Name | Project | Type | Compare |
---|---|---|---|
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Compare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Uncompare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Uncompare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Compare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Uncompare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Compare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Compare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Uncompare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Compare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Uncompare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Compare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Title | Tartu, City centre area | Barcelona, Santa Coloma de Gramenet | Borlänge, Rymdgatan’s Residential Portfolio | Amsterdam, Buiksloterham PED | Stor-Elvdal, Campus Evenstad | Schönbühel-Aggsbach, Schönbühel an der Donau |
---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | ||||||
A1P001: Name of the PED case study / PED Lab | Tartu, City centre area | Barcelona, Santa Coloma de Gramenet | Borlänge, Rymdgatan’s Residential Portfolio | Amsterdam, Buiksloterham PED | Stor-Elvdal, Campus Evenstad | Schönbühel-Aggsbach, Schönbühel an der Donau |
A1P002: Map / aerial view / photos / graphic details / leaflet | ||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
| |||||
A1P003: Categorisation of the PED site | ||||||
PED case study | no | yes | no | yes | no | no |
PED relevant case study | yes | no | yes | no | yes | yes |
PED Lab. | yes | no | no | no | no | no |
A1P004: Targets of the PED case study / PED Lab | ||||||
Climate neutrality | yes | yes | yes | yes | yes | yes |
Annual energy surplus | no | yes | yes | yes | yes | no |
Energy community | no | no | yes | yes | no | yes |
Circularity | yes | no | no | yes | no | no |
Air quality and urban comfort | no | yes | no | no | no | no |
Electrification | yes | no | yes | yes | no | no |
Net-zero energy cost | no | no | no | no | no | yes |
Net-zero emission | yes | no | no | yes | no | no |
Self-sufficiency (energy autonomous) | no | no | no | no | no | no |
Maximise self-sufficiency | yes | no | yes | no | no | yes |
Other | no | no | no | no | yes | no |
Other (A1P004) | Energy-flexibility | |||||
A1P005: Phase of the PED case study / PED Lab | ||||||
A1P005: Project Phase of your case study/PED Lab | Implementation Phase | Implementation Phase | Planning Phase | Implementation Phase | In operation | Implementation Phase |
A1P006: Start Date | ||||||
A1P006: Start date | 02/16 | 11/19 | 01/13 | |||
A1P007: End Date | ||||||
A1P007: End date | 07/22 | 10/25 | 12/24 | |||
A1P008: Reference Project | ||||||
A1P008: Reference Project | ||||||
A1P009: Data availability | ||||||
A1P009: Data availability |
|
|
|
|
|
|
A1P009: Other | https://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/ | |||||
A1P010: Sources | ||||||
Any publication, link to website, deliverable referring to the PED/PED Lab | ||||||
A1P011: Geographic coordinates | ||||||
X Coordinate (longitude): | 26.722737 | 2.16 | 15.394495 | 4.9041 | 11.078770773531746 | 15.3969 |
Y Coordinate (latitude): | 58.380713 | 41.39 | 60.486609 | 52.3676 | 61.42604420399112 | 48.2752 |
A1P012: Country | ||||||
A1P012: Country | Estonia | Spain | Sweden | Netherlands | Norway | Austria |
A1P013: City | ||||||
A1P013: City | Tartu | Barcelona | Borlänge | Amsterdam | Evenstad, Stor-Elvdal municipality | Schönbühel an der Donau |
A1P014: Climate Zone (Köppen Geiger classification) | ||||||
A1P014: Climate Zone (Köppen Geiger classification). | Dfb | Csa | Dsb | Cfb | Dwc | Dfb |
A1P015: District boundary | ||||||
A1P015: District boundary | Functional | Geographic | Geographic | Functional | Geographic | Geographic |
Other | ||||||
A1P016: Ownership of the case study/PED Lab | ||||||
A1P016: Ownership of the case study/PED Lab: | Private | Private | Mixed | Mixed | Public | Private |
A1P017: Ownership of the land / physical infrastructure | ||||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Single Owner | Single Owner | Multiple Owners | Single Owner | Multiple Owners |
A1P018: Number of buildings in PED | ||||||
A1P018: Number of buildings in PED | 18 | 16 | 10 | 60 | 22 | 0 |
A1P019: Conditioned space | ||||||
A1P019: Conditioned space [m²] | 35217 | 21542 | 3700 | 28500 | 10000 | 477 |
A1P020: Total ground area | ||||||
A1P020: Total ground area [m²] | 793144 | 9945 | 2450 | |||
A1P021: Floor area ratio: Conditioned space / total ground area | ||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 0 | 0 | 0 | 0 | 0 |
