Filters:
NameProjectTypeCompare
Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna/16. District HeatCOOP PED Relevant Case Study Compare
Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Uncompare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Uncompare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
NyBy – Ny Flyplass (New City – New Airport)
Tartu, Estonia
Stor-Elvdal, Campus Evenstad
Oslo, Verksbyen
Izmir, District of Karşıyaka
Groningen, PED South
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityNyBy – Ny Flyplass (New City – New Airport)Tartu, EstoniaStor-Elvdal, Campus EvenstadOslo, VerksbyenIzmir, District of KarşıyakaGroningen, PED South
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnonoyesyesno
PED relevant case studyyesnoyesyesnonono
PED Lab.nonononononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyes
Annual energy surplusnononoyesyesyesyes
Energy communityyesnoyesnononoyes
Circularitynonononononoyes
Air quality and urban comfortyesnononoyesyesno
Electrificationyesnoyesnononono
Net-zero energy costnononononoyesno
Net-zero emissionnoyesnonoyesnoyes
Self-sufficiency (energy autonomous)nonononononono
Maximise self-sufficiencynononononoyesno
Othernoyesnoyesnonono
Other (A1P004)Energy efficient; Sustainable neighbourhood; Social aspects/affordabilityEnergy-flexibility
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhaseIn operationImplementation PhasePlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date01/2012/2301/1307/1810/2212/18
A1P007: End Date
A1P007: End date11/2612/2408/2410/2512/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • TNO, Hanze, RUG,
      • Ped noord book
      A1P011: Geographic coordinates
      X Coordinate (longitude):23.81458814.36316926.748111.07877077353174610.98617335443299227.1100496.590655
      Y Coordinate (latitude):38.07734967.27195458.370861.4260442039911259.2242971664204638.49605453.204087
      A1P012: Country
      A1P012: CountryGreeceNorwayEstoniaNorwayNorwayTurkeyNetherlands
      A1P013: City
      A1P013: CityMunicipality of KifissiaBodøTartuEvenstad, Stor-Elvdal municipalityFredrikstadİzmirGroningen
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CsaDfcDfbDwcCfbCsaCfa
      A1P015: District boundary
      A1P015: District boundaryVirtualGeographicGeographicGeographicGeographicFunctional
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PublicPublicPublicPrivatePrivateMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED222214
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]1000035501027957.86
      A1P020: Total ground area
      A1P020: Total ground area [m²]340000054000003260045.093
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area0000030
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenonononoyesnoyes
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenonononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernonononononoyes
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnonoyesyesnonoyes
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnonononononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnonononononoyes
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernonononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnononononoyesyes
      A1P022i: Add the value in EUR if available [EUR]1193355
      A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnoyesno
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local and sustainable production
      • Boosting local businesses,
      • Boosting local and sustainable production
      A1P023: Other
      A1P024: More comments:
      A1P024: More comments:The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
      Contact person for general enquiries
      A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaChristoph GollnerDr. Gonçalo Homem De Almeida Rodriguez CorreiaÅse Lekang SørensenTonje Healey TrulsrudOzlem SenyolJasper Tonen, Elisabeth Koops
      A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamFFGDelft University of TechnologySINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesNorwegian University of Science and technology (NTNU)Karsiyaka MunicipalityMunicipality of Groningen
      A1P028: AffiliationMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public Bodies
      A1P028: Other
      A1P029: Emailgiavasoglou@kifissia.grchristoph.gollner@ffg.atg.correia@tudelft.nlase.sorensen@sintef.notonje.h.trulsrud@ntnu.noozlemkocaer2@gmail.comJasper.tonen@groningen.nl
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorQiaochu FanHasan Burak Cavka
      A1P031: Emailstavros.zapantis@gmail.comq.fan-1@tudelft.nlhasancavka@iyte.edu.tr
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.)
