Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Uncompare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
TitleTartu, City centre area
Barcelona, SEILAB & Energy SmartLab
Innsbruck, Campagne-Areal
Romania, Alba Iulia PED
Maia, Sobreiro Social Housing
Halmstad, Fyllinge
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabTartu, City centre areaBarcelona, SEILAB & Energy SmartLabInnsbruck, Campagne-ArealRomania, Alba Iulia PEDMaia, Sobreiro Social HousingHalmstad, Fyllinge
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesnono
PED relevant case studyyesnoyesnonoyes
PED Lab.yesyesnonoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralityyesnoyesyesyesno
Annual energy surplusnononononono
Energy communitynoyesnoyesnoyes
Circularityyesnonononono
Air quality and urban comfortnononoyesnono
Electrificationyesyesnoyesnono
Net-zero energy costnononononono
Net-zero emissionyesyesyesnonono
Self-sufficiency (energy autonomous)noyesnoyesnono
Maximise self-sufficiencyyesnonoyesyesno
Othernoyesnononono
Other (A1P004)Green IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabImplementation PhaseIn operationCompletedImplementation PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date02/1601/201104/1601/2310/2101/21
A1P007: End Date
A1P007: End date07/2202/201304/2212/2710/2401/30
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • General statistical datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
  • Historical sources,
  • GIS of the municipality,
  • Basic BEMs
      A1P011: Geographic coordinates
      X Coordinate (longitude):26.7227372.111.42434673814025623.580112098023235-8.37355712.92054
      Y Coordinate (latitude):58.38071341.347.27147078672910446.07701527868011541.13580456.65194
      A1P012: Country
      A1P012: CountryEstoniaSpainAustriaRomaniaPortugalSweden
      A1P013: City
      A1P013: CityTartuBarcelona and TarragonaInnsbruckAlba IuliaMaiaHalmstad
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).DfbCsaDfbDfbCsbDwb
      A1P015: District boundary
      A1P015: District boundaryFunctionalVirtualGeographicFunctionalVirtualGeographic
      OtherGeographic
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PrivatePublicMixedPublicPublicMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED180422250
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]3521722277
      A1P020: Total ground area
      A1P020: Total ground area [m²]79314411351
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area002000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estateyesnonononoyes
      A1P022a: Add the value in EUR if available [EUR]6500000
      A1P022b: Financing - PRIVATE - ESCO schemenononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernonononoyesno
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingyesnonononono
      A1P022d: Add the value in EUR if available [EUR]4000000
      A1P022e: Financing - PUBLIC - National fundingyesnonoyesyesno
      A1P022e: Add the value in EUR if available [EUR]8000000
      A1P022f: Financing - PUBLIC - Regional fundingnononoyesyesno
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnononoyesyesyes
      A1P022i: Add the value in EUR if available [EUR]
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnonono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Positive externalities
      • Job creation,
      • Boosting local and sustainable production
      • Job creation,
      • Other
      • Job creation,
      • Positive externalities
      • Positive externalities,
      • Boosting local and sustainable production
      • Boosting local and sustainable production
      A1P023: OtherCreate affordable appartments for the citizensBoosting sustainability for public schools
      A1P024: More comments:
      A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]253.5
      Contact person for general enquiries
      A1P026: NameJaanus TammDr. Jaume Salom, Dra. Cristina CorcheroGeorgios DermentzisTudor DrâmbăreanAdelina RodriguesMarkus Olofsgård
      A1P027: OrganizationTartu City GovernmentIRECUniversity of InnsbruckMunicipality of Alba IuliaMaia Municipality (CM Maia) – Energy and Mobility divisionAFRY
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesOther
      A1P028: OtherMaria Elena Seemann
      A1P029: EmailJaanus.tamm@tartu.eeJsalom@irec.catGeorgios.Dermentzis@uibk.ac.attudor.drambarean@apulum.rodscm.adelina@cm-maia.ptmarkus.olofsgard@afry.com
      Contact person for other special topics
      A1P030: NameKaspar AlevMaria-Elena SeemannCarolina Gonçalves (AdEPorto)
      A1P031: EmailKaspar.alev@tartu.eemaria.seemann@apulum.rocarolinagoncalves@adeporto.eu
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy production,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Water use,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.Thermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.Energy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:link based regulation of electricity grid
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoYesNoNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYesYesYesYesYesNo
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoYesNoNoNoYes
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhThere will be 1 EV station placed nearby the main building. This would be the link to the mobility field.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]9.10.39
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.655
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]0
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesyesyesyesyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.42
      A2P011: Windnononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnononononoyes
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalyesnononoyesno
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
      A2P012: Biomass_heatnononononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnononononono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononoyesnono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notes
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]0.96
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]-2
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnoyesnononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnononononono
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnononononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronononononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnononononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernononoyesnono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnononononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernononoyesnono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary000000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]980
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & Securityyes
      A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.yes
      A2P022: Educationyes
      A2P022: Mobilityyes
      A2P022: EnergySpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.yes
      A2P022: Wateryes
      A2P022: Economic developmentyes
      A2P022: Housing and Community
      A2P022: Waste
      A2P022: Other
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsyesyesyesyesyesyes
      A2P023: Solar thermal collectorsnononoyesyesno
      A2P023: Wind Turbinesnononononono
      A2P023: Geothermal energy systemnononononono
      A2P023: Waste heat recoverynononononono
      A2P023: Waste to energynononononono
      A2P023: Polygenerationnononoyesnono
      A2P023: Co-generationnononoyesnono
      A2P023: Heat Pumpnonoyesyesyesno
      A2P023: Hydrogennononononono
      A2P023: Hydropower plantnononononono
      A2P023: Biomassyesnonononono
