Local trading
  • Innovative business models,
  • Blockchain
  • PPP models,
  • Circular economy models
A3P006: Other
A3P007: Social models
A3P007: Social models
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Citizen Social Research,
  • Policy Forums,
  • Social incentives,
  • Quality of Life,
  • Prevention of energy poverty,
  • Digital Inclusion,
  • Citizen/owner involvement in planning and maintenance,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Co-creation / Citizen engagement strategies
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Behavioural Change / End-users engagement,
  • Social incentives,
  • Quality of Life,
  • Affordability,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Citizen Social Research,
  • Prevention of energy poverty,
  • Citizen/owner involvement in planning and maintenance
  • Behavioural Change / End-users engagement,
  • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
  • Other
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Quality of Life
  • Strategies towards (local) community-building,
  • Co-creation / Citizen engagement strategies,
  • Affordability
A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
A3P008: Integrated urban strategies
A3P008: Integrated urban strategies
  • Strategic urban planning,
  • City Vision 2050,
  • SECAP Updates
  • Building / district Certification
  • Strategic urban planning,
  • City Vision 2050,
  • Building / district Certification
  • Strategic urban planning,
  • District Energy plans,
  • City Vision 2050,
  • SECAP Updates
  • Strategic urban planning,
  • Digital twinning and visual 3D models,
  • District Energy plans
  • Digital twinning and visual 3D models,
  • District Energy plans,
  • SECAP Updates
A3P008: Other
A3P009: Environmental strategies
A3P009: Environmental strategies
  • Net zero carbon footprint,
  • Carbon-free,
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
  • Other
  • Pollutants Reduction,
  • Greening strategies,
  • Sustainable Urban drainage systems (SUDS),
  • Nature Based Solutions (NBS)
  • Energy Neutral
  • Low Emission Zone
  • Net zero carbon footprint,
  • Life Cycle approach,
  • Greening strategies,
  • Nature Based Solutions (NBS)
  • Energy Neutral,
  • Low Emission Zone,
  • Pollutants Reduction
A3P009: OtherCarbon free in terms of energy
A3P010: Legal / Regulatory aspects
A3P010: Legal / Regulatory aspects- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021Mobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.
B1P001: PED/PED relevant concept definition
B1P001: PED/PED relevant concept definitionLippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.Implementation of district level heating system to make heating energy positive and expanding local renewable electricity production.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).
B1P002: Motivation behind PED/PED relevant project development
B1P002: Motivation behind PED/PED relevant project development- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersThe Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.
B1P003: Environment of the case study area
B2P003: Environment of the case study areaUrban areaUrban areaUrban areaRuralSuburban areaUrban areaUrban area
B1P004: Type of district
B2P004: Type of district
  • Renovation
  • New construction
  • New construction
  • New construction,
  • Renovation
  • New construction
  • New construction
  • Renovation
B1P005: Case Study Context
B1P005: Case Study Context
  • Retrofitting Area
  • Re-use / Transformation Area,
  • New Development
  • New Development
  • Retrofitting Area
  • New Development
  • Re-use / Transformation Area
  • Retrofitting Area
B1P006: Year of construction
B1P006: Year of construction202220252005
B1P007: District population before intervention - Residential
B1P007: District population before intervention - Residential45000
B1P008: District population after intervention - Residential
B1P008: District population after intervention - Residential1000014000
B1P009: District population before intervention - Non-residential
B1P009: District population before intervention - Non-residential0
B1P010: District population after intervention - Non-residential
B1P010: District population after intervention - Non-residential10000
B1P011: Population density before intervention
B1P011: Population density before intervention00000000
B1P012: Population density after intervention
B1P012: Population density after intervention000.010000.0413793103448280
B1P013: Building and Land Use before intervention
B1P013: Residentialyesnononononoyesyes
B1P013 - Residential: Specify the sqm [m²]102795
B1P013: Officenonononononoyesno
B1P013 - Office: Specify the sqm [m²]
B1P013: Industry and Utilitynonoyesnonoyesyesno
B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
B1P013: Commercialyesyesnononononono
B1P013 - Commercial: Specify the sqm [m²]
B1P013: Institutionalnononononononono
B1P013 - Institutional: Specify the sqm [m²]
B1P013: Natural areasyesyesyesnonononono
B1P013 - Natural areas: Specify the sqm [m²]
B1P013: Recreationalyesnonononononono
B1P013 - Recreational: Specify the sqm [m²]
B1P013: Dismissed areasnonononononoyesno
B1P013 - Dismissed areas: Specify the sqm [m²]
B1P013: Othernononononononono
B1P013 - Other: Specify the sqm [m²]
B1P014: Building and Land Use after intervention
B1P014: Residentialyesyesyesnonoyesyesyes
B1P014 - Residential: Specify the sqm [m²]102795
B1P014: Officenonoyesnononoyesno
B1P014 - Office: Specify the sqm [m²]
B1P014: Industry and Utilitynononononononono
B1P014 - Industry and Utility: Specify the sqm [m²]
B1P014: Commercialyesyesyesnononoyesno
B1P014 - Commercial: Specify the sqm [m²]
B1P014: Institutionalnonoyesnonononono
B1P014 - Institutional: Specify the sqm [m²]
B1P014: Natural areasyesnoyesnonononono
B1P014 - Natural areas: Specify the sqm [m²]
B1P014: Recreationalyesnoyesnononoyesno
B1P014 - Recreational: Specify the sqm [m²]
B1P014: Dismissed areasnononononononono
