Name | Project | Type | Compare |
---|---|---|---|
Romania, Alba Iulia PED | ASCEND – Accelerate poSitive Clean ENergy Districts | PED Case Study | Compare |
Romania, Alba Iulia PED | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Munich, Harthof district | PED Case Study | Uncompare | |
Lublin | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Bærum, Eiksveien 116 | CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings | PED Relevant Case Study | Compare |
Findhorn, the Park | InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts | PED Case Study | Compare |
Amsterdam, Buiksloterham PED | ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities | PED Case Study | Compare |
Schönbühel-Aggsbach, Schönbühel an der Donau | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Uncompare |
Umeå, Ålidhem district | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Aalborg East | PED Relevant Case Study / PED Lab | Compare | |
Ankara, Çamlık District | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study / PED Relevant Case Study | Compare |
Trenčín | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Luxembourg, Betzdorf | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Compare |
Vantaa, Aviapolis | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Vidin, Himik and Bononia | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Oslo, Verksbyen | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Uden, Loopkantstraat | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Relevant Case Study | Compare |
Zaragoza, Actur | NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts | PED Relevant Case Study | Compare |
Aarhus, Brabrand | BIPED – Building Intelligent Positive Energy Districts | PED Case Study / PED Relevant Case Study / PED Lab | Compare |
Riga, Ķīpsala, RTU smart student city | ExPEDite – Enabling Positive Energy Districts through Digital Twins | PED Case Study | Compare |
Izmir, District of Karşıyaka | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Case Study | Compare |
Istanbul, Ozyegin University Campus | LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes | PED Relevant Case Study | Uncompare |
Espoo, Kera | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study / PED Relevant Case Study | Compare |
Borlänge, Rymdgatan’s Residential Portfolio | PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation | PED Relevant Case Study | Uncompare |
Freiburg, Waldsee | PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district | PED Case Study | Compare |
Innsbruck, Campagne-Areal | PED Relevant Case Study | Compare | |
Graz, Reininghausgründe | PED Case Study | Compare | |
Stor-Elvdal, Campus Evenstad | ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities | PED Relevant Case Study | Compare |
Oulu, Kaukovainio | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Halmstad, Fyllinge | PED Relevant Case Study | Compare | |
Lund, Brunnshög district | PED Case Study | Uncompare | |
Vienna, Am Kempelenpark | PED Case Study | Compare | |
Évora, Portugal | POCITYF – A POsitive Energy CITY Transformation Framework | PED Relevant Case Study / PED Lab | Compare |
Kladno, Sletiště (Sport Area), PED Winter Stadium | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study | Compare |
Groningen, PED South | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Groningen, PED North | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Lab | Compare |
Maia, Sobreiro Social Housing | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Lab | Compare |
Lubia (Soria), CEDER-CIEMAT | PED Lab | Compare | |
Tampere, Ilokkaanpuisto district | STARDUST – Holistic and Integrated Urban Model for Smart Cities | PED Relevant Case Study | Compare |
Leon, Former Sugar Factory district | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Istanbul, Kadikoy district, Caferaga | MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future | PED Case Study | Compare |
Espoo, Leppävaara district, Sello center | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Espoo, Espoonlahti district, Lippulaiva block | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Salzburg, Gneis district | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Compare |
Barcelona, Santa Coloma de Gramenet | Syn.ikia – Sustainable Plus Energy Neighbourhoods | PED Case Study | Uncompare |
Tartu, City centre area | SmartEnCity – Towards Smart Zero CO2 Cities across Europe | PED Relevant Case Study / PED Lab | Compare |