A1P022: Financial schemes | ||||||
A1P022a: Financing - PRIVATE - Real estate | yes | no | no | yes | no | yes |
A1P022a: Add the value in EUR if available [EUR] | 6500000 | |||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | ||||||
A1P022c: Financing - PRIVATE - Other | no | no | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | ||||||
A1P022d: Financing - PUBLIC - EU structural funding | yes | no | no | no | no | no |
A1P022d: Add the value in EUR if available [EUR] | 4000000 | |||||
A1P022e: Financing - PUBLIC - National funding | yes | no | no | no | yes | yes |
A1P022e: Add the value in EUR if available [EUR] | 8000000 | |||||
A1P022f: Financing - PUBLIC - Regional funding | no | no | no | no | no | yes |
A1P022f: Add the value in EUR if available [EUR] | ||||||
A1P022g: Financing - PUBLIC - Municipal funding | no | no | no | no | no | no |
A1P022g: Add the value in EUR if available [EUR] | ||||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | ||||||
A1P022i: Financing - RESEARCH FUNDING - EU | no | yes | no | yes | no | no |
A1P022i: Add the value in EUR if available [EUR] | 503903 | |||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | no | no | yes | no |
A1P022j: Add the value in EUR if available [EUR] | ||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no |
A1P022k: Add the value in EUR if available [EUR] | ||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | ||||||
A1P022: Other | ||||||
A1P023: Economic Targets | ||||||
A1P023: Economic Targets |
|
|
|
|
| |
A1P023: Other | ||||||
A1P024: More comments: | ||||||
A1P024: More comments: | ||||||
A1P025: Estimated PED case study / PED LAB costs | ||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | 25 | |||||
Contact person for general enquiries | ||||||
A1P026: Name | Jaanus Tamm | Jaume Salom | Jingchun Shen | Omar Shafqat | Åse Lekang Sørensen | Ghazal Etminan |
A1P027: Organization | Tartu City Government | IREC | Högskolan Dalarna | Amsterdam University of Applied Sciences | SINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities | Ghazal.Etminan@ait.ac.at |
A1P028: Affiliation | Municipality / Public Bodies | Research Center / University | Research Center / University | Research Center / University | Research Center / University | Research Center / University |
A1P028: Other | ||||||
A1P029: Email | Jaanus.tamm@tartu.ee | jsalom@irec.cat | jih@du.se | o.shafqat@hva.nl | ase.sorensen@sintef.no | Ghazal.Etminan@ait.ac.at |
Contact person for other special topics | ||||||
A1P030: Name | Kaspar Alev | Joan Estrada Aliberas | Xingxing Zhang | Omar Shafqat | ||
A1P031: Email | Kaspar.alev@tartu.ee | j_estrada@gencat.cat | xza@du.se | o.shafqat@hva.nl | ||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes |
A2P001: Fields of application | ||||||
A2P001: Fields of application |
|
|
|
|
|
|
A2P001: Other | ||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | ||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Energy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP) | - Integrated energy design process of both active and passive elements - Multicriteria analysis of energy system, environmental variables, indoor comfort and economic parameters - Energy modelling - Predictive control to optimize performance within the neighbourhood | Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM | City vision, Innovation Ateliers | Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied. | Energy modeling |
A2P003: Application of ISO52000 | ||||||
A2P003: Application of ISO52000 | No | No | Yes | No | No | |
A2P004: Appliances included in the calculation of the energy balance | ||||||
A2P004: Appliances included in the calculation of the energy balance | Yes | No | Yes | No | Yes | Yes |
A2P005: Mobility included in the calculation of the energy balance | ||||||
A2P005: Mobility included in the calculation of the energy balance | No | No | No | No | Yes | No |
A2P006: Description of how mobility is included (or not included) in the calculation | ||||||
A2P006: Description of how mobility is included (or not included) in the calculation | At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance. | |||||
A2P007: Annual energy demand in buildings / Thermal demand | ||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 9.1 | 0.6777 | 0.77 | 0.066 | ||
A2P008: Annual energy demand in buildings / Electric Demand | ||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 0.03656 | 0.76 | 0.012 | |||
A2P009: Annual energy demand for e-mobility | ||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | 0 | |||||
A2P010: Annual energy demand for urban infrastructure | ||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | 0 | |||||
