Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Uncompare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Uncompare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Örebro-Vivalla
Istanbul, Ozyegin University Campus
Maia, Sobreiro Social Housing
Uden, Loopkantstraat
Oulu, Kaukovainio
Umeå, Ålidhem district
Utrecht, Kanaleneiland
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityÖrebro-VivallaIstanbul, Ozyegin University CampusMaia, Sobreiro Social HousingUden, LoopkantstraatOulu, KaukovainioUmeå, Ålidhem districtUtrecht, Kanaleneiland
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononononoyesyesno
PED relevant case studyyesyesyesnoyesnonoyes
PED Lab.nononoyesnononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyesyes
Annual energy surplusnonononoyesnonono
Energy communityyesyesnononononoyes
Circularitynononononoyesnono
Air quality and urban comfortyesnoyesnonononono
Electrificationyesnoyesnoyesyesnoyes
Net-zero energy costnononononononono
Net-zero emissionnononononononono
Self-sufficiency (energy autonomous)nononononononono
Maximise self-sufficiencynononoyesnononono
Othernonoyesnonononono
Other (A1P004)almost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseImplementation PhasePlanning PhaseIn operationIn operationPlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date04/2410/2410/2106/1710/2211/23
A1P007: End Date
A1P007: End date12/2610/2810/2405/2309/2511/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
        • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
        • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
        • https://www.synikia.eu/no/bibliotek/
        • Umeå Energi
          A1P011: Geographic coordinates
          X Coordinate (longitude):23.81458815.1905029.258300-8.3735575.619125.51759508409350720.26305.0875
          Y Coordinate (latitude):38.07734959.2959541.03060041.13580451.660664.9928809817313263.825852.0653
          A1P012: Country
          A1P012: CountryGreeceSwedenTurkeyPortugalNetherlandsFinlandSwedenNetherlands
          A1P013: City
          A1P013: CityMunicipality of KifissiaÖrebro-VivallaIstanbulMaiaUdenOuluUmeåUtrecht (Kanaleneiland)
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CsaDwbCfaCsbCfbDfcDfbCfb
          A1P015: District boundary
          A1P015: District boundaryVirtualGeographicGeographicVirtualGeographicGeographicGeographic
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodRegional (close to virtual)
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:PublicPrivatePublicPrivateMixedPublicPrivate
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerMultiple OwnersSingle OwnerSingle OwnerSingle OwnerMultiple Owners
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED152216
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]23601970042000
          A1P020: Total ground area
          A1P020: Total ground area [m²]285.400386060000520002910000
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area00001010
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenonoyesnoyesyesnono
          A1P022a: Add the value in EUR if available [EUR]7804440
          A1P022b: Financing - PRIVATE - ESCO schemenononononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernononoyesnononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnononononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnononoyesnononoyes
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnononoyesnononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnononononoyesnono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernononononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesnoyesnono
          A1P022i: Add the value in EUR if available [EUR]
          A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnononononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Positive externalities,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Positive externalities,
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local and sustainable production
          A1P023: OtherDeveloping and demonstrating new solutions
          A1P024: More comments:
          A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]178044405
          Contact person for general enquiries
          A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaPer CarlborgCem KeskinAdelina RodriguesTonje Healey TrulsrudSamuli RinneGireesh NairDr. Gonçalo Homem De Almeida Rodriguez Correia
          A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamÖrebro UniversityCenter for Energy, Environment and Economy, Ozyegin UniversityMaia Municipality (CM Maia) – Energy and Mobility divisionNorwegian University of Science and Technology (NTNU)City of OuluUmea MunicipalityDelft University of Technology
          A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / University
          A1P028: Other
          A1P029: Emailgiavasoglou@kifissia.grper.carlborg@oru.secem.keskin@ozyegin.edu.trdscm.adelina@cm-maia.pttonje.h.trulsrud@ntnu.nosamuli.rinne@ouka.figireesh.nair@umu.seg.correia@tudelft.nl
          Contact person for other special topics
          A1P030: NameStavros Zapantis - vice mayorM. Pınar MengüçCarolina Gonçalves (AdEPorto)Samuli RinneQiaochu Fan
          A1P031: Emailstavros.zapantis@gmail.compinar.menguc@ozyegin.edu.trcarolinagoncalves@adeporto.eusamuli.rinne@ouka.fiq.fan-1@tudelft.nl
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Indoor air quality,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Waste management,
          • Indoor air quality,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Water use,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.Simulation tools: City Energy Analyst and Polysun
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000YesNoYesNoNo
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceYesYesNoNoYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationNot included, the campus is a non car area except emergenciesnot includedNot included. However, there is a charging place for a shared EV in one building.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.1482.1
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.1090.20
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesnoyesyesyesyesyesno
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.0580.10.249
          A2P011: Windnononononononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydronononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnononononononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnononononononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
          A2P011: Othernononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnonononoyesnonono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnononoyesnononono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnononononononono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPnononononoyesnono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
          A2P012: Biomass_peat_heatnononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnononononononono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnononononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernononononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notes*Annual energy use below is presentedin primary energy consumptionHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]3.50.1942.36.1
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]0.0368
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnononononononono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnononononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnononononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernononononononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnonoyesnonoyesnono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