Bologna, Pilastro-Roveri district | GRETA – GReen Energy Transition Actions | PED Relevant Case Study | Compare |
Barcelona, SEILAB & Energy SmartLab | PED Lab | Uncompare | |
Leipzig, Baumwollspinnerei district | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Case Study | Compare |
Kifissia, Energy community | SPARCS – Sustainable energy Positive & zero cARbon CommunitieS | PED Relevant Case Study |
Title | Kifissia, Energy community | Munich, Harthof district | Borlänge, Rymdgatan’s Residential Portfolio | Barcelona, SEILAB & Energy SmartLab | Schönbühel-Aggsbach, Schönbühel an der Donau | Barcelona, Santa Coloma de Gramenet | Istanbul, Ozyegin University Campus | Lund, Brunnshög district |
---|---|---|---|---|---|---|---|---|
A1P001: Name of the PED case study / PED Lab | ||||||||
A1P001: Name of the PED case study / PED Lab | Kifissia, Energy community | Munich, Harthof district | Borlänge, Rymdgatan’s Residential Portfolio | Barcelona, SEILAB & Energy SmartLab | Schönbühel-Aggsbach, Schönbühel an der Donau | Barcelona, Santa Coloma de Gramenet | Istanbul, Ozyegin University Campus | Lund, Brunnshög district |
A1P002: Map / aerial view / photos / graphic details / leaflet | ||||||||
A1P002: Map / aerial view / photos / graphic details / leaflet |
|
| ||||||
A1P003: Categorisation of the PED site | ||||||||
PED case study | no | yes | no | no | no | yes | no | yes |
PED relevant case study | yes | no | yes | no | yes | no | yes | no |
PED Lab. | no | no | no | yes | no | no | no | no |
A1P004: Targets of the PED case study / PED Lab | ||||||||
Climate neutrality | no | yes | yes | no | yes | yes | yes | yes |
Annual energy surplus | no | yes | yes | no | no | yes | no | yes |
Energy community | yes | yes | yes | yes | yes | no | no | yes |
Circularity | no | no | no | no | no | no | no | yes |
Air quality and urban comfort | yes | no | no | no | no | yes | yes | yes |
Electrification | yes | no | yes | yes | no | no | yes | yes |
Net-zero energy cost | no | no | no | no | yes | no | no | no |
Net-zero emission | no | no | no | yes | no | no | no | yes |
Self-sufficiency (energy autonomous) | no | no | no | yes | no | no | no | no |
Maximise self-sufficiency | no | no | yes | no | yes | no | no | no |
Other | no | no | no | yes | no | no | yes | yes |
Other (A1P004) | Green IT | almost nZEB district | Holistic approach on city planning; Minimise car traffic - walkability; Local service; Climate neutral buildings 2030; | |||||
A1P005: Phase of the PED case study / PED Lab | ||||||||
A1P005: Project Phase of your case study/PED Lab | Planning Phase | Implementation Phase | Planning Phase | In operation | Implementation Phase | Implementation Phase | Implementation Phase | In operation |
A1P006: Start Date | ||||||||
A1P006: Start date | 01/23 | 01/2011 | 10/24 | 2015 | ||||
A1P007: End Date | ||||||||
A1P007: End date | 12/27 | 02/2013 | 10/28 | 2040 | ||||
A1P008: Reference Project | ||||||||
A1P008: Reference Project | ||||||||
A1P009: Data availability | ||||||||
A1P009: Data availability |
|
|
|
|
|
| ||
A1P009: Other | GIS open dataset is under construction | |||||||
A1P010: Sources | ||||||||
Any publication, link to website, deliverable referring to the PED/PED Lab |
| |||||||
A1P011: Geographic coordinates | ||||||||
X Coordinate (longitude): | 23.814588 | 11.569625059947604 | 15.394495 | 2.1 | 15.3969 | 2.16 | 29.258300 | 13.232469400769599 |
Y Coordinate (latitude): | 38.077349 | 48.20436261275152 | 60.486609 | 41.3 | 48.2752 | 41.39 | 41.030600 | 55.71989792207193 |
A1P012: Country | ||||||||
A1P012: Country | Greece | Germany | Sweden | Spain | Austria | Spain | Turkey | Sweden |
A1P013: City | ||||||||
A1P013: City | Municipality of Kifissia | Munich | Borlänge | Barcelona and Tarragona | Schönbühel an der Donau | Barcelona | Istanbul | Lund |
A1P014: Climate Zone (Köppen Geiger classification) | ||||||||
A1P014: Climate Zone (Köppen Geiger classification). | Csa | Cfb | Dsb | Csa | Dfb | Csa | Cfa | Dfb |
A1P015: District boundary | ||||||||
A1P015: District boundary | Virtual | Geographic | Geographic | Virtual | Geographic | Geographic | Geographic | Geographic |
Other | The energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood | |||||||
A1P016: Ownership of the case study/PED Lab | ||||||||
A1P016: Ownership of the case study/PED Lab: | Mixed | Mixed | Public | Private | Private | Private | Public | |
A1P017: Ownership of the land / physical infrastructure | ||||||||
A1P017: Ownership of the land / physical infrastructure: | Multiple Owners | Single Owner | Single Owner | Multiple Owners | Single Owner | Single Owner | Multiple Owners | |