B1P014 - Dismissed areas: Specify the sqm [m²]
B1P014: Othernononononononono
B1P014 - Other: Specify the sqm [m²]
B2P001: PED Lab concept definition
B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
B2P002: Installation life time
B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
B2P003: Scale of action
B2P003: ScaleDistrictDistrict
B2P004: Operator of the installation
B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
B2P005: Replication framework: Applied strategy to reuse and recycling the materials
B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
B2P006: Circular Economy Approach
B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
B2P006: Other
B2P007: Motivation for developing the PED Lab
B2P007: Motivation for developing the PED Lab
  • Strategic
  • Civic
B2P007: Other
B2P008: Lead partner that manages the PED Lab
B2P008: Lead partner that manages the PED LabMunicipalityMunicipality
B2P008: Other
B2P009: Collaborative partners that participate in the PED Lab
B2P009: Collaborative partners that participate in the PED Lab
  • Academia,
  • Private,
  • Industrial,
  • Citizens, public, NGO
  • Academia,
  • Private,
  • Industrial,
  • Other
B2P009: Otherresearch companies, monitoring company, ict company
B2P010: Synergies between the fields of activities
B2P010: Synergies between the fields of activities
B2P011: Available facilities to test urban configurations in PED Lab
B2P011: Available facilities to test urban configurations in PED Lab
  • Buildings,
  • Prosumers,
  • Renewable generation,
  • Energy networks,
  • Lighting,
  • E-mobility,
  • Green areas,
  • User interaction/participation,
  • Information and Communication Technologies (ICT)
  • Buildings,
  • Demand-side management,
  • Energy storage,
  • Energy networks,
  • Waste management,
  • Lighting,
  • E-mobility,
  • Information and Communication Technologies (ICT),
  • Social interactions,
  • Business models
B2P011: Other
B2P012: Incubation capacities of PED Lab
B2P012: Incubation capacities of PED Lab
  • Monitoring and evaluation infrastructure,
  • Pivoting and risk-mitigating measures
  • Tools for prototyping and modelling
B2P013: Availability of the facilities for external people
B2P013: Availability of the facilities for external people
B2P014: Monitoring measures
B2P014: Monitoring measures
  • Available data,
  • Life Cycle Analysis
  • Execution plan,
  • Available data,
  • Type of measured data,
  • Equipment,
  • Level of access
B2P015: Key Performance indicators
B2P015: Key Performance indicators
  • Energy,
  • Sustainability,
  • Social,
  • Economical / Financial
  • Energy,
  • Social,
  • Economical / Financial
B2P016: Execution of operations
B2P016: Execution of operations
B2P017: Capacities
B2P017: Capacities
B2P018: Relations with stakeholders
B2P018: Relations with stakeholders
B2P019: Available tools
B2P019: Available tools
  • Social models
  • Energy modelling,
  • Social models,
  • Business and financial models
B2P019: Available tools
B2P020: External accessibility
B2P020: External accessibility
C1P001: Unlocking Factors
C1P001: Recent technological improvements for on-site RES production3 - Moderately important4 - Important3 - Moderately important3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important4 - Important4 - Important4 - Important
C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
C1P001: Storage systems and E-mobility market penetration2 - Slightly important4 - Important2 - Slightly important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant
C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important2 - Slightly important
C1P001: Social acceptance (top-down)4 - Important2 - Slightly important4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important2 - Slightly important5 - Very important4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important
C1P001: Presence of integrated urban strategies and plans5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important
C1P001: Multidisciplinary approaches available for systemic integration4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important4 - Important
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important4 - Important5 - Very important
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P001: Any other UNLOCKING FACTORS (if any)
C1P002: Driving Factors
C1P002: Climate Change adaptation need5 - Very important5 - Very important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important
C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important
C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
C1P002: Economic growth need2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important
C1P002: Territorial and market attractiveness3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important5 - Very important
C1P002: Energy autonomy/independence4 - Important4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important5 - Very important
C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
C1P003: Administrative barriers
C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
C1P003: Lack of public participation1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important
C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
C1P003: Fragmented and or complex ownership structure5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important
C1P003: Lack of internal capacities to support energy transition4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P003: Any other Administrative BARRIER (if any)
C1P004: Policy barriers
C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important5 - Very important
C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important
C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P004: Any other Political BARRIER (if any)
C1P005: Legal and Regulatory barriers
C1P005: Inadequate regulations for new technologies4 - Important2 - Slightly important1 - Unimportant4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important
