Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Barcelona, Santa Coloma de Gramenet
Izmir, District of Karşıyaka
Groningen, PED South
Maia, Sobreiro Social Housing
Leipzig, Baumwollspinnerei district
Innsbruck, Campagne-Areal
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaBarcelona, Santa Coloma de GramenetIzmir, District of KarşıyakaGroningen, PED SouthMaia, Sobreiro Social HousingLeipzig, Baumwollspinnerei districtInnsbruck, Campagne-Areal
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnonoyesno
PED relevant case studyyesnononononoyes
PED Lab.yesnonoyesyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesyesyesyesyes
Annual energy surplusnoyesyesyesnonono
Energy communitynononoyesnonono
Circularityyesnonoyesnonono
Air quality and urban comfortnoyesyesnonoyesno
Electrificationyesnonononoyesno
Net-zero energy costnonoyesnononono
Net-zero emissionyesnonoyesnonoyes
Self-sufficiency (energy autonomous)nonononononono
Maximise self-sufficiencyyesnoyesnoyesnono
Othernononononoyesno
Other (A1P004)Net-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseImplementation PhasePlanning PhaseImplementation PhasePlanning PhaseImplementation PhaseCompleted
A1P006: Start Date
A1P006: Start date02/1610/2212/1810/2104/16
A1P007: End Date
A1P007: End date07/2210/2512/2310/2404/22
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • TNO, Hanze, RUG,
  • Ped noord book
      A1P011: Geographic coordinates
      X Coordinate (longitude):26.7227372.1627.1100496.590655-8.37355712.31845811.424346738140256
      Y Coordinate (latitude):58.38071341.3938.49605453.20408741.13580451.32649247.271470786729104
      A1P012: Country
      A1P012: CountryEstoniaSpainTurkeyNetherlandsPortugalGermanyAustria
      A1P013: City
      A1P013: CityTartuBarcelonaİzmirGroningenMaiaLeipzigInnsbruck
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).DfbCsaCsaCfaCsbDfbDfb
      A1P015: District boundary
      A1P015: District boundaryFunctionalGeographicGeographicFunctionalVirtualFunctionalGeographic
      OtherGeographic
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PrivatePrivatePrivateMixedPublicMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED18162142224
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]35217215421027957.861700022277
      A1P020: Total ground area
      A1P020: Total ground area [m²]7931443260045.0933000011351
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area0030012
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesnonoyesnonono
      A1P022a: Add the value in EUR if available [EUR]6500000
      A1P022b: Financing - PRIVATE - ESCO schemenonononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernononoyesyesnono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingyesnononononono
      A1P022d: Add the value in EUR if available [EUR]4000000
      A1P022e: Financing - PUBLIC - National fundingyesnonoyesyesnono
      A1P022e: Add the value in EUR if available [EUR]8000000
      A1P022f: Financing - PUBLIC - Regional fundingnonononoyesnono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnonono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernonononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesyesyesnono
      A1P022i: Add the value in EUR if available [EUR]5039031193355
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnononoyes
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Positive externalities
      • Positive externalities
      • Positive externalities,
      • Boosting local and sustainable production
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local and sustainable production
      • Job creation,
      • Other
      A1P023: OtherSustainable and replicable business models regarding renewable energy systemsCreate affordable appartments for the citizens
      A1P024: More comments:
      A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]25
      Contact person for general enquiries
      A1P026: NameJaanus TammJaume SalomOzlem SenyolJasper Tonen, Elisabeth KoopsAdelina RodriguesSimon BaumGeorgios Dermentzis
      A1P027: OrganizationTartu City GovernmentIRECKarsiyaka MunicipalityMunicipality of GroningenMaia Municipality (CM Maia) – Energy and Mobility divisionCENERO Energy GmbHUniversity of Innsbruck
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesOtherResearch Center / University
      A1P028: OtherCENERO Energy GmbH
      A1P029: EmailJaanus.tamm@tartu.eejsalom@irec.catozlemkocaer2@gmail.comJasper.tonen@groningen.nldscm.adelina@cm-maia.ptsib@cenero.deGeorgios.Dermentzis@uibk.ac.at
      Contact person for other special topics
      A1P030: NameKaspar AlevJoan Estrada AliberasHasan Burak CavkaCarolina Gonçalves (AdEPorto)Simon Baum
      A1P031: EmailKaspar.alev@tartu.eej_estrada@gencat.cathasancavka@iyte.edu.trcarolinagoncalves@adeporto.eusib@cenero.de
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.)
