Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Uncompare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Barcelona, Santa Coloma de Gramenet
Vienna, Am Kempelenpark
Barcelona, SEILAB & Energy SmartLab
Halmstad, Fyllinge
Lund, Brunnshög district
Umeå, Ålidhem district
Amsterdam, Buiksloterham PED
Borlänge, Rymdgatan’s Residential Portfolio
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaBarcelona, Santa Coloma de GramenetVienna, Am KempelenparkBarcelona, SEILAB & Energy SmartLabHalmstad, FyllingeLund, Brunnshög districtUmeå, Ålidhem districtAmsterdam, Buiksloterham PEDBorlänge, Rymdgatan’s Residential Portfolio
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnonoyesyesyesno
PED relevant case studyyesnononoyesnononoyes
PED Lab.yesnonoyesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesyesyesnonoyesyesyesyes
Annual energy surplusnoyesyesnonoyesnoyesyes
Energy communitynononoyesyesyesnoyesyes
Circularityyesnonononoyesnoyesno
Air quality and urban comfortnoyesnononoyesnonono
Electrificationyesnonoyesnoyesnoyesyes
Net-zero energy costnonononononononono
Net-zero emissionyesnonoyesnoyesnoyesno
Self-sufficiency (energy autonomous)nononoyesnonononono
Maximise self-sufficiencyyesnononononononoyes
Othernononoyesnoyesnonono
Other (A1P004)Green ITHolistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseImplementation PhasePlanning PhaseIn operationPlanning PhaseIn operationPlanning PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date02/1607/1601/201101/21201510/2211/19
A1P007: End Date
A1P007: End date07/2202/2502/201301/30204009/2510/25
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
  • General statistical datasets
  • General statistical datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
A1P009: OtherGIS open dataset is under constructionhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • Umeå Energi
        A1P011: Geographic coordinates
        X Coordinate (longitude):26.7227372.1616.3952922.112.9205413.23246940076959920.26304.904115.394495
        Y Coordinate (latitude):58.38071341.3948.17359841.356.6519455.7198979220719363.825852.367660.486609
        A1P012: Country
        A1P012: CountryEstoniaSpainAustriaSpainSwedenSwedenSwedenNetherlandsSweden
        A1P013: City
        A1P013: CityTartuBarcelonaViennaBarcelona and TarragonaHalmstadLundUmeåAmsterdamBorlänge
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).DfbCsaCwbCsaDwbDfbDfbCfbDsb
        A1P015: District boundary
        A1P015: District boundaryFunctionalGeographicGeographicVirtualGeographicGeographicGeographicFunctionalGeographic
        Other
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PrivatePrivatePrivatePublicMixedPublicPublicMixedMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle Owner
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED1816602502006010
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]3521721542150000042000285003700
        A1P020: Total ground area
        A1P020: Total ground area [m²]7931441500000520009945
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area000001100
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estateyesnononoyesyesnoyesno
        A1P022a: Add the value in EUR if available [EUR]650000099999999
        A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingyesnonononoyesnonono
        A1P022d: Add the value in EUR if available [EUR]40000001000000
        A1P022e: Financing - PUBLIC - National fundingyesnonononoyesnonono
        A1P022e: Add the value in EUR if available [EUR]800000030000000
        A1P022f: Financing - PUBLIC - Regional fundingnononononoyesnonono
        A1P022f: Add the value in EUR if available [EUR]30000000
        A1P022g: Financing - PUBLIC - Municipal fundingnononononoyesnonono
        A1P022g: Add the value in EUR if available [EUR]180000000
        A1P022h: Financing - PUBLIC - Othernonononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnoyesnonoyesyesnoyesno
        A1P022i: Add the value in EUR if available [EUR]5039032000000
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Positive externalities
        • Positive externalities
        • Job creation,
        • Boosting local and sustainable production
        • Boosting local and sustainable production
        • Other
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Positive externalities,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        A1P023: OtherWorld class sustainable living and research environments
        A1P024: More comments:
        A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]25
        Contact person for general enquiries
        A1P026: NameJaanus TammJaume SalomGerhard HoferDr. Jaume Salom, Dra. Cristina CorcheroMarkus OlofsgårdMarkus PaulssonGireesh NairOmar ShafqatJingchun Shen
        A1P027: OrganizationTartu City GovernmentIRECe7 energy innovation & engineeringIRECAFRYCity of LundUmea MunicipalityAmsterdam University of Applied SciencesHögskolan Dalarna
        A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversitySME / IndustryResearch Center / UniversityOtherMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / University
        A1P028: Other
        A1P029: EmailJaanus.tamm@tartu.eejsalom@irec.catgerhard.hofer@e-sieben.atJsalom@irec.catmarkus.olofsgard@afry.commarkus.paulsson@lund.segireesh.nair@umu.seo.shafqat@hva.nljih@du.se
        Contact person for other special topics
        A1P030: NameKaspar AlevJoan Estrada AliberasEva DalmanOmar ShafqatXingxing Zhang
        A1P031: EmailKaspar.alev@tartu.eej_estrada@gencat.cateva.dalman@lund.seo.shafqat@hva.nlxza@du.se
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Digital technologies
        • Energy efficiency,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Water use,
        • Waste management,
        • Construction materials,
        • Other
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Water use,
        • Waste management,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        A2P001: OtherWalkability and biking