A2P011: Annual renewable electricity production on-site during target year | ||||||
A2P011: PV | yes | yes | no | yes | yes | yes |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 0.05 | 0.065 | ||||
A2P011: Wind | no | no | no | no | no | no |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Hydro | no | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: Biomass_el | no | no | no | yes | yes | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | 0.050 | |||||
A2P011: Biomass_peat_el | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | ||||||
A2P011: PVT_el | no | no | yes | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | 0.01818 | |||||
A2P011: Other | no | yes | no | no | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Annual renewable thermal production on-site during target year | ||||||
A2P012: Geothermal | no | no | no | yes | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Solar Thermal | yes | no | no | no | yes | no |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | 0.5 | 0.045 | ||||
A2P012: Biomass_heat | no | no | no | yes | yes | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | 0.35 | |||||
A2P012: Waste heat+HP | no | no | no | yes | no | no |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: PVT_th | no | no | yes | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | 0.0825 | |||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P012: Other | no | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | ||||||
A2P013: Renewable resources on-site - Additional notes | ||||||
A2P013: Renewable resources on-site - Additional notes | -Rooftop PV 39.1 kWp -4 pipe air-to-water heat pump to cover heating and cooling | Listed values are measurements from 2018. Renewable energy share is increasing. | ||||
A2P014: Annual energy use | ||||||
A2P014: Annual energy use [GWh/annum] | 0.033 | 0.318 | 1.500 | 0.079 | ||
A2P015: Annual energy delivered | ||||||
A2P015: Annual energy delivered [GWh/annum] | 0.030 | 0.2055 | 1 | 0.0011 | ||
A2P016: Annual non-renewable electricity production on-site during target year | ||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | 0 | ||||
A2P017: Annual non-renewable thermal production on-site during target year | ||||||
A2P017: Gas | no | no | no | yes | no | no |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P017: Coal | no | no | no | yes | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P017: Oil | no | no | no | yes | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||
A2P017: Other | no | no | yes | no | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | 0 | |||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | ||||||
A2P018: PV | no | no | no | yes | no | yes |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Wind | no | no | no | yes | no | yes |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Hydro | no | no | no | yes | no | yes |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Biomass_el | no | no | no | yes | no | yes |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Biomass_peat_el | no | no | no | yes | no | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: PVT_el | no | no | no | yes | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | ||||||
A2P018: Other | no | no | yes | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | 0.187 | |||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | ||||||
A2P019: Geothermal | no | no | no | yes | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Solar Thermal | no | no | no | yes | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Biomass_heat | no | no | no | yes | no | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Waste heat+HP | no | no | no | yes | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Biomass_peat_heat | no | no | no | yes | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: PVT_th | no | no | no | yes | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Biomass_firewood_th | no | no | no | yes | no | yes |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | ||||||
A2P019: Other | no | no | yes | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | 0 | |||||
A2P020: Share of RES on-site / RES outside the boundary | ||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0.53839572192513 | 0 | 0 | 0 |
A2P021: GHG-balance calculated for the PED | ||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | 980 | 6.93 | 250 | 4 | ||
A2P022: KPIs related to the PED case study / PED Lab | ||||||
A2P022: Safety & Security | none | |||||
A2P022: Health | Carbon Dioxide (CO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels | thermal comfort diagram | ||||