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.Energy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilationMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.Energy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streams
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoYesYesNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYesNoYesNo
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceYesNoNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationAt Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.Mobility is not included in the calculations.Mobility, till now, is not included in the energy model.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.770.163.8621.86
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.760.0531.2261.45
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesnonoyesyesyesno
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.0650.181.028
      A2P011: Windnonononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononoyesnonono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
      A2P011: Biomass_peat_elnonononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernonononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnonononononoyes
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnononoyesnonoyes
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
      A2P012: Biomass_heatnononoyesnonoyes
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
      A2P012: Waste heat+HPnonononononoyes
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_peat_heatnonononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnonononononoyes
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnonononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesListed values are measurements from 2018. Renewable energy share is increasing.Geothermal heatpump systems, Waste heat from data centers
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]1.5005.088
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]1
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnononononoyesno
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnononononoyesno
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
      A2P018: Windnonononononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary000001.45403111739750
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]-6.035
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & SecurityPersonal Safety
      A2P022: HealthHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)
      A2P022: Education
      A2P022: MobilityMode of transport; Access to public transportImproved accessibility to V2G-related transport options, focusing on inclusivity and equitable adoption in urban districtsSustainable mobility
      A2P022: EnergyEnergy efficiency in buildings; Net energy need; Gross energy need; Total energy needTarget zero greenhouse gas emissions through the adoption of EVs with V2G capabilities, aiming to reduce reliance on fossil fuels and enhance local grid stabilityEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissions
      A2P022: Water
      A2P022: Economic developmentDevelopment of viable business models for V2G that allow decentralized energy markets to integrate with the grid, enhancing local economic resilienceEconomic Performance: capital costs, operational costs, overall performance
      A2P022: Housing and CommunityDelivery and proximity to amenitiesdemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousness
      A2P022: Waste
      A2P022: OtherGHG emissions; Power/load; Life cycle cost (LCC); Demographic needs and consultation plan; Public SpaceSmartness and Flexibility
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsnonoyesyesyesyesyes
      A2P023: Solar thermal collectorsnoyesnoyesnonoyes
      A2P023: Wind Turbinesnonoyesnononono
      A2P023: Geothermal energy systemnoyesnonoyesnoyes
      A2P023: Waste heat recoverynoyesnonononoyes
      A2P023: Waste to energynonononononoyes
      A2P023: Polygenerationnonononononono
      A2P023: Co-generationnononoyesnonono
      A2P023: Heat Pumpnoyesnonoyesyesyes
      A2P023: Hydrogennonononononono
      A2P023: Hydropower plantnonononononono
      A2P023: Biomassnononoyesnonono
      A2P023: Biogasnonononononono
      A2P023: OtherThe Co-generation is biomass based.
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)nononoyesyesnoyes
      A2P024: Energy management systemnonoyesyesyesnoyes
      A2P024: Demand-side managementnonoyesyesyesnono
      A2P024: Smart electricity gridnonoyesnononono
      A2P024: Thermal Storagenononoyesnonoyes
      A2P024: Electric Storagenonoyesyesnonoyes
      A2P024: District Heating and Coolingnoyesnoyesnonoyes
      A2P024: Smart metering and demand-responsive control systemsnononoyesyesnoyes
      A2P024: P2P – buildingsnonononononono
      A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnonoyesnonoyesno
      A2P025: Energy efficiency measures in historic buildingsnonononononoyes
      A2P025: High-performance new buildingsnononoyesyesnoyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesnononoyes
      A2P025: Urban data platformsnonoyesnononoyes
      A2P025: Mobile applications for citizensnonononononono
      A2P025: Building services (HVAC & Lighting)nonononoyesyesno
      A2P025: Smart irrigationnonononononono
      A2P025: Digital tracking for waste disposalnonononononono
      A2P025: Smart surveillancenonononononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nonoyesnononono
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnononono
      A2P026: e-Mobilitynonoyesyesnonoyes
      A2P026: Soft mobility infrastructures and last mile solutionsnonononononono
      A2P026: Car-free areanonononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesNoYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingPassive house (2 buildings, 4 200 m2, from 2015)NS3700 Norwegian Passive HouseEnergy Performance Certificate
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesYesNo
      A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Promotion of energy communities (REC/CEC),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      A3P003: Other
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourIn Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • Local trading,
      • Existing incentives
      • Innovative business models,
      • Blockchain
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Co-creation / Citizen engagement strategies,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Prevention of energy poverty,
      • Digital Inclusion
      • Behavioural Change / End-users engagement,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
      • Other
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Affordability
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • District Energy plans
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral,
      • Low Emission Zone,
      • Nature Based Solutions (NBS)
      • Low Emission Zone
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction
      • Energy Neutral
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionThe biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentIn line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaSuburban areaRuralSuburban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction
      • New construction,
      • Renovation
      • New construction
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • New Development
      • Retrofitting Area
      • New Development
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction2005
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential
      B1P011: Population density before intervention
      B1P011: Population density before intervention0000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention0000000
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnononononoyesno
      B1P013 - Residential: Specify the sqm [m²]102795
      B1P013: Officenonononononono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynonononoyesnono
      B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
      B1P013: Commercialnonononononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnonononononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnonononononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnonononononono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernonononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesnonoyesyesno
      B1P014 - Residential: Specify the sqm [m²]102795
      B1P014: Officenonononononono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynonononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnonononononono
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnonononononono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnonononononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnonononononono
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnonononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernoyesnonononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
      B2P002: Installation life time
      B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
      B2P003: Scale of action
      B2P003: ScaleDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?No
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Civic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Other
      B2P009: Otherresearch companies, monitoring company, ict company
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Tools for prototyping and modelling
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling,
      • Social models,
      • Business and financial models
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important4 - Important3 - Moderately important
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Storage systems and E-mobility market penetration1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important
      C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important
      C1P001: The ability to predict Multiple Benefits1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important5 - Very important
      C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important3 - Moderately important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
      C1P001: Availability of RES on site (Local RES)1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important4 - Important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
      C1P002: Economic growth need2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant
      C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important2 - Slightly important
      C1P002: Energy autonomy/independence5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important2 - Slightly important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P003: Lack of public participation3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
      C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important4 - Important
      C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important
      C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important4 - Important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
      C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important4 - Important
      C1P005: Regulatory instability3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
      C1P005: Non-effective regulations4 - Important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important5 - Very important3 - Moderately important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
      C1P005: Shortage of proven and tested solutions and examples1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important
      C1P007: Deficient planning3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
      C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
      C1P007: Lack of well-defined process4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
      C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important
      C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant
      C1P007: Grid congestion, grid instability4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
      C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
      C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
      C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
      C1P008: Lack of trust beyond social network4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P008: Rebound effect4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
      C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important4 - Important
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
      C1P009: Lack of awareness among authorities1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important2 - Slightly important
      C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
      C1P009: High costs of design, material, construction, and installation1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important4 - Important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
      C1P010: Financial barriers
      C1P010: Hidden costs1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important2 - Slightly important
      C1P010: Insufficient external financial support and funding for project activities1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P010: Economic crisis1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
      C1P010: Risk and uncertainty1 - Unimportant4 - Important5 - Very important4 - Important4 - Important3 - Moderately important
      C1P010: Lack of consolidated and tested business models1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important
      C1P010: Limited access to capital and cost disincentives1 - Unimportant5 - Very important4 - Important1 - Unimportant5 - Very important2 - Slightly important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
      C1P011: Energy price distortion1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Research & Innovation
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading
      • Planning/leading
      C1P012: Urban Services providers
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Real Estate developers
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation
      C1P012: Design/Construction companies
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Monitoring/operation/management
      • None
      C1P012: Social/Civil Society/NGOs
      • None
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Industry/SME/eCommerce
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)