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      • Energy efficiency,
      • Energy production,
      • Indoor air quality
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)- Integrated energy design process of both active and passive elements - Multicriteria analysis of energy system, environmental variables, indoor comfort and economic parameters - Energy modelling - Predictive control to optimize performance within the neighbourhoodMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoYesNoNoNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYesNoYesNoYesYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationMobility is not included in the calculations.Mobility, till now, is not included in the energy model.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.13.8621.861.650.39
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]1.2261.450.655
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]00
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesyesnoyesyesyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.051.0280.42
      A2P011: Windnonononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernoyesnonononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnononoyesnonono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalyesnonoyesyesnono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
      A2P012: Biomass_heatnononoyesnonono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnononoyesnonono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnonononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnononoyesnonono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnonononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notes-Rooftop PV 39.1 kWp -4 pipe air-to-water heat pump to cover heating and coolingGeothermal heatpump systems, Waste heat from data centers
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]0.0335.0882.4210.96
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]0.030-2
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonoyesnononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonoyesnononono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
      A2P018: Windnonononononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary001.45403111739750000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]980
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Security
      A2P022: HealthCarbon Dioxide (CO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levelsindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
      A2P022: Education
      A2P022: Mobility
      A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsapplySpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.
      A2P022: Water
      A2P022: Economic development: Investment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison
      A2P022: Housing and Community: Access to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesyesyesnoyes
      A2P023: Solar thermal collectorsnononoyesyesnono
      A2P023: Wind Turbinesnonononononono
      A2P023: Geothermal energy systemnononoyesnonono
      A2P023: Waste heat recoverynononoyesnonono
      A2P023: Waste to energynononoyesnonono
      A2P023: Polygenerationnonononononono
      A2P023: Co-generationnonononononono
      A2P023: Heat Pumpnoyesyesyesyesnoyes
      A2P023: Hydrogennonononononono
      A2P023: Hydropower plantnonononononono
      A2P023: Biomassyesnononononono
      A2P023: Biogasyesnononononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesnonoyesyesnono
      A2P024: Energy management systemyesyesnoyesyesnono
      A2P024: Demand-side managementnoyesnonononono
      A2P024: Smart electricity gridnonononononono
      A2P024: Thermal Storagenononoyesnonoyes
      A2P024: Electric Storagenononoyesyesnono
      A2P024: District Heating and Coolingyesnonoyesnonoyes
      A2P024: Smart metering and demand-responsive control systemsnononoyesyesnono
      A2P024: P2P – buildingsnonononononoyes
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingyesnoyesnoyesnono
      A2P025: Energy efficiency measures in historic buildingsnononoyesnonono
      A2P025: High-performance new buildingsnoyesnoyesnonoyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonoyesyesnono
      A2P025: Urban data platformsyesnonoyesnonono
      A2P025: Mobile applications for citizensyesnononononono
      A2P025: Building services (HVAC & Lighting)noyesyesnoyesnoyes
      A2P025: Smart irrigationnonononononono
      A2P025: Digital tracking for waste disposalnonononoyesnono
      A2P025: Smart surveillanceyesnononononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)yesnononoyesnono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnononononono
      A2P026: e-Mobilityyesnonoyesyesnono
      A2P026: Soft mobility infrastructures and last mile solutionsnonononononono
      A2P026: Car-free areanonononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesNoYesYesYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateEnergy Performance CertificateThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.Two buildings are certified "Passive House new build"
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.)