      A2P023: Biogasyesnonononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)yesyesnoyesyesyes
      A2P024: Energy management systemyesyesnoyesyesno
      A2P024: Demand-side managementnononoyesnoyes
      A2P024: Smart electricity gridnoyesnoyesnoyes
      A2P024: Thermal Storagenonoyesnonono
      A2P024: Electric Storagenoyesnoyesyesno
      A2P024: District Heating and Coolingyesnoyesnonono
      A2P024: Smart metering and demand-responsive control systemsnononoyesyesyes
      A2P024: P2P – buildingsnonoyesyesnono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingyesnonoyesyesno
      A2P025: Energy efficiency measures in historic buildingsnononononono
      A2P025: High-performance new buildingsnonoyesnonono
      A2P025: Smart Public infrastructure (e.g. smart lighting)yesnonoyesyesno
      A2P025: Urban data platformsyesnonoyesnono
      A2P025: Mobile applications for citizensyesnonononono
      A2P025: Building services (HVAC & Lighting)noyesyesyesyesno
      A2P025: Smart irrigationnononononono
      A2P025: Digital tracking for waste disposalnonononoyesno
      A2P025: Smart surveillanceyesnonononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)yesyesnoyesyesno
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)yesnonoyesnono
      A2P026: e-Mobilityyesnonoyesyesno
      A2P026: Soft mobility infrastructures and last mile solutionsnononononono
      A2P026: Car-free areanononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesThe new mobility plan integrates the PED area
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesYesYesNo
      A2P028: If yes, please specify and/or enter notesTwo buildings are certified "Passive House new build"The Municipal Buildings have an energy certificate, according to the Portuguese legislation.
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoYesNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.)
      • Smart cities strategies,
      • New development strategies
      • Smart cities strategies
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Promotion of energy communities (REC/CEC)
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategy40% reduction in emissions by 2030 according to the Convenant of Mayors
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Biogas,
      • Hydrogen
      • Electrification of Heating System based on Heat Pumps,
      • Other
      • Electrification of Heating System based on Heat Pumps
      • Other
      A3P003: OtherDistrict heating based mainly on heat pumps and renewable sourcesAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.Thermal rehabilitation Heat pumps Smart system capable o various connections and data export Usage of the energy produced by PVs placed on 3 buildings within the PED
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.Education Replacement of the non-performant PVs Professional maintenance of the PV system Reduce of consumptions Intelligent systems to recover heat Intelligent system to permit the usage of domestic water from the heating system
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Existing incentives
      • Demand management Living Lab
      • Open data business models,
      • Innovative business models,
      • Life Cycle Cost,
      • Circular economy models,
      • Demand management Living Lab
      • Innovative business models,
      • PPP models,
      • Existing incentives
      • Local trading
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Social incentives,
      • Quality of Life,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Digital Inclusion,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Social incentives,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Social incentives,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Strategic urban planning
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Net zero carbon footprint,
      • Carbon-free,
      • Pollutants Reduction,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction,
      • Greening strategies
      • Energy Neutral,
      • Low Emission Zone
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Carbon-free,
      • Life Cycle approach,
      • Pollutants Reduction,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Cool Materials,
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Net zero carbon footprint,
      • Pollutants Reduction
      • Energy Neutral,
      • Carbon-free
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionExtremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.Positive energy district
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentSince it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.Creation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • New construction
      • Renovation
      • New construction
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Retrofitting Area
      • Re-use / Transformation Area,
      • New Development
      • Retrofitting Area
      • New Development
      B1P006: Year of construction
      B1P006: Year of construction2022
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential4500
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential780
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention000.068716412650868000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialyesnonononono
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officenononononono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynononononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialyesnonononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononoyesnono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasyesnonononoyes
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalyesnonononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialyesnoyesnonono
      B1P014 - Residential: Specify the sqm [m²]
      B1P014: Officenononononono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialyesnoyesnonono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnonoyesyesnono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasyesnonononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalyesnoyesnonono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
      B2P002: Installation life time
      B2P002: Installation life timePermanent installation
      B2P003: Scale of action
      B2P003: ScaleDistrictVirtualVirtual
      B2P004: Operator of the installation
      B2P004: Operator of the installationIRECCM Maia, IPMAIA, NEW, AdEP.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic
      • Strategic,
      • Private
      • Strategic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityResearch center/UniversityMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO,
      • Other
      B2P009: OtherEnergy Agency
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Prosumers,
      • Renewable generation,
      • Energy networks,
      • Lighting,
      • E-mobility,
      • Green areas,
      • User interaction/participation,
      • Information and Communication Technologies (ICT)
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Efficiency measures,
      • Information and Communication Technologies (ICT)
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Energy storage,
      • Efficiency measures,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Ambient measures,
      • Social interactions
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Pivoting and risk-mitigating measures
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      • Monitoring and evaluation infrastructure,
      • Tools, spaces, events for testing and validation
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Available data,
      • Life Cycle Analysis
      • Equipment
      • Execution plan,
      • Available data,
      • Type of measured data