          A2P018: Windnononononoyesnono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydronononononoyesnono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnononononoyesnono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnononononoyesnono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnononononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernononononononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnononononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnononononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnononononoyesyesno
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
          A2P019: Waste heat+HPnonononononoyesno
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnononononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnononononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnononononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernononononononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary000003.285714285714300
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]-0.000430
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & SecurityPersonal Safety
          A2P022: HealthHealthy communityEncouraging a healthy lifestyle
          A2P022: Education
          A2P022: MobilityYesSustainable mobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV chargingImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districts
          A2P022: EnergyYesNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionEnergyTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stability
          A2P022: Water
          A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)Total investments, Payback time, Economic value of savingsDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilience
          A2P022: Housing and Communitydemographic composition, diverse community, social cohesionDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty
          A2P022: WasteRecycling rate
          A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)Smart Cities strategies, Quality of open data
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsnonoyesyesyesyesyesyes
          A2P023: Solar thermal collectorsnononoyesnononono
          A2P023: Wind Turbinesnonoyesnonononoyes
          A2P023: Geothermal energy systemnonononoyesnonono
          A2P023: Waste heat recoverynononononoyesnono
          A2P023: Waste to energynononononononono
          A2P023: Polygenerationnononononononono
          A2P023: Co-generationnonoyesnonoyesnono
          A2P023: Heat Pumpnonoyesyesyesyesnono
          A2P023: Hydrogennononononononono
          A2P023: Hydropower plantnononononononono
          A2P023: Biomassnononononoyesnono
          A2P023: Biogasnononononononono
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesyesnoyesyesno
          A2P024: Energy management systemnonoyesyesyesyesnoyes
          A2P024: Demand-side managementnoyesyesnoyesnoyesno
          A2P024: Smart electricity gridnononononononoyes
          A2P024: Thermal Storagenononononoyesnono
          A2P024: Electric Storagenonoyesyesnononoyes
          A2P024: District Heating and Coolingnoyesyesnonoyesnono
          A2P024: Smart metering and demand-responsive control systemsnonoyesyesyesnonono
          A2P024: P2P – buildingsnononononononono
          A2P024: OtherDistrict Heating
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnoyesnoyesnoyesyesyes
          A2P025: Energy efficiency measures in historic buildingsnononononononono
          A2P025: High-performance new buildingsnonoyesnoyesyesnono
          A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesnononoyes
          A2P025: Urban data platformsnononononoyesnoyes
          A2P025: Mobile applications for citizensnononononononono
          A2P025: Building services (HVAC & Lighting)nonoyesyesyesyesnono
          A2P025: Smart irrigationnonoyesnonononono
          A2P025: Digital tracking for waste disposalnononoyesnononono
          A2P025: Smart surveillancenonoyesnonononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nononoyesnoyesnoyes
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononononoyesnoyes
          A2P026: e-Mobilitynonoyesyesnoyesnoyes
          A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnonoyesnono
          A2P026: Car-free areanonoyesnonononono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesYesYesYesYesYes
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.EPC = 0, energy neutral buildingThe obligatory buildijng energy classification
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesYesNoNoNo
          A2P029: If yes, please specify and/or enter notesLEED BD+C, LEED NC CAMPUS
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies,
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • National / international city networks addressing sustainable urban development and climate neutrality
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyCarbon neutrality by 2035
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods
          • Other
          A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible PricingAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.NA
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesCarbon and Energy NeutralityDeveloping and demonstrating solutions for carbon neutrality
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourUnder LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.E. g. visualizing energy and water consumption
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Innovative business models,
          • PPP models,
          • Existing incentives
          • Open data business models,
          • Innovative business models,
          • PPP models,
          • Life Cycle Cost,
          • Circular economy models
          • Innovative business models,
          • Local trading,
          • Existing incentives
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Co-creation / Citizen engagement strategies,
          • Citizen Social Research,
          • Quality of Life,
          • Affordability,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance
          • Co-creation / Citizen engagement strategies,
          • Prevention of energy poverty,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Co-creation / Citizen engagement strategies,
          • Social incentives,
          • Quality of Life
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Policy Forums,
          • Quality of Life,
          • Strategies towards social mix,
          • Affordability,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Prevention of energy poverty,
          • Digital Inclusion
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • City Vision 2050
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • District Energy plans
          • Strategic urban planning,
          • District Energy plans
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral
          • Energy Neutral,
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Greening strategies,
          • Cool Materials
          • Energy Neutral,
          • Net zero carbon footprint,
          • Pollutants Reduction
          • Energy Neutral,
          • Net zero carbon footprint
          • Carbon-free
          • Energy Neutral,
          • Low Emission Zone,
          • Nature Based Solutions (NBS)
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionThe campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.The original idea is that the area produces at least as much it consumes.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentThe purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.Developing systems towards carbon neutrality. Also urban renewal.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaSuburban areaSuburban areaSuburban areaUrban area
          B1P004: Type of district
          B2P004: Type of district
          • Renovation
          • New construction
          • New construction,
          • Renovation
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • Retrofitting Area
          • New Development
          • New Development,
          • Retrofitting Area
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction2024
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential3500
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential3500