A1P018: Number of buildings in PED | ||||||||
A1P018: Number of buildings in PED | 126 | 10 | 0 | 0 | 16 | 15 | 200 | |
A1P019: Conditioned space | ||||||||
A1P019: Conditioned space [m²] | 206 | 3700 | 477 | 21542 | 1500000 | |||
A1P020: Total ground area | ||||||||
A1P020: Total ground area [m²] | 560 | 9945 | 2450 | 285.400 | 1500000 | |||
A1P021: Floor area ratio: Conditioned space / total ground area | ||||||||
A1P021: Floor area ratio: Conditioned space / total ground area | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
A1P022: Financial schemes | ||||||||
A1P022a: Financing - PRIVATE - Real estate | no | no | no | no | yes | no | yes | yes |
A1P022a: Add the value in EUR if available [EUR] | 99999999 | |||||||
A1P022b: Financing - PRIVATE - ESCO scheme | no | no | no | no | no | no | no | no |
A1P022b: Add the value in EUR if available [EUR] | ||||||||
A1P022c: Financing - PRIVATE - Other | no | no | no | no | no | no | no | no |
A1P022c: Add the value in EUR if available [EUR] | ||||||||
A1P022d: Financing - PUBLIC - EU structural funding | no | no | no | no | no | no | no | yes |
A1P022d: Add the value in EUR if available [EUR] | 1000000 | |||||||
A1P022e: Financing - PUBLIC - National funding | no | no | no | no | yes | no | no | yes |
A1P022e: Add the value in EUR if available [EUR] | 30000000 | |||||||
A1P022f: Financing - PUBLIC - Regional funding | no | no | no | no | yes | no | no | yes |
A1P022f: Add the value in EUR if available [EUR] | 30000000 | |||||||
A1P022g: Financing - PUBLIC - Municipal funding | no | yes | no | no | no | no | no | yes |
A1P022g: Add the value in EUR if available [EUR] | 180000000 | |||||||
A1P022h: Financing - PUBLIC - Other | no | no | no | no | no | no | no | no |
A1P022h: Add the value in EUR if available [EUR] | ||||||||
A1P022i: Financing - RESEARCH FUNDING - EU | no | yes | no | no | no | yes | yes | yes |
A1P022i: Add the value in EUR if available [EUR] | 503903 | 2000000 | ||||||
A1P022j: Financing - RESEARCH FUNDING - National | no | no | no | no | no | no | no | no |
A1P022j: Add the value in EUR if available [EUR] | ||||||||
A1P022k: Financing - RESEARCH FUNDING - Local/regional | no | no | no | no | no | no | no | no |
A1P022k: Add the value in EUR if available [EUR] | ||||||||
A1P022l: Financing - RESEARCH FUNDING - Other | no | no | no | no | no | no | no | no |
A1P022l: Add the value in EUR if available [EUR] | ||||||||
A1P022: Other | ||||||||
A1P023: Economic Targets | ||||||||
A1P023: Economic Targets |
|
|
|
|
| |||
A1P023: Other | World class sustainable living and research environments | |||||||
A1P024: More comments: | ||||||||
A1P024: More comments: | Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project. | ||||||
A1P025: Estimated PED case study / PED LAB costs | ||||||||
A1P025: Estimated PED case study / PED LAB costs [mil. EUR] | 1 | |||||||
Contact person for general enquiries | ||||||||
A1P026: Name | Artemis Giavasoglou, Kleopatra Kalampoka | Stefan Synek | Jingchun Shen | Dr. Jaume Salom, Dra. Cristina Corchero | Ghazal Etminan | Jaume Salom | Cem Keskin | Markus Paulsson |
A1P027: Organization | Municipality of Kifissia – SPARCS local team | City of Munich | Högskolan Dalarna | IREC | Ghazal.Etminan@ait.ac.at | IREC | Center for Energy, Environment and Economy, Ozyegin University | City of Lund |
A1P028: Affiliation | Municipality / Public Bodies | Municipality / Public Bodies | Research Center / University | Research Center / University | Research Center / University | Research Center / University | Research Center / University | Municipality / Public Bodies |
A1P028: Other | Andreas Bärnreuther | |||||||
A1P029: Email | giavasoglou@kifissia.gr | stefan.synek@muenchen.de | jih@du.se | Jsalom@irec.cat | Ghazal.Etminan@ait.ac.at | jsalom@irec.cat | cem.keskin@ozyegin.edu.tr | markus.paulsson@lund.se |
Contact person for other special topics | ||||||||
A1P030: Name | Stavros Zapantis - vice mayor | Stefan Synek | Xingxing Zhang | Joan Estrada Aliberas | M. Pınar Mengüç | Eva Dalman | ||
A1P031: Email | stavros.zapantis@gmail.com | stefan.synek@muenchen.de | xza@du.se | j_estrada@gencat.cat | pinar.menguc@ozyegin.edu.tr | eva.dalman@lund.se | ||
Pursuant to the General Data Protection Regulation | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
A2P001: Fields of application | ||||||||
A2P001: Fields of application |
|
|
|
|
|
|
|
|
A2P001: Other | Walkability and biking | |||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | ||||||||