A2P022: Education | none | |||||
A2P022: Mobility | none | |||||
A2P022: Energy | Non-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissions | normalized CO2/GHG & Energy intensity | ||||
A2P022: Water | ||||||
A2P022: Economic development | : Investment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison | cost of excess emissions | ||||
A2P022: Housing and Community | : Access to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness | Specify the associated KPIs | ||||
A2P022: Waste | ||||||
A2P022: Other | ||||||
A2P023: Technological Solutions / Innovations - Energy Generation | ||||||
A2P023: Photovoltaics | yes | yes | yes | yes | yes | yes |
A2P023: Solar thermal collectors | no | no | yes | no | yes | no |
A2P023: Wind Turbines | no | no | no | no | no | no |
A2P023: Geothermal energy system | no | no | yes | yes | no | no |
A2P023: Waste heat recovery | no | no | yes | yes | no | no |
A2P023: Waste to energy | no | no | no | yes | no | no |
A2P023: Polygeneration | no | no | no | no | no | no |
A2P023: Co-generation | no | no | no | no | yes | no |
A2P023: Heat Pump | no | yes | yes | yes | no | yes |
A2P023: Hydrogen | no | no | no | no | no | no |
A2P023: Hydropower plant | no | no | no | no | no | no |
A2P023: Biomass | yes | no | no | yes | yes | no |
A2P023: Biogas | yes | no | no | yes | no | no |
A2P023: Other | The Co-generation is biomass based. | |||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | ||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | yes | no | yes | yes | yes | no |
A2P024: Energy management system | yes | yes | no | yes | yes | yes |
A2P024: Demand-side management | no | yes | no | yes | yes | no |
A2P024: Smart electricity grid | no | no | no | yes | no | no |
A2P024: Thermal Storage | no | no | yes | yes | yes | no |
A2P024: Electric Storage | no | no | no | yes | yes | no |
A2P024: District Heating and Cooling | yes | no | yes | yes | yes | no |
A2P024: Smart metering and demand-responsive control systems | no | no | no | yes | yes | no |
A2P024: P2P – buildings | no | no | no | yes | no | yes |
A2P024: Other | Bidirectional electric vehicle (EV) charging (V2G) | |||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | ||||||
A2P025: Deep Retrofitting | yes | no | yes | yes | no | yes |
A2P025: Energy efficiency measures in historic buildings | no | no | no | yes | no | yes |
A2P025: High-performance new buildings | no | yes | no | yes | yes | no |
A2P025: Smart Public infrastructure (e.g. smart lighting) | yes | no | no | yes | no | no |
A2P025: Urban data platforms | yes | no | no | yes | no | no |
A2P025: Mobile applications for citizens | yes | no | no | yes | no | no |
A2P025: Building services (HVAC & Lighting) | no | yes | yes | yes | no | no |
A2P025: Smart irrigation | no | no | no | yes | no | no |
A2P025: Digital tracking for waste disposal | no | no | no | yes | no | no |
A2P025: Smart surveillance | yes | no | no | no | no | no |
A2P025: Other | ||||||
A2P026: Technological Solutions / Innovations - Mobility | ||||||
A2P026: Efficiency of vehicles (public and/or private) | yes | no | no | yes | no | no |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | yes | no | no | yes | no | no |
A2P026: e-Mobility | yes | no | no | yes | yes | no |
A2P026: Soft mobility infrastructures and last mile solutions | no | no | no | yes | no | no |
A2P026: Car-free area | no | no | no | yes | no | no |
A2P026: Other | ||||||
A2P027: Mobility strategies - Additional notes | ||||||
A2P027: Mobility strategies - Additional notes | ||||||
A2P028: Energy efficiency certificates | ||||||
A2P028: Energy efficiency certificates | Yes | Yes | No | Yes | Yes | |
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate | Passive house (2 buildings, 4 200 m2, from 2015) | ||||
A2P029: Any other building / district certificates | ||||||
A2P029: Any other building / district certificates | No | No | Yes | No | ||
A2P029: If yes, please specify and/or enter notes | Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016) | |||||
A3P001: Relevant city /national strategy | ||||||
A3P001: Relevant city /national strategy |
|
|
|
|
| |
A3P002: Quantitative targets included in the city / national strategy | ||||||
A3P002: Quantitative targets included in the city / national strategy | The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030. | |||||
A3P003: Strategies towards decarbonization of the gas grid | ||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
| ||||
A3P003: Other | ||||||
A3P004: Identification of needs and priorities | ||||||
A3P004: Identification of needs and priorities | In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements. | |||||