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)- Integrated energy design process of both active and passive elements - Multicriteria analysis of energy system, environmental variables, indoor comfort and economic parameters - Energy modelling - Predictive control to optimize performance within the neighbourhoodEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)link based regulation of electricity gridLundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.Simulation tools: City Energy Analyst and PolysunCity vision, Innovation AteliersLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNoNoYesNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesNoYesNoYesYesNoYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoNoYesYesYesNoNoNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhToday electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.1250.6777
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]3000.03656
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]0
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesyesnoyesyesyesyesyesno
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.050.249
        A2P011: Windnononononoyesnonono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnononononononoyesno
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononononoyes
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
        A2P011: Othernoyesnonononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonononoyesnonoyesno
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalyesnononononononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
        A2P012: Biomass_heatnononononononoyesno
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnononononoyesnoyesno
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
        A2P012: Biomass_peat_heatnonononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononononoyes
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
        A2P012: Biomass_firewood_thnonononononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notes-Rooftop PV 39.1 kWp -4 pipe air-to-water heat pump to cover heating and cooling
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.0336.10.318
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.0300.2055
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]000
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnononoyesnononoyesno
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnononononononoyesno
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnononononononoyesno
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononononoyes
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononononoyesnoyesno
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnononononoyesnoyesno
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononononoyesnoyesno
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononononoyesnoyesno
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononononononoyesno
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnononononononoyesno
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononononoyes
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnononononononoyesno
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononononoyesno
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononononoyesyesno
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonononononoyesyesno
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononononoyesno
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononononoyesno
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononononononoyesno
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononononoyes
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary000000000.53839572192513
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]9802506.93
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Securitynone
        A2P022: HealthCarbon Dioxide (CO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levelsthermal comfort diagram
        A2P022: Educationnone
        A2P022: MobilityMaximum 1/3 transport with carnone
        A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsLocal energy production 150% of energy needEnergynormalized CO2/GHG & Energy intensity
        A2P022: Water
        A2P022: Economic development: Investment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparisoncost of excess emissions
        A2P022: Housing and Community: Access to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness50% rental apartments and 50% owner apartments
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesnoyesyesyesyesyesyes
        A2P023: Solar thermal collectorsnononononoyesnonoyes
        A2P023: Wind Turbinesnononononoyesnonono
        A2P023: Geothermal energy systemnononononoyesnoyesyes
        A2P023: Waste heat recoverynononononoyesnoyesyes
        A2P023: Waste to energynononononononoyesno
        A2P023: Polygenerationnononononoyesnonono
        A2P023: Co-generationnonononononononono
        A2P023: Heat Pumpnoyesnononoyesnoyesyes
        A2P023: Hydrogennononononoyesnonono
        A2P023: Hydropower plantnonononononononono
        A2P023: Biomassyesnonononononoyesno
        A2P023: Biogasyesnonononononoyesno
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)yesnonoyesyesyesyesyesyes
        A2P024: Energy management systemyesyesnoyesnoyesnoyesno
        A2P024: Demand-side managementnoyesnonoyesyesyesyesno
        A2P024: Smart electricity gridnononoyesyesyesnoyesno
        A2P024: Thermal Storagenononononoyesnoyesyes
        A2P024: Electric Storagenononoyesnoyesnoyesno
        A2P024: District Heating and Coolingyesnonononoyesnoyesyes
        A2P024: Smart metering and demand-responsive control systemsnonononoyesyesnoyesno
        A2P024: P2P – buildingsnononononononoyesno
        A2P024: OtherDistrict Heating
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingyesnononononoyesyesyes
        A2P025: Energy efficiency measures in historic buildingsnononononononoyesno
        A2P025: High-performance new buildingsnoyesnononoyesnoyesno
        A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonononoyesnoyesno
        A2P025: Urban data platformsyesnonononoyesnoyesno
        A2P025: Mobile applications for citizensyesnonononononoyesno
        A2P025: Building services (HVAC & Lighting)noyesnoyesnoyesnoyesyes
        A2P025: Smart irrigationnononononononoyesno
        A2P025: Digital tracking for waste disposalnononononoyesnoyesno