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Smart cities strategies
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Biogas,
      • Hydrogen
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      • Other
      • Biogas
      • Electrification of Heating System based on Heat Pumps,
      • Other
      A3P003: OtherAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.District heating based mainly on heat pumps and renewable sources
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.The priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Existing incentives
      • Innovative business models,
      • Blockchain
      • Innovative business models,
      • PPP models,
      • Existing incentives
      • Innovative business models,
      • Other
      A3P006: Otheroperational savings through efficiency measures
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Social incentives,
      • Quality of Life,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Affordability
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Co-creation / Citizen engagement strategies,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Behavioural Change / End-users engagement
      • Co-creation / Citizen engagement strategies,
      • Social incentives,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Net zero carbon footprint,
      • Carbon-free,
      • Pollutants Reduction,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction
      • Energy Neutral
      • Energy Neutral,
      • Net zero carbon footprint,
      • Pollutants Reduction
      • Other
      • Energy Neutral,
      • Low Emission Zone
      A3P009: OtherPositive Energy Balance for the demo site
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionThe pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentSince it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • New construction
      • Renovation
      • New construction
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Retrofitting Area
      • New Development
      • Retrofitting Area
      • Preservation Area
      • Re-use / Transformation Area,
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction20052022
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential4500
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential780
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention0000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention0000000.068716412650868
      B1P013: Building and Land Use before intervention
      B1P013: Residentialyesyesyesnononono
      B1P013 - Residential: Specify the sqm [m²]102795
      B1P013: Officenonononononono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynonononononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialyesnononononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasyesnononononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalyesnononononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernonononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialyesyesyesnononoyes
      B1P014 - Residential: Specify the sqm [m²]102795
      B1P014: Officenonononononono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynonononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialyesnononononoyes
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnonononononoyes
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasyesnononononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalyesnononononoyes
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnonononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernonononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.Permanent installation
      B2P003: Scale of action
      B2P003: ScaleDistrictDistrictVirtual
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.CM Maia, IPMAIA, NEW, AdEP.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic
      • Civic
      • Strategic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityMunicipalityMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      • Academia,
      • Private,
      • Industrial,
      • Other
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO,
      • Other
      B2P009: Otherresearch companies, monitoring company, ict companyEnergy Agency
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Prosumers,
      • Renewable generation,
      • Energy networks,
      • Lighting,
      • E-mobility,
      • Green areas,
      • User interaction/participation,
      • Information and Communication Technologies (ICT)
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Energy storage,
      • Efficiency measures,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Ambient measures,
      • Social interactions
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Pivoting and risk-mitigating measures
      • Tools for prototyping and modelling
      • Monitoring and evaluation infrastructure,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Available data,
      • Life Cycle Analysis
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      • Execution plan,
      • Available data,
      • Type of measured data
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Sustainability,
      • Social,
      • Economical / Financial
      • Energy,
      • Social,
      • Economical / Financial
      • Energy,
      • Environmental,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
      B2P017: Capacities
      B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
      B2P019: Available tools
      B2P019: Available tools
      • Social models
      • Energy modelling,
      • Social models,
      • Business and financial models
      • Energy modelling,
      • Social models,
      • Business and financial models,
      • Fundraising and accessing resources,
      • Matching actors
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important2 - Slightly important
      C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important
      C1P001: Storage systems and E-mobility market penetration2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important
      C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant
      C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important
      C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important1 - Unimportant2 - Slightly important5 - Very important4 - Important2 - Slightly important
      C1P001: Social acceptance (top-down)4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important3 - Moderately important
      C1P001: Presence of integrated urban strategies and plans5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important4 - Important
      C1P001: Multidisciplinary approaches available for systemic integration4 - Important1 - Unimportant4 - Important2 - Slightly important4 - Important4 - Important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important
      C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant5 - Very important4 - Important4 - Important3 - Moderately important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important3 - Moderately important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need5 - Very important1 - Unimportant5 - Very important2 - Slightly important5 - Very important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
      C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important3 - Moderately important
      C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important3 - Moderately important
      C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important4 - Important4 - Important
      C1P002: Energy autonomy/independence4 - Important1 - Unimportant5 - Very important2 - Slightly important4 - Important4 - Important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important2 - Slightly important
      C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important2 - Slightly important
      C1P003: Lack of public participation1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important1 - Unimportant
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant
      C1P003: Fragmented and or complex ownership structure5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant
      C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant
      C1P005: Regulatory instability3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant
      C1P005: Non-effective regulations4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant
      C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant
      C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
      C1P005: Insufficient or insecure financial incentives3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1Urban area very high buildings (and apartment) density and thus, less available space for renewable sources.
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important2 - Slightly important
      C1P007: Deficient planning1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state5 - Very important1 - Unimportant5 - Very important2 - Slightly important4 - Important1 - Unimportant
      C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
      C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant
      C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P007: Grid congestion, grid instability2 - Slightly important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
      C1P007: Difficult definition of system boundaries5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
      C1P008: Low acceptance of new projects and technologies2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P008: Lack of trust beyond social network2 - Slightly important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant
      C1P008: Rebound effect3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important4 - Important1 - Unimportant
      C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant
      C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
      C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
      C1P009: High costs of design, material, construction, and installation5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs5 - Very important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant
      C1P010: Insufficient external financial support and funding for project activities5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
      C1P010: Economic crisis3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important
      C1P010: Risk and uncertainty4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
      C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant
      C1P010: Limited access to capital and cost disincentives4 - Important1 - Unimportant5 - Very important2 - Slightly important4 - Important1 - Unimportant
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant
      C1P011: Energy price distortion3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Planning/leading,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading
      • Planning/leading
      C1P012: Urban Services providers
      • Construction/implementation
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: Real Estate developers
      • None
      • Construction/implementation
      • Planning/leading
      C1P012: Design/Construction companies
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)