A3P005: Sustainable behaviour | ||||||
A3P005: Sustainable behaviour | While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve. | |||||
A3P006: Economic strategies | ||||||
A3P006: Economic strategies |
|
|
|
| ||
A3P006: Other | ||||||
A3P007: Social models | ||||||
A3P007: Social models |
|
|
|
|
| |
A3P007: Other | Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies. | |||||
A3P008: Integrated urban strategies | ||||||
A3P008: Integrated urban strategies |
|
|
| |||
A3P008: Other | ||||||
A3P009: Environmental strategies | ||||||
A3P009: Environmental strategies |
|
|
|
|
| |
A3P009: Other | ||||||
A3P010: Legal / Regulatory aspects | ||||||
A3P010: Legal / Regulatory aspects | Regulatory sandbox | Campus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates. | ||||
B1P001: PED/PED relevant concept definition | ||||||
B1P001: PED/PED relevant concept definition | The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively. | Functional PED | The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating. | |||
B1P002: Motivation behind PED/PED relevant project development | ||||||
B1P002: Motivation behind PED/PED relevant project development | Borlänge city has committed to become the carbon-neutral city by 2030. | Brown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses. | In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions. | |||
B1P003: Environment of the case study area | ||||||
B2P003: Environment of the case study area | Urban area | Urban area | Urban area | Urban area | Rural | Rurban |
B1P004: Type of district | ||||||
B2P004: Type of district |
|
|
|
|
|
|
B1P005: Case Study Context | ||||||
B1P005: Case Study Context |
|
|
|
|
|
|
B1P006: Year of construction | ||||||
B1P006: Year of construction | 1990 | |||||
B1P007: District population before intervention - Residential | ||||||
B1P007: District population before intervention - Residential | 4500 | 100 | ||||
B1P008: District population after intervention - Residential | ||||||
B1P008: District population after intervention - Residential | 100 | |||||
B1P009: District population before intervention - Non-residential | ||||||
B1P009: District population before intervention - Non-residential | 6 | |||||
B1P010: District population after intervention - Non-residential | ||||||
B1P010: District population after intervention - Non-residential | 6 | |||||
B1P011: Population density before intervention | ||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 |
B1P012: Population density after intervention | ||||||
B1P012: Population density after intervention | 0 | 0 | 0.010658622423328 | 0 | 0 | 0 |
B1P013: Building and Land Use before intervention | ||||||
B1P013: Residential | yes | yes | yes | no | no | yes |
B1P013 - Residential: Specify the sqm [m²] | 4360 | |||||
B1P013: Office | no | no | no | no | no | yes |
B1P013 - Office: Specify the sqm [m²] | ||||||
B1P013: Industry and Utility | no | no | no | yes | no | no |
B1P013 - Industry and Utility: Specify the sqm [m²] | ||||||
B1P013: Commercial | yes | no | no | no | no | no |
B1P013 - Commercial: Specify the sqm [m²] | ||||||
B1P013: Institutional | no | no | no | no | no | no |
B1P013 - Institutional: Specify the sqm [m²] | ||||||
B1P013: Natural areas | yes | no | no | no | no | no |
B1P013 - Natural areas: Specify the sqm [m²] | ||||||
B1P013: Recreational | yes | no | no | no | no | no |
B1P013 - Recreational: Specify the sqm [m²] | ||||||
B1P013: Dismissed areas | no | no | no | no | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | ||||||
B1P013: Other | no | no | yes | no | no | no |
B1P013 - Other: Specify the sqm [m²] | 706 | |||||
B1P014: Building and Land Use after intervention | ||||||
B1P014: Residential | yes | yes | yes | yes | no | yes |
B1P014 - Residential: Specify the sqm [m²] | 4360 | |||||
B1P014: Office | no | no | no | yes | no | yes |
B1P014 - Office: Specify the sqm [m²] | ||||||
B1P014: Industry and Utility | no | no | no | no | no | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | ||||||
B1P014: Commercial | yes | no | no | yes | no | no |
B1P014 - Commercial: Specify the sqm [m²] | ||||||
B1P014: Institutional | no | no | no | no | no | no |
B1P014 - Institutional: Specify the sqm [m²] | ||||||
B1P014: Natural areas | yes | no | no | no | no | no |
B1P014 - Natural areas: Specify the sqm [m²] | ||||||
B1P014: Recreational | yes | no | no | yes | no | no |
B1P014 - Recreational: Specify the sqm [m²] | ||||||
B1P014: Dismissed areas | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | ||||||
B1P014: Other | no | no | yes | no | no | no |
B1P014 - Other: Specify the sqm [m²] | 706 | |||||