        A2P025: Smart surveillanceyesnononononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)yesnonoyesnononoyesno
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonononoyesnoyesno
        A2P026: e-Mobilityyesnonononoyesnoyesno
        A2P026: Soft mobility infrastructures and last mile solutionsnononononoyesnoyesno
        A2P026: Car-free areanononononoyesnoyesno
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesWalkability
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesYesNoYesYesNo
        A2P028: If yes, please specify and/or enter notesEnergy Performance CertificateMiljöbyggnad silver/guld
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.)
        • Smart cities strategies,
        • New development strategies
        • Promotion of energy communities (REC/CEC)
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCity strategy: Net climate neutrality 2030The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Biogas,
        • Hydrogen
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas,
        • Hydrogen
        A3P003: OtherNo gas grid in BrunnshögNA
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Existing incentives
        • Demand management Living Lab
        • Local trading
        • PPP models,
        • Other
        • Innovative business models,
        • Life Cycle Cost,
        • Circular economy models,
        • Demand management Living Lab,
        • Local trading,
        • Existing incentives
        • Open data business models,
        • Life Cycle Cost,
        • Circular economy models,
        • Local trading
        A3P006: OtherAttractivenes
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Social incentives,
        • Quality of Life,
        • Prevention of energy poverty,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Strategies towards social mix
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Social incentives,
        • Quality of Life,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Affordability,
        • Digital Inclusion
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • City Vision 2050,
        • SECAP Updates
        • District Energy plans
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • Building / district Certification
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Net zero carbon footprint,
        • Carbon-free,
        • Pollutants Reduction,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral,
        • Carbon-free
        • Net zero carbon footprint,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Carbon-free
        • Energy Neutral,
        • Life Cycle approach
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Sustainable Urban drainage systems (SUDS)
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.Regulatory sandbox
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionVision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.Functional PEDThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentThe aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.Brown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.Borlänge city has committed to become the carbon-neutral city by 2030.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaUrban areaUrban areaUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • New construction
        • Renovation
        • New construction
        • New construction
        • Renovation
        • New construction
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Retrofitting Area
        • New Development
        • Re-use / Transformation Area,
        • New Development
        • New Development
        • New Development
        • Retrofitting Area
        • New Development
        • Re-use / Transformation Area,
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction1990
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential45000100
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential18000100
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential20006
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential220006
        B1P011: Population density before intervention
        B1P011: Population density before intervention000000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention000000.026666666666667000.010658622423328
        B1P013: Building and Land Use before intervention
        B1P013: Residentialyesyesnonononoyesnoyes
        B1P013 - Residential: Specify the sqm [m²]4360
        B1P013: Officenonoyesnonoyesnonono
        B1P013 - Office: Specify the sqm [m²]60000
        B1P013: Industry and Utilitynononononononoyesno
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialyesnoyesnononononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasyesnononoyesyesnonono
        B1P013 - Natural areas: Specify the sqm [m²]2000000
        B1P013: Recreationalyesnononononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernononononoyesnonoyes
        B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000706
        B1P014: Building and Land Use after intervention
        B1P014: Residentialyesyesyesnonoyesyesyesyes
        B1P014 - Residential: Specify the sqm [m²]6000004360
        B1P014: Officenonoyesnonoyesnoyesno
        B1P014 - Office: Specify the sqm [m²]650000
        B1P014: Industry and Utilitynonononononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialyesnoyesnonononoyesno
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnononononoyesnonono
        B1P014 - Institutional: Specify the sqm [m²]50000
        B1P014: Natural areasyesnononononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalyesnonononoyesnoyesno
        B1P014 - Recreational: Specify the sqm [m²]400000
        B1P014: Dismissed areasnonononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononononoyes
        B1P014 - Other: Specify the sqm [m²]706
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleDistrictVirtual
        B2P004: Operator of the installation
        B2P004: Operator of the installationIREC
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic
        • Strategic,
        • Private
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Prosumers,
        • Renewable generation,
        • Energy networks,
        • Lighting,
        • E-mobility,
        • Green areas,
        • User interaction/participation,
        • Information and Communication Technologies (ICT)
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT)
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Pivoting and risk-mitigating measures
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Available data,
        • Life Cycle Analysis
        • Equipment
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Sustainability,
        • Social,
        • Economical / Financial
        • Energy,
        • Environmental
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        • Social models
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P001: Storage systems and E-mobility market penetration2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P001: Decreasing costs of innovative materials3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
        C1P001: The ability to predict Multiple Benefits3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
        C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important
        C1P001: Social acceptance (top-down)4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important
        C1P001: Presence of integrated urban strategies and plans5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
        C1P001: Multidisciplinary approaches available for systemic integration4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important
        C1P001: Availability of RES on site (Local RES)4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important
        C1P002: Economic growth need2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
        C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant
        C1P002: Energy autonomy/independence4 - Important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important4 - Important
        C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P003: Lack of public participation1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Fragmented and or complex ownership structure5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important4 - Important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important
        C1P003: Lack of internal capacities to support energy transition4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important5 - Very important
        C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important
        C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important
        C1P005: Non-effective regulations4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important
        C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
        C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P005: Insufficient or insecure financial incentives3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
        C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important4 - Important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers?2 - Slightly important
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P007: Deficient planning1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
        C1P007: Retrofitting work in dwellings in occupied state5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P007: Lack of well-defined process3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important2 - Slightly important
        C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P007: Lack/cost of computational scalability3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
        C1P007: Grid congestion, grid instability2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Low acceptance of new projects and technologies2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
        C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Lack of trust beyond social network2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Rebound effect3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important3 - Moderately important
        C1P009: Lack of awareness among authorities2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant4 - Important5 - Very important
        C1P009: High costs of design, material, construction, and installation5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
        C1P010: Insufficient external financial support and funding for project activities5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important
        C1P010: Economic crisis3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important
        C1P010: Risk and uncertainty4 - Important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important5 - Very important1 - Unimportant4 - Important5 - Very important
        C1P010: Lack of consolidated and tested business models3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important
        C1P010: Limited access to capital and cost disincentives4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
        C1P011: Energy price distortion3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • Planning/leading,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • Monitoring/operation/management
        • Planning/leading
        C1P012: Financial/Funding
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation
        • None
        C1P012: Analyst, ICT and Big Data
        • Planning/leading,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Construction/implementation
        • None
        C1P012: Business process management
        • Planning/leading
        • Design/demand aggregation
        • Design/demand aggregation,
        • Construction/implementation
        • None
        C1P012: Urban Services providers
        • Construction/implementation
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Real Estate developers
        • None
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        C1P012: Design/Construction companies
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation
        • Design/demand aggregation,
        • Construction/implementation
        • None
        C1P012: End‐users/Occupants/Energy Citizens
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Design/demand aggregation
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • None
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        • None
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)