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Sustainability,
      • Social,
      • Economical / Financial
      • Energy,
      • Environmental
      • Energy,
      • Environmental,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
      B2P017: Capacities
      B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network._Energy production and storage, _Monitoring; _Digitization.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
      B2P019: Available tools
      B2P019: Available tools
      • Social models
      • Energy modelling
      • Energy modelling,
      • Social models,
      • Business and financial models,
      • Fundraising and accessing resources,
      • Matching actors
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
      C1P001: Energy Communities, P2P, Prosumers concepts3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important4 - Important5 - Very important
      C1P001: Storage systems and E-mobility market penetration2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important4 - Important5 - Very important
      C1P001: Decreasing costs of innovative materials3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
      C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important
      C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important3 - Moderately important3 - Moderately important4 - Important4 - Important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)4 - Important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important4 - Important
      C1P001: Social acceptance (top-down)4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important4 - Important
      C1P001: Presence of integrated urban strategies and plans5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important
      C1P001: Multidisciplinary approaches available for systemic integration4 - Important4 - Important4 - Important2 - Slightly important4 - Important4 - Important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects5 - Very important5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant
      C1P001: Availability of RES on site (Local RES)4 - Important4 - Important3 - Moderately important5 - Very important4 - Important5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important3 - Moderately important5 - Very important4 - Important3 - Moderately important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need5 - Very important4 - Important5 - Very important5 - Very important5 - Very important3 - Moderately important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important4 - Important5 - Very important4 - Important3 - Moderately important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important2 - Slightly important
      C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant
      C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)4 - Important4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant
      C1P002: Territorial and market attractiveness3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant
      C1P002: Energy autonomy/independence4 - Important5 - Very important4 - Important5 - Very important4 - Important2 - Slightly important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant
      C1P003: Lack of good cooperation and acceptance among partners2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
      C1P003: Lack of public participation1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
      C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P003: Fragmented and or complex ownership structure5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P003: City administration & cross-sectoral attitude/approaches (silos)5 - Very important4 - Important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P003: Any other Administrative BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
      C1P004: Lacking or fragmented local political commitment and support on the long term2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P005: Regulatory instability3 - Moderately important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P005: Non-effective regulations4 - Important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P005: Unfavorable local regulations for innovative technologies2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P005: Building code and land-use planning hindering innovative technologies2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P005: Insufficient or insecure financial incentives3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel3 - Moderately important5 - Very important2 - Slightly important4 - Important4 - Important1 - Unimportant
      C1P007: Deficient planning1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
      C1P007: Retrofitting work in dwellings in occupied state5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P007: Lack of well-defined process3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P007: Inaccuracy in energy modelling and simulation2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important4 - Important5 - Very important
      C1P007: Lack/cost of computational scalability3 - Moderately important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P007: Grid congestion, grid instability2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P007: Difficult definition of system boundaries5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
      C1P008: Lack of values and interest in energy optimization measurements3 - Moderately important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
      C1P008: Low acceptance of new projects and technologies2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
      C1P008: Lack of trust beyond social network2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P008: Rebound effect3 - Moderately important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
      C1P008: Hostile or passive attitude towards environmentalism3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important5 - Very important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P009: Lack of awareness among authorities2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
      C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P010: Insufficient external financial support and funding for project activities5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
      C1P010: Economic crisis3 - Moderately important4 - Important4 - Important4 - Important4 - Important1 - Unimportant
      C1P010: Risk and uncertainty4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
      C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important1 - Unimportant4 - Important4 - Important4 - Important
      C1P010: Limited access to capital and cost disincentives4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P011: Energy price distortion3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading
      • Planning/leading
      • Design/demand aggregation
      C1P012: Research & Innovation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Planning/leading,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading
      • Design/demand aggregation
      C1P012: Urban Services providers
      • Construction/implementation
      • Construction/implementation
      • Design/demand aggregation
      C1P012: Real Estate developers
      • None
      • Planning/leading
      • Construction/implementation
      C1P012: Design/Construction companies
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation
      C1P012: End‐users/Occupants/Energy Citizens
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading
      • Design/demand aggregation
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: Other
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)