A2P002: Tools/strategies/methods applied for each of the above-selected fields | Load calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM | Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35) | Energy modeling | - Integrated energy design process of both active and passive elements - Multicriteria analysis of energy system, environmental variables, indoor comfort and economic parameters - Energy modelling - Predictive control to optimize performance within the neighbourhood | LEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste document | LundaMaTs methodology for traffic and city planning. LundaEko - Lund's programme for ecological sustainability. Municipally owned land is sold to property developers on environmental conditions. | ||
A2P003: Application of ISO52000 | ||||||||
A2P003: Application of ISO52000 | No | No | Yes | No | ||||
A2P004: Appliances included in the calculation of the energy balance | ||||||||
A2P004: Appliances included in the calculation of the energy balance | Yes | Yes | Yes | Yes | No | Yes | Yes | |
A2P005: Mobility included in the calculation of the energy balance | ||||||||
A2P005: Mobility included in the calculation of the energy balance | No | No | Yes | No | No | No | Yes | |
A2P006: Description of how mobility is included (or not included) in the calculation | ||||||||
A2P006: Description of how mobility is included (or not included) in the calculation | – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah | Not included, the campus is a non car area except emergencies | Today electrically charged vehicles are included in the energy balance. In the future also other fuels should be included. | |||||
A2P007: Annual energy demand in buildings / Thermal demand | ||||||||
A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum] | 0.6777 | 0.066 | 25 | |||||
A2P008: Annual energy demand in buildings / Electric Demand | ||||||||
A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum] | 0.03656 | 0.012 | 30 | |||||
A2P009: Annual energy demand for e-mobility | ||||||||
A2P009: Annual energy demand for e-mobility [GWh/annum] | 0 | |||||||
A2P010: Annual energy demand for urban infrastructure | ||||||||
A2P010: Annual energy demand for urban infrastructure [GWh/annum] | 0 | |||||||
A2P011: Annual renewable electricity production on-site during target year | ||||||||
A2P011: PV | yes | yes | no | yes | yes | yes | yes | yes |
A2P011: PV - specify production in GWh/annum [GWh/annum] | 0.05 | |||||||
A2P011: Wind | no | no | no | no | no | no | no | yes |
A2P011: Wind - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Hydro | no | no | no | no | no | no | no | no |
A2P011: Hydro - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Biomass_el | no | no | no | no | no | no | no | no |
A2P011: Biomass_el - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: Biomass_peat_el | no | no | no | no | no | no | no | no |
A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum] | ||||||||
A2P011: PVT_el | no | no | yes | no | no | no | no | no |
A2P011: PVT_el - specify production in GWh/annum [GWh/annum] | 0.01818 | |||||||
A2P011: Other | no | no | no | no | no | yes | no | no |
A2P011: Other - specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Annual renewable thermal production on-site during target year | ||||||||
A2P012: Geothermal | no | no | no | no | no | no | no | no |
A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Solar Thermal | no | yes | no | no | no | no | no | no |
A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Biomass_heat | no | no | no | no | no | no | no | no |
A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Waste heat+HP | no | no | no | no | no | no | no | yes |
A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum] | 200 | |||||||
A2P012: Biomass_peat_heat | no | no | no | no | no | no | no | no |
A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: PVT_th | no | no | yes | no | no | no | no | no |
A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum] | 0.0825 | |||||||
A2P012: Biomass_firewood_th | no | no | no | no | no | no | no | no |
A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P012: Other | no | no | no | no | no | no | no | no |
A2P012 - Other: Please specify production in GWh/annum [GWh/annum] | ||||||||
A2P013: Renewable resources on-site - Additional notes | ||||||||
A2P013: Renewable resources on-site - Additional notes | -Rooftop PV 39.1 kWp -4 pipe air-to-water heat pump to cover heating and cooling | |||||||
A2P014: Annual energy use | ||||||||