C1P005: Regulatory instability3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
C1P005: Non-effective regulations4 - Important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important5 - Very important
C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
C1P005: Insufficient or insecure financial incentives3 - Moderately important2 - Slightly important4 - Important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important
C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P005: Any other Legal and Regulatory BARRIER (if any)
C1P006: Environmental barriers
C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
C1P007: Technical barriers
C1P007: Lack of skilled and trained personnel3 - Moderately important4 - Important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
C1P007: Deficient planning1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
C1P007: Retrofitting work in dwellings in occupied state5 - Very important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important2 - Slightly important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important
C1P007: Grid congestion, grid instability2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
C1P007: Difficult definition of system boundaries5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
C1P008: Social and Cultural barriers
C1P008: Inertia4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
C1P008: Low acceptance of new projects and technologies2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important
C1P008: Lack of trust beyond social network2 - Slightly important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
C1P008: Rebound effect3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
C1P008: Exclusion of socially disadvantaged groups2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important4 - Important
C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P008: Any other Social BARRIER (if any)
C1P009: Information and Awareness barriers
C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important
C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important4 - Important
C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
C1P009: High costs of design, material, construction, and installation5 - Very important4 - Important4 - Important4 - Important5 - Very important4 - Important4 - Important5 - Very important
C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
C1P010: Financial barriers
C1P010: Hidden costs5 - Very important2 - Slightly important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important4 - Important
C1P010: Insufficient external financial support and funding for project activities5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important
C1P010: Economic crisis3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
C1P010: Risk and uncertainty4 - Important3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important4 - Important3 - Moderately important4 - Important
C1P010: Lack of consolidated and tested business models3 - Moderately important4 - Important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important
C1P010: Limited access to capital and cost disincentives4 - Important3 - Moderately important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important5 - Very important
C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P010: Any other Financial BARRIER (if any)
C1P011: Market barriers
C1P011: Split incentives4 - Important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
C1P011: Energy price distortion3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
C1P011: Any other Market BARRIER (if any)
C1P012: Stakeholders involved
C1P012: Government/Public Authorities
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation
C1P012: Research & Innovation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation
C1P012: Financial/Funding
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
  • Design/demand aggregation,
  • Construction/implementation
C1P012: Analyst, ICT and Big Data
  • Planning/leading,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Monitoring/operation/management
  • Planning/leading,
  • Monitoring/operation/management
C1P012: Business process management
  • Planning/leading
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • None
  • Planning/leading
  • Planning/leading
  • Design/demand aggregation,
  • Construction/implementation
C1P012: Urban Services providers
  • Construction/implementation
  • None
  • Planning/leading,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Construction/implementation
C1P012: Real Estate developers
  • None
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation
  • Planning/leading,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Design/Construction companies
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Construction/implementation
  • Construction/implementation
  • Design/demand aggregation,
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
C1P012: End‐users/Occupants/Energy Citizens
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Design/demand aggregation
  • None
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
C1P012: Social/Civil Society/NGOs
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
  • Design/demand aggregation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation
  • None
  • Planning/leading
C1P012: Industry/SME/eCommerce
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation,
  • Monitoring/operation/management
  • Construction/implementation
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
C1P012: Other
  • None
  • Planning/leading,
  • Design/demand aggregation,
  • Construction/implementation
C1P012: Other (if any)
Summary

Authors (framework concept)

Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

Contributors (to the content)

Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

Implemented by

Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)