B2P001: PED Lab concept definition | ||||||
B2P001: PED Lab concept definition | ||||||
B2P002: Installation life time | ||||||
B2P002: Installation life time | ||||||
B2P003: Scale of action | ||||||
B2P003: Scale | District | |||||
B2P004: Operator of the installation | ||||||
B2P004: Operator of the installation | ||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||
B2P006: Circular Economy Approach | ||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | No | |||||
B2P006: Other | ||||||
B2P007: Motivation for developing the PED Lab | ||||||
B2P007: Motivation for developing the PED Lab |
| |||||
B2P007: Other | ||||||
B2P008: Lead partner that manages the PED Lab | ||||||
B2P008: Lead partner that manages the PED Lab | Municipality | |||||
B2P008: Other | ||||||
B2P009: Collaborative partners that participate in the PED Lab | ||||||
B2P009: Collaborative partners that participate in the PED Lab |
| |||||
B2P009: Other | ||||||
B2P010: Synergies between the fields of activities | ||||||
B2P010: Synergies between the fields of activities | ||||||
B2P011: Available facilities to test urban configurations in PED Lab | ||||||
B2P011: Available facilities to test urban configurations in PED Lab |
| |||||
B2P011: Other | ||||||
B2P012: Incubation capacities of PED Lab | ||||||
B2P012: Incubation capacities of PED Lab |
| |||||
B2P013: Availability of the facilities for external people | ||||||
B2P013: Availability of the facilities for external people | ||||||
B2P014: Monitoring measures | ||||||
B2P014: Monitoring measures |
| |||||
B2P015: Key Performance indicators | ||||||
B2P015: Key Performance indicators |
| |||||
B2P016: Execution of operations | ||||||
B2P016: Execution of operations | ||||||
B2P017: Capacities | ||||||
B2P017: Capacities | ||||||
B2P018: Relations with stakeholders | ||||||
B2P018: Relations with stakeholders | ||||||
B2P019: Available tools | ||||||
B2P019: Available tools |
| |||||
B2P019: Available tools | ||||||
B2P020: External accessibility | ||||||
B2P020: External accessibility | ||||||
C1P001: Unlocking Factors | ||||||
C1P001: Recent technological improvements for on-site RES production | 3 - Moderately important | 1 - Unimportant | 4 - Important | 4 - Important | 5 - Very important | 4 - Important |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 2 - Slightly important |
C1P001: Energy Communities, P2P, Prosumers concepts | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 5 - Very important |
C1P001: Storage systems and E-mobility market penetration | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 4 - Important |
C1P001: Decreasing costs of innovative materials | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important |
C1P001: The ability to predict Multiple Benefits | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important |
C1P001: The ability to predict the distribution of benefits and impacts | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 4 - Important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 4 - Important | 3 - Moderately important |
C1P001: Social acceptance (top-down) | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 3 - Moderately important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 4 - Important | 5 - Very important |
C1P001: Presence of integrated urban strategies and plans | 5 - Very important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important |
C1P001: Multidisciplinary approaches available for systemic integration | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | 1 - Unimportant | 1 - Unimportant |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 5 - Very important | 1 - Unimportant | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant |
C1P001: Availability of RES on site (Local RES) | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 5 - Very important | 1 - Unimportant |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 4 - Important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 4 - Important |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P001: Any other UNLOCKING FACTORS (if any) | ||||||
C1P002: Driving Factors | ||||||
C1P002: Climate Change adaptation need | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important | 3 - Moderately important | 5 - Very important |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant |
C1P002: Urban re-development of existing built environment | 3 - Moderately important | 1 - Unimportant | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant |
C1P002: Economic growth need | 2 - Slightly important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant |
C1P002: Territorial and market attractiveness | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 3 - Moderately important |
C1P002: Energy autonomy/independence | 4 - Important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 4 - Important | 1 - Unimportant |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P002: Any other DRIVING FACTOR (if any) | ||||||
C1P003: Administrative barriers | ||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 4 - Important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important |
C1P003: Lack of good cooperation and acceptance among partners | 2 - Slightly important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P003: Lack of public participation | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 4 - Important |
C1P003: Lack of institutions/mechanisms to disseminate information | 3 - Moderately important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P003:Long and complex procedures for authorization of project activities | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant |
C1P003: Complicated and non-comprehensive public procurement | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant |
C1P003: Fragmented and or complex ownership structure | 5 - Very important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 3 - Moderately important | 5 - Very important |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 5 - Very important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important |
C1P003: Lack of internal capacities to support energy transition | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P003: Any other Administrative BARRIER (if any) | ||||||
C1P004: Policy barriers | ||||||
C1P004: Lack of long-term and consistent energy plans and policies | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important |
C1P004: Lacking or fragmented local political commitment and support on the long term | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 4 - Important |
C1P004: Lack of Cooperation & support between national-regional-local entities | 3 - Moderately important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 3 - Moderately important | 4 - Important |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P004: Any other Political BARRIER (if any) | ||||||
C1P005: Legal and Regulatory barriers | ||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 5 - Very important | 2 - Slightly important |
C1P005: Regulatory instability | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important |
C1P005: Non-effective regulations | 4 - Important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important |
C1P005: Unfavorable local regulations for innovative technologies | 2 - Slightly important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 3 - Moderately important | 2 - Slightly important |
C1P005: Building code and land-use planning hindering innovative technologies | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P005: Insufficient or insecure financial incentives | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 4 - Important | 3 - Moderately important |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 4 - Important | 1 - Unimportant | 2 - Slightly important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant |
C1P005: Shortage of proven and tested solutions and examples | 2 - Slightly important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P005: Any other Legal and Regulatory BARRIER (if any) | ||||||
C1P006: Environmental barriers | ||||||
C1P006: Environmental barriers | 2 - Slightly important | |||||
C1P007: Technical barriers | ||||||
C1P007: Lack of skilled and trained personnel | 3 - Moderately important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important |
C1P007: Deficient planning | 1 - Unimportant | 1 - Unimportant | 4 - Important | 2 - Slightly important | 1 - Unimportant | 4 - Important |
C1P007: Retrofitting work in dwellings in occupied state | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 3 - Moderately important | 3 - Moderately important |
C1P007: Lack of well-defined process | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant |
C1P007: Inaccuracy in energy modelling and simulation | 2 - Slightly important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P007: Lack/cost of computational scalability | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 1 - Unimportant |
C1P007: Grid congestion, grid instability | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 5 - Very important | 5 - Very important | 2 - Slightly important |
C1P007: Negative effects of project intervention on the natural environment | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important |