A2P014: Annual energy use [GWh/annum] | 0.318 | 0.079 | 0.033 | 3.5 | ||||
A2P015: Annual energy delivered | ||||||||
A2P015: Annual energy delivered [GWh/annum] | 0.2055 | 0.0011 | 0.030 | |||||
A2P016: Annual non-renewable electricity production on-site during target year | ||||||||
A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum] | 0 | 0 | 0 | |||||
A2P017: Annual non-renewable thermal production on-site during target year | ||||||||
A2P017: Gas | no | yes | no | yes | no | no | no | no |
A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Coal | no | no | no | no | no | no | no | no |
A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Oil | no | yes | no | no | no | no | no | no |
A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum] | ||||||||
A2P017: Other | no | no | yes | no | no | no | no | no |
A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum] | 0 | |||||||
A2P018: Annual renewable electricity imports from outside the boundary during target year | ||||||||
A2P018: PV | no | yes | no | no | yes | no | yes | yes |
A2P018 - PV: specify production in GWh/annum if available [GWh/annum] | 0.00045547 | |||||||
A2P018: Wind | no | yes | no | no | yes | no | no | yes |
A2P018 - Wind: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Hydro | no | no | no | no | yes | no | no | yes |
A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Biomass_el | no | yes | no | no | yes | no | no | yes |
A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Biomass_peat_el | no | yes | no | no | no | no | no | no |
A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: PVT_el | no | yes | no | no | no | no | no | no |
A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum] | ||||||||
A2P018: Other | no | no | yes | no | no | no | no | no |
A2P018 - Other: specify production in GWh/annum if available [GWh/annum] | 0.187 | |||||||
A2P019: Annual renewable thermal imports from outside the boundary during target year | ||||||||
A2P019: Geothermal | no | yes | no | no | no | no | no | no |
A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Solar Thermal | no | no | no | no | no | no | no | no |
A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_heat | no | yes | no | no | no | no | no | no |
A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Waste heat+HP | no | yes | no | no | no | no | no | no |
A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_peat_heat | no | no | no | no | no | no | no | no |
A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: PVT_th | no | no | no | no | no | no | no | no |
A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Biomass_firewood_th | no | no | no | no | yes | no | no | no |
A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum] | ||||||||
A2P019: Other | no | no | yes | no | no | no | no | no |
A2P019 Other: Please specify imports in GWh/annum [GWh/annum] | 0 | |||||||
A2P020: Share of RES on-site / RES outside the boundary | ||||||||
A2P020: Share of RES on-site / RES outside the boundary | 0 | 0 | 0.53839572192513 | 0 | 0 | 0 | 0 | 0 |
A2P021: GHG-balance calculated for the PED | ||||||||
A2P021: GHG-balance calculated for the PED [tCO2/annum] | 6.93 | 4 | ||||||
A2P022: KPIs related to the PED case study / PED Lab | ||||||||
A2P022: Safety & Security | none | |||||||
A2P022: Health | thermal comfort diagram | Carbon Dioxide (CO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels | ||||||
A2P022: Education | none | |||||||
A2P022: Mobility | none | Maximum 1/3 transport with car | ||||||
A2P022: Energy | Energy | normalized CO2/GHG & Energy intensity | Non-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissions | Local energy production 150% of energy need | ||||
A2P022: Water | ||||||||
A2P022: Economic development | cost of excess emissions | : Investment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison | ||||||
A2P022: Housing and Community | Specify the associated KPIs | : Access to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness | 50% rental apartments and 50% owner apartments | |||||
A2P022: Waste | ||||||||
A2P022: Other | ||||||||
A2P023: Technological Solutions / Innovations - Energy Generation | ||||||||
A2P023: Photovoltaics | no | yes | yes | yes | yes | yes | yes | yes |
A2P023: Solar thermal collectors | no | no | yes | no | no | no | no | yes |
A2P023: Wind Turbines | no | no | no | no | no | no | yes | yes |
A2P023: Geothermal energy system | no | yes | yes | no | no | no | no | yes |
A2P023: Waste heat recovery | no | no | yes | no | no | no | no | yes |