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential9800
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential9800
          B1P011: Population density before intervention
          B1P011: Population density before intervention003400000
          B1P012: Population density after intervention
          B1P012: Population density after intervention0034.337771548704000.05833333333333300
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnononononoyesyesno
          B1P013 - Residential: Specify the sqm [m²]
          B1P013: Officenononononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynononononononono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnononononoyesnono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnonoyesnonononono
          B1P013 - Institutional: Specify the sqm [m²]285.400
          B1P013: Natural areasnononononoyesnono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnononononoyesnono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnononononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernononononononono
          B1P013 - Other: Specify the sqm [m²]
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnonononoyesyesyesno
          B1P014 - Residential: Specify the sqm [m²]2394
          B1P014: Officenononononononono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynononononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnononononoyesnono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnonoyesnonononono
          B1P014 - Institutional: Specify the sqm [m²]280000
          B1P014: Natural areasnononononoyesnono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnononononoyesnono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernononononononono
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life timePermanent installation
          B2P003: Scale of action
          B2P003: ScaleVirtual
          B2P004: Operator of the installation
          B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?No
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Strategic
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabMunicipality
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          • Academia,
          • Private,
          • Industrial,
          • Citizens, public, NGO,
          • Other
          B2P009: OtherEnergy Agency
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Efficiency measures,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Ambient measures,
          • Social interactions
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Monitoring and evaluation infrastructure,
          • Tools, spaces, events for testing and validation
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Execution plan,
          • Available data,
          • Type of measured data
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Environmental,
          • Social,
          • Economical / Financial
          B2P016: Execution of operations
          B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
          B2P017: Capacities
          B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling,
          • Social models,
          • Business and financial models,
          • Fundraising and accessing resources,
          • Matching actors
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important1 - Unimportant5 - Very important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important
          C1P001: Storage systems and E-mobility market penetration1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important
          C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
          C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
          C1P001: The ability to predict Multiple Benefits1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important
          C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant4 - Important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
          C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant5 - Very important4 - Important4 - Important2 - Slightly important1 - Unimportant5 - Very important
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant4 - Important
          C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P001: Availability of RES on site (Local RES)1 - Unimportant5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant4 - Important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important
          C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant5 - Very important4 - Important5 - Very important3 - Moderately important1 - Unimportant5 - Very important
          C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant4 - Important4 - Important2 - Slightly important5 - Very important1 - Unimportant4 - Important
          C1P002: Energy autonomy/independence5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P002: Any other DRIVING FACTOR1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P003: Lack of public participation3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
          C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P003: Any other Administrative BARRIER1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P004: Any other Political BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P005: Regulatory instability3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P005: Non-effective regulations4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important
          C1P005: Shortage of proven and tested solutions and examples1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriersAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P007: Deficient planning3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P007: Lack of well-defined process4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P007: Grid congestion, grid instability4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
          C1P007: Any other Thecnical BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P008: Lack of trust beyond social network4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P008: Rebound effect4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
          C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P008: Any other Social BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P009: Lack of awareness among authorities1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P009: High costs of design, material, construction, and installation1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P010: Insufficient external financial support and funding for project activities1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P010: Economic crisis1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P010: Risk and uncertainty1 - Unimportant5 - Very important4 - Important5 - Very important3 - Moderately important1 - Unimportant4 - Important
          C1P010: Lack of consolidated and tested business models1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P010: Limited access to capital and cost disincentives1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P010: Any other Financial BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives1 - Unimportant5 - Very important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P011: Energy price distortion1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P011: Any other Market BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Analyst, ICT and Big Data
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Business process management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          C1P012: Urban Services providers
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading
          C1P012: Real Estate developers
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Design/Construction companies
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation
          • Design/demand aggregation
          C1P012: End‐users/Occupants/Energy Citizens
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Industry/SME/eCommerce
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)