Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Uncompare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Barcelona, SEILAB & Energy SmartLab
Roubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’Oran
Bærum, Eiksveien 116
Lund, Brunnshög district
Vidin, Himik and Bononia
Leipzig, Baumwollspinnerei district
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaBarcelona, SEILAB & Energy SmartLabRoubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’OranBærum, Eiksveien 116Lund, Brunnshög districtVidin, Himik and BononiaLeipzig, Baumwollspinnerei district
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonononoyesyesyes
PED relevant case studyyesnoyesyesnonono
PED Lab.yesyesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyesyesyes
Annual energy surplusnonoyesnoyesyesno
Energy communitynoyesnonoyesnono
Circularityyesnononoyesnono
Air quality and urban comfortnonoyesnoyesnoyes
Electrificationyesyesnoyesyesnoyes
Net-zero energy costnononoyesnonono
Net-zero emissionyesyesnoyesyesnono
Self-sufficiency (energy autonomous)noyesnonononono
Maximise self-sufficiencyyesnononononono
Othernoyesnonoyesnoyes
Other (A1P004)Green ITHolistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030;Net-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseIn operationCompletedCompletedIn operationPlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date02/1601/201101/2201/18201512/18
A1P007: End Date
A1P007: End date07/2202/201301/2406/23204012/30
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • General statistical datasets
  • Meteorological open data
A1P009: OtherGIS open dataset is under construction
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        A1P011: Geographic coordinates
        X Coordinate (longitude):26.7227372.13.165110.533313.23246940076959922.882612.318458
        Y Coordinate (latitude):58.38071341.350.693759.910055.7198979220719343.993651.326492
        A1P012: Country
        A1P012: CountryEstoniaSpainFranceNorwaySwedenBulgariaGermany
        A1P013: City
        A1P013: CityTartuBarcelona and TarragonaRoubaixBærumLundVidinLeipzig
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).DfbCsaCfbDfbDfbCfaDfb
        A1P015: District boundary
        A1P015: District boundaryFunctionalVirtualOtherOtherGeographicGeographicFunctional
        OtherPEBBuildingGeographic
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PrivatePublicPrivatePublicPublicMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerSingle OwnerSingle OwnerMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED18011200742
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]352171442150000098759.5317000
        A1P020: Total ground area
        A1P020: Total ground area [m²]79314425001500000195234.8030000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area0010111
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estateyesnoyesnoyesnono
        A1P022a: Add the value in EUR if available [EUR]6500000099999999
        A1P022b: Financing - PRIVATE - ESCO schemenonononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingyesnononoyesnono
        A1P022d: Add the value in EUR if available [EUR]40000001000000
        A1P022e: Financing - PUBLIC - National fundingyesnononoyesyesno
        A1P022e: Add the value in EUR if available [EUR]800000030000000
        A1P022f: Financing - PUBLIC - Regional fundingnonoyesnoyesnono
        A1P022f: Add the value in EUR if available [EUR]30000000
        A1P022g: Financing - PUBLIC - Municipal fundingnonoyesyesyesnono
        A1P022g: Add the value in EUR if available [EUR]180000000
        A1P022h: Financing - PUBLIC - Othernonononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnonoyesnoyesnono
        A1P022i: Add the value in EUR if available [EUR]2000000
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherRetrofitted through various subsidies
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Positive externalities
        • Job creation,
        • Boosting local and sustainable production
        • Other
        • Other
        A1P023: OtherSocial housingWorld class sustainable living and research environmentsSustainable and replicable business models regarding renewable energy systems
        A1P024: More comments:
        A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The building comprises 32 homes. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]253.6
        Contact person for general enquiries
        A1P026: NameJaanus TammDr. Jaume Salom, Dra. Cristina CorcheroJulien HolgardJohn Einar ThommesenMarkus PaulssonDaniela KostovaSimon Baum
        A1P027: OrganizationTartu City GovernmentIRECVilogiaSINTEF CommunityCity of LundGreen Synergy ClusterCENERO Energy GmbH
        A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityOtherMunicipality / Public BodiesMunicipality / Public BodiesOtherOther
        A1P028: OtherSocial Housing CompanyClusterCENERO Energy GmbH
        A1P029: EmailJaanus.tamm@tartu.eeJsalom@irec.catjulien.holgard@vilogia.frjohn.thommesen@sintef.nomarkus.paulsson@lund.sedaniela@greensynergycluster.eusib@cenero.de
        Contact person for other special topics
        A1P030: NameKaspar AlevJulien HolgardJohn Einar ThommesenEva DalmanSimon Baum
        A1P031: EmailKaspar.alev@tartu.eejulien.holgard@vilogia.frjohn.thommesen@sintef.noeva.dalman@lund.sesib@cenero.de
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Water use,
        • Waste management,
        • Construction materials,
        • Other
        • Energy efficiency,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        A2P001: OtherWalkability and biking
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions.