A2P023: Waste to energy | no | no | no | no | no | no | no | no |
A2P023: Polygeneration | no | no | no | no | no | no | no | yes |
A2P023: Co-generation | no | no | no | no | no | no | yes | no |
A2P023: Heat Pump | no | yes | yes | no | yes | yes | yes | yes |
A2P023: Hydrogen | no | no | no | no | no | no | no | yes |
A2P023: Hydropower plant | no | no | no | no | no | no | no | no |
A2P023: Biomass | no | no | no | no | no | no | no | no |
A2P023: Biogas | no | no | no | no | no | no | no | no |
A2P023: Other | ||||||||
A2P024: Technological Solutions / Innovations - Energy Flexibility | ||||||||
A2P024: A2P024: Information and Communication Technologies (ICT) | no | yes | yes | yes | no | no | yes | yes |
A2P024: Energy management system | no | yes | no | yes | yes | yes | yes | yes |
A2P024: Demand-side management | no | no | no | no | no | yes | yes | yes |
A2P024: Smart electricity grid | no | no | no | yes | no | no | no | yes |
A2P024: Thermal Storage | no | yes | yes | no | no | no | no | yes |
A2P024: Electric Storage | no | yes | no | yes | no | no | yes | yes |
A2P024: District Heating and Cooling | no | yes | yes | no | no | no | yes | yes |
A2P024: Smart metering and demand-responsive control systems | no | yes | no | no | no | no | yes | yes |
A2P024: P2P – buildings | no | no | no | no | yes | no | no | no |
A2P024: Other | ||||||||
A2P025: Technological Solutions / Innovations - Energy Efficiency | ||||||||
A2P025: Deep Retrofitting | no | yes | yes | no | yes | no | no | no |
A2P025: Energy efficiency measures in historic buildings | no | no | no | no | yes | no | no | no |
A2P025: High-performance new buildings | no | no | no | no | no | yes | yes | yes |
A2P025: Smart Public infrastructure (e.g. smart lighting) | no | no | no | no | no | no | no | yes |
A2P025: Urban data platforms | no | yes | no | no | no | no | no | yes |
A2P025: Mobile applications for citizens | no | no | no | no | no | no | no | no |
A2P025: Building services (HVAC & Lighting) | no | no | yes | yes | no | yes | yes | yes |
A2P025: Smart irrigation | no | no | no | no | no | no | yes | no |
A2P025: Digital tracking for waste disposal | no | no | no | no | no | no | no | yes |
A2P025: Smart surveillance | no | no | no | no | no | no | yes | no |
A2P025: Other | ||||||||
A2P026: Technological Solutions / Innovations - Mobility | ||||||||
A2P026: Efficiency of vehicles (public and/or private) | no | no | no | yes | no | no | no | no |
A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances) | no | no | no | no | no | no | no | yes |
A2P026: e-Mobility | no | yes | no | no | no | no | yes | yes |
A2P026: Soft mobility infrastructures and last mile solutions | no | yes | no | no | no | no | yes | yes |
A2P026: Car-free area | no | no | no | no | no | no | yes | yes |
A2P026: Other | ||||||||
A2P027: Mobility strategies - Additional notes | ||||||||
A2P027: Mobility strategies - Additional notes | Walkability | |||||||
A2P028: Energy efficiency certificates | ||||||||
A2P028: Energy efficiency certificates | Yes | No | Yes | Yes | Yes | Yes | ||
A2P028: If yes, please specify and/or enter notes | Energy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling | Energy Performance Certificate | Miljöbyggnad silver/guld | |||||
A2P029: Any other building / district certificates | ||||||||
A2P029: Any other building / district certificates | No | No | No | Yes | No | |||
A2P029: If yes, please specify and/or enter notes | LEED BD+C, LEED NC CAMPUS | |||||||
A3P001: Relevant city /national strategy | ||||||||
A3P001: Relevant city /national strategy |
|
|
|
|
|
| ||
A3P002: Quantitative targets included in the city / national strategy | ||||||||
A3P002: Quantitative targets included in the city / national strategy | City wide climate neutrality by 2035, city administration climate neutrality by 2030 | The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030. | City strategy: Net climate neutrality 2030 | |||||
A3P003: Strategies towards decarbonization of the gas grid | ||||||||
A3P003: Strategies towards decarbonization of the gas grid |
|
| ||||||
A3P003: Other | Boiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing | No gas grid in Brunnshög | ||||||
A3P004: Identification of needs and priorities | ||||||||
A3P004: Identification of needs and priorities | In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements. | -Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation. | Carbon and Energy Neutrality | Local waste heat is utlized to a very large extent. More local electricity production is needed. Need to minimise the use of private cars. | ||||