C1P007: Difficult definition of system boundaries | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant |
C1P007: Any other Thecnical BARRIER (if any) | Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges. | |||||
C1P008: Social and Cultural barriers | ||||||
C1P008: Inertia | 4 - Important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P008: Lack of values and interest in energy optimization measurements | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important |
C1P008: Low acceptance of new projects and technologies | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important |
C1P008: Difficulty of finding and engaging relevant actors | 3 - Moderately important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P008: Lack of trust beyond social network | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 4 - Important |
C1P008: Rebound effect | 3 - Moderately important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 2 - Slightly important |
C1P008: Hostile or passive attitude towards environmentalism | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P008: Exclusion of socially disadvantaged groups | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P008: Non-energy issues are more important and urgent for actors | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P008: Hostile or passive attitude towards energy collaboration | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P008: Any other Social BARRIER (if any) | ||||||
C1P009: Information and Awareness barriers | ||||||
C1P009: Insufficient information on the part of potential users and consumers | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 4 - Important | 1 - Unimportant | 3 - Moderately important |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 4 - Important |
C1P009: Lack of awareness among authorities | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P009: Information asymmetry causing power asymmetry of established actors | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important |
C1P009: High costs of design, material, construction, and installation | 5 - Very important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 5 - Very important | 4 - Important |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant |
C1P009: Any other Information and Awareness BARRIER (if any) | Different interests - Grid/energy stakeholders and building stakeholders | |||||
C1P010: Financial barriers | ||||||
C1P010: Hidden costs | 5 - Very important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 5 - Very important | 3 - Moderately important |
C1P010: Insufficient external financial support and funding for project activities | 5 - Very important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P010: Economic crisis | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important |
C1P010: Risk and uncertainty | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | 5 - Very important | 3 - Moderately important |
C1P010: Lack of consolidated and tested business models | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | 5 - Very important | 4 - Important |
C1P010: Limited access to capital and cost disincentives | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 4 - Important | 4 - Important |
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant |
C1P010: Any other Financial BARRIER (if any) | ||||||
C1P011: Market barriers | ||||||
C1P011: Split incentives | 4 - Important | 1 - Unimportant | 4 - Important | 3 - Moderately important | 1 - Unimportant | 4 - Important |
C1P011: Energy price distortion | 3 - Moderately important | 1 - Unimportant | 4 - Important | 2 - Slightly important | 1 - Unimportant | 4 - Important |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 4 - Important | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 2 - Slightly important |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant |
C1P011: Any other Market BARRIER (if any) | ||||||
C1P012: Stakeholders involved | ||||||
C1P012: Government/Public Authorities |
|
|
|
| ||
C1P012: Research & Innovation |
|
|
|
|
| |
C1P012: Financial/Funding |
|
|
|
| ||
C1P012: Analyst, ICT and Big Data |
|
|
|
|
| |
C1P012: Business process management |
|
|
|
| ||
C1P012: Urban Services providers |
|
|
| |||
C1P012: Real Estate developers |
|
|
|
| ||
C1P012: Design/Construction companies |
|
|
|
| ||
C1P012: End‐users/Occupants/Energy Citizens |
|
|
|
|
| |
C1P012: Social/Civil Society/NGOs |
|
|
|
| ||
C1P012: Industry/SME/eCommerce |
|
|
|
|
| |
C1P012: Other | ||||||
C1P012: Other (if any) | ||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)