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesYesYesYesNo
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoYesNoYesYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhToday electrically charged vehicles are included in the energy balance. In the future also other fuels should be included.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.1251.65
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]30
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]0
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesyesyesnoyesnoyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]
        A2P011: Windnonononoyesnono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernonononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonononononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalyesnononononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
        A2P012: Biomass_heatnonononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnonononoyesnono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]200
        A2P012: Biomass_peat_heatnonononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notes
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.0842.421
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.11
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnoyesnonononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonononoyesnono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnonononoyesnono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononononoyesnono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononoyesnono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary0000000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]980
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Health
        A2P022: Education
        A2P022: MobilityMaximum 1/3 transport with car
        A2P022: EnergyLocal energy production 150% of energy needapply
        A2P022: Water
        A2P022: Economic development
        A2P022: Housing and Community50% rental apartments and 50% owner apartments
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsyesyesyesnoyesyesno
        A2P023: Solar thermal collectorsnonononoyesnono
        A2P023: Wind Turbinesnonononoyesnono
        A2P023: Geothermal energy systemnonononoyesyesno
        A2P023: Waste heat recoverynonononoyesnono
        A2P023: Waste to energynonononononono
        A2P023: Polygenerationnonononoyesnono
        A2P023: Co-generationnonononononono
        A2P023: Heat Pumpnonononoyesyesno
        A2P023: Hydrogennonononoyesnono
        A2P023: Hydropower plantnonononononono
        A2P023: Biomassyesnononononono
        A2P023: Biogasyesnononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnonoyesnono
        A2P024: Energy management systemyesyesnonoyesnono
        A2P024: Demand-side managementnonononoyesnono
        A2P024: Smart electricity gridnoyesnonoyesnono
        A2P024: Thermal Storagenonononoyesnono
        A2P024: Electric Storagenoyesnonoyesyesno
        A2P024: District Heating and Coolingyesnononoyesnono
        A2P024: Smart metering and demand-responsive control systemsnonoyesnoyesnono
        A2P024: P2P – buildingsnonononononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingyesnoyesnonoyesno
        A2P025: Energy efficiency measures in historic buildingsnonononononono
        A2P025: High-performance new buildingsnonononoyesnono
        A2P025: Smart Public infrastructure (e.g. smart lighting)yesnononoyesnono
        A2P025: Urban data platformsyesnononoyesnono
        A2P025: Mobile applications for citizensyesnononononono
        A2P025: Building services (HVAC & Lighting)noyesnonoyesnono
        A2P025: Smart irrigationnonononononono
        A2P025: Digital tracking for waste disposalnonononoyesnono
        A2P025: Smart surveillanceyesnononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)yesyesnonononono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnononoyesnono
        A2P026: e-Mobilityyesnononoyesnono
        A2P026: Soft mobility infrastructures and last mile solutionsnonononoyesnono
        A2P026: Car-free areanonononoyesnono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesWalkabilityTest-Concept for bidirectional charging.
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesYesNoYes
        A2P028: If yes, please specify and/or enter notesMiljöbyggnad silver/guld
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.)
        • Smart cities strategies,
        • New development strategies
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Energy master planning (SECAP, etc.),
        • New development strategies
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCity strategy: Net climate neutrality 2030
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Biogas,
        • Hydrogen
        • Electrification of Heating System based on Heat Pumps
        • Biogas
        A3P003: OtherNo gas grid in Brunnshög
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Nursing home for people with special needsLocal waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Existing incentives
        • Demand management Living Lab
        • PPP models,
        • Other
        • Innovative business models,
        • Other
        A3P006: OtherAttractivenesoperational savings through efficiency measures
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Social incentives,
        • Quality of Life,
        • Prevention of energy poverty,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Behavioural Change / End-users engagement,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Strategies towards social mix
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Prevention of energy poverty
        • Behavioural Change / End-users engagement
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Net zero carbon footprint,
        • Carbon-free,
        • Pollutants Reduction,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral
        • Other
        • Net zero carbon footprint,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        • Pollutants Reduction,
        • Greening strategies
        • Other
        A3P009: OtherPEBPositive Energy Balance for the demo site
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionRefurbishment of social housing. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.PEBVision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentRefurbishment of social housingThe aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaSuburban areaUrban areaUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • Renovation
        • New construction
        • New construction
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Retrofitting Area
        • Retrofitting Area
        • New Development
        • New Development
        • Retrofitting Area
        • Preservation Area
        B1P006: Year of construction
        B1P006: Year of construction1958
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential45000
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential18000
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential2000
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential22000
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention00000.02666666666666700
        B1P013: Building and Land Use before intervention
        B1P013: Residentialyesnoyesnonoyesno
        B1P013 - Residential: Specify the sqm [m²]64 787,57
        B1P013: Officenonononoyesnono
        B1P013 - Office: Specify the sqm [m²]60000
        B1P013: Industry and Utilitynonononononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialyesnonononoyesno
        B1P013 - Commercial: Specify the sqm [m²]262,33
        B1P013: Institutionalnonononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasyesnononoyesnono
        B1P013 - Natural areas: Specify the sqm [m²]2000000
        B1P013: Recreationalyesnononononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononoyesnono
        B1P013 - Other: Specify the sqm [m²]Outdoor parking: 100000
        B1P014: Building and Land Use after intervention
        B1P014: Residentialyesnoyesnoyesnono
        B1P014 - Residential: Specify the sqm [m²]600000
        B1P014: Officenonononoyesnono
        B1P014 - Office: Specify the sqm [m²]650000
        B1P014: Industry and Utilitynonononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialyesnononononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonononoyesyesno
        B1P014 - Institutional: Specify the sqm [m²]5000035322.21
        B1P014: Natural areasyesnononononono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalyesnononoyesnono
        B1P014 - Recreational: Specify the sqm [m²]400000
        B1P014: Dismissed areasnonononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleDistrictVirtual
        B2P004: Operator of the installation
        B2P004: Operator of the installationIREC
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic
        • Strategic,
        • Private
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipalityResearch center/University
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Prosumers,
        • Renewable generation,
        • Energy networks,
        • Lighting,
        • E-mobility,
        • Green areas,
        • User interaction/participation,
        • Information and Communication Technologies (ICT)
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT)
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Pivoting and risk-mitigating measures
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Available data,
        • Life Cycle Analysis
        • Equipment
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Sustainability,
        • Social,
        • Economical / Financial
        • Energy,
        • Environmental
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        • Social models
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
        C1P001: Storage systems and E-mobility market penetration2 - Slightly important5 - Very important1 - Unimportant5 - Very important3 - Moderately important4 - Important
        C1P001: Decreasing costs of innovative materials3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
        C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important
        C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important
        C1P001: Social acceptance (top-down)4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important
        C1P001: Presence of integrated urban strategies and plans5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important
        C1P001: Multidisciplinary approaches available for systemic integration4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important5 - Very important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important
        C1P001: Availability of RES on site (Local RES)4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
        C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
        C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important
        C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P002: Energy autonomy/independence4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P003: Lack of public participation1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P003: Fragmented and or complex ownership structure5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
        C1P003: Lack of internal capacities to support energy transition4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Any other Administrative BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
        C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P005: Regulatory instability3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P005: Non-effective regulations4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
        C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
        C1P005: Insufficient or insecure financial incentives3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers?
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P007: Deficient planning1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P007: Retrofitting work in dwellings in occupied state5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Lack of well-defined process3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P007: Lack/cost of computational scalability3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Grid congestion, grid instability2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
        C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
        C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important
        C1P007: Difficult definition of system boundaries5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
        C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P008: Low acceptance of new projects and technologies2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
        C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important
        C1P008: Lack of trust beyond social network2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P008: Rebound effect3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P009: Lack of awareness among authorities2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
        C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
        C1P010: Insufficient external financial support and funding for project activities5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
        C1P010: Economic crisis3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P010: Risk and uncertainty4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P010: Limited access to capital and cost disincentives4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P011: Energy price distortion3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
        C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading,
        • Monitoring/operation/management
        • Planning/leading,
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • None
        C1P012: Financial/Funding
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Analyst, ICT and Big Data
        • Planning/leading,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • None
        C1P012: Business process management
        • Planning/leading
        • Design/demand aggregation,
        • Construction/implementation
        • None
        C1P012: Urban Services providers
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Real Estate developers
        • None
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Construction/implementation
        C1P012: Social/Civil Society/NGOs
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        • Design/demand aggregation
        C1P012: Industry/SME/eCommerce
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)