A3P005: Sustainable behaviour | ||||||||
A3P005: Sustainable behaviour | While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve. | -Improving the development of Net Zero Energy Buildings and Flexible Energy buildings. | Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package. | Need to minimise the use of private cars. Need to provide efficient methods for sorce separated waste collection. | ||||
A3P006: Economic strategies | ||||||||
A3P006: Economic strategies |
|
|
|
|
| |||
A3P006: Other | Attractivenes | |||||||
A3P007: Social models | ||||||||
A3P007: Social models |
|
|
|
|
| |||
A3P007: Other | ||||||||
A3P008: Integrated urban strategies | ||||||||
A3P008: Integrated urban strategies |
|
|
| |||||
A3P008: Other | ||||||||
A3P009: Environmental strategies | ||||||||
A3P009: Environmental strategies |
|
|
|
|
| |||
A3P009: Other | ||||||||
A3P010: Legal / Regulatory aspects | ||||||||
A3P010: Legal / Regulatory aspects | decision by the Munich City Council in 2019 to become climate neutral by 2030 / 2035 | - European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013. | ISO 45001, ISO 14001, ISO 50001, Zero Waste Policy | The municipality cannot demand a specific energy solution to private property owners. It has to be voluntary and market based solutions. | ||||
B1P001: PED/PED relevant concept definition | ||||||||
B1P001: PED/PED relevant concept definition | Munich as demonstrator together with Lyon in ASCEND project | The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively. | The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED. | Vision: The city as a power plant. The ultimate goal is that more energy is produced within the distric boundaries than is being used (heating, electricity & mobility). Energy efficient buildings, efficient mobility, reuse of residual heat and solar electricity are the main methods. | ||||
B1P002: Motivation behind PED/PED relevant project development | ||||||||
B1P002: Motivation behind PED/PED relevant project development | speed and scale of PEDs | Borlänge city has committed to become the carbon-neutral city by 2030. | The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency. | The aim is to build a sustainable city with minimal climate impact and maximum quality of life. PED is an important step to acheive the aims of a very ambitious city development. | ||||
B1P003: Environment of the case study area | ||||||||
B2P003: Environment of the case study area | Urban area | Urban area | Rurban | Urban area | Suburban area | Urban area | ||
B1P004: Type of district | ||||||||
B2P004: Type of district |
|
|
|
|
|
| ||
B1P005: Case Study Context | ||||||||
B1P005: Case Study Context |
|
|
|
|
|
| ||
B1P006: Year of construction | ||||||||
B1P006: Year of construction | 1990 | 2024 | ||||||
B1P007: District population before intervention - Residential | ||||||||
B1P007: District population before intervention - Residential | 6 | 100 | 0 | |||||
B1P008: District population after intervention - Residential | ||||||||
B1P008: District population after intervention - Residential | 6 | 100 | 18000 | |||||
B1P009: District population before intervention - Non-residential | ||||||||
B1P009: District population before intervention - Non-residential | 6 | 9800 | 2000 | |||||
B1P010: District population after intervention - Non-residential | ||||||||
B1P010: District population after intervention - Non-residential | 6 | 9800 | 22000 | |||||
B1P011: Population density before intervention | ||||||||
B1P011: Population density before intervention | 0 | 0 | 0 | 0 | 0 | 0 | 34 | 0 |
B1P012: Population density after intervention | ||||||||
B1P012: Population density after intervention | 0 | 0.010714285714286 | 0.010658622423328 | 0 | 0 | 0 | 34.337771548704 | 0.026666666666667 |
B1P013: Building and Land Use before intervention | ||||||||
B1P013: Residential | no | yes | yes | no | yes | yes | no | no |
B1P013 - Residential: Specify the sqm [m²] | 4360 | |||||||
B1P013: Office | no | no | no | no | yes | no | no | yes |
B1P013 - Office: Specify the sqm [m²] | 60000 | |||||||
B1P013: Industry and Utility | no | no | no | no | no | no | no | no |
B1P013 - Industry and Utility: Specify the sqm [m²] | ||||||||
B1P013: Commercial | no | no | no | no | no | no | no | no |
B1P013 - Commercial: Specify the sqm [m²] | ||||||||
B1P013: Institutional | no | no | no | no | no | no | yes | no |
B1P013 - Institutional: Specify the sqm [m²] | 285.400 | |||||||
B1P013: Natural areas | no | no | no | no | no | no | no | yes |
B1P013 - Natural areas: Specify the sqm [m²] | 2000000 | |||||||
B1P013: Recreational | no | no | no | no | no | no | no | no |
B1P013 - Recreational: Specify the sqm [m²] | ||||||||
B1P013: Dismissed areas | no | no | no | no | no | no | no | no |
B1P013 - Dismissed areas: Specify the sqm [m²] | ||||||||
B1P013: Other | no | no | yes | no | no | no | no | yes |
B1P013 - Other: Specify the sqm [m²] | 706 | Outdoor parking: 100000 | ||||||
B1P014: Building and Land Use after intervention | ||||||||
B1P014: Residential | no | yes | yes | no | yes | yes | no | yes |
B1P014 - Residential: Specify the sqm [m²] | 4360 | 600000 | ||||||
B1P014: Office | no | no | no | no | yes | no | no | yes |
B1P014 - Office: Specify the sqm [m²] | 650000 | |||||||
B1P014: Industry and Utility | no | no | no | no | no | no | no | no |
B1P014 - Industry and Utility: Specify the sqm [m²] | ||||||||
B1P014: Commercial | no | no | no | no | no | no | no | no |
B1P014 - Commercial: Specify the sqm [m²] | ||||||||
B1P014: Institutional | no | no | no | no | no | no | yes | yes |
B1P014 - Institutional: Specify the sqm [m²] | 280000 | 50000 | ||||||
B1P014: Natural areas | no | no | no | no | no | no | no | no |
B1P014 - Natural areas: Specify the sqm [m²] | ||||||||
B1P014: Recreational | no | no | no | no | no | no | no | yes |
B1P014 - Recreational: Specify the sqm [m²] | 400000 | |||||||
B1P014: Dismissed areas | no | no | no | no | no | no | no | no |
B1P014 - Dismissed areas: Specify the sqm [m²] | ||||||||
B1P014: Other | no | no | yes | no | no | no | no | no |
B1P014 - Other: Specify the sqm [m²] | 706 | |||||||
B2P001: PED Lab concept definition | ||||||||
B2P001: PED Lab concept definition | addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation | |||||||
B2P002: Installation life time | ||||||||
B2P002: Installation life time | ||||||||
B2P003: Scale of action | ||||||||
B2P003: Scale | Virtual | |||||||
B2P004: Operator of the installation | ||||||||
B2P004: Operator of the installation | IREC | |||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||||
B2P005: Replication framework: Applied strategy to reuse and recycling the materials | ||||||||
B2P006: Circular Economy Approach | ||||||||
B2P006: Do you apply any strategy to reuse and recycling the materials? | No | |||||||
B2P006: Other | ||||||||
B2P007: Motivation for developing the PED Lab | ||||||||
B2P007: Motivation for developing the PED Lab |
| |||||||
B2P007: Other | ||||||||
B2P008: Lead partner that manages the PED Lab | ||||||||
B2P008: Lead partner that manages the PED Lab | Research center/University | |||||||
B2P008: Other | ||||||||
B2P009: Collaborative partners that participate in the PED Lab | ||||||||
B2P009: Collaborative partners that participate in the PED Lab | ||||||||
B2P009: Other | ||||||||
B2P010: Synergies between the fields of activities | ||||||||
B2P010: Synergies between the fields of activities | ||||||||
B2P011: Available facilities to test urban configurations in PED Lab | ||||||||
B2P011: Available facilities to test urban configurations in PED Lab |
| |||||||
B2P011: Other | ||||||||
B2P012: Incubation capacities of PED Lab | ||||||||
B2P012: Incubation capacities of PED Lab |
| |||||||
B2P013: Availability of the facilities for external people | ||||||||
B2P013: Availability of the facilities for external people | ||||||||
B2P014: Monitoring measures | ||||||||
B2P014: Monitoring measures |
| |||||||
B2P015: Key Performance indicators | ||||||||
B2P015: Key Performance indicators |
| |||||||
B2P016: Execution of operations | ||||||||
B2P016: Execution of operations | ||||||||
B2P017: Capacities | ||||||||
B2P017: Capacities | - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. | |||||||
B2P018: Relations with stakeholders | ||||||||
B2P018: Relations with stakeholders | ||||||||
B2P019: Available tools | ||||||||
B2P019: Available tools |
| |||||||
B2P019: Available tools | ||||||||
B2P020: External accessibility | ||||||||
B2P020: External accessibility | ||||||||
C1P001: Unlocking Factors | ||||||||
C1P001: Recent technological improvements for on-site RES production | 5 - Very important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P001: Energy Communities, P2P, Prosumers concepts | 5 - Very important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 4 - Important | 5 - Very important |
C1P001: Storage systems and E-mobility market penetration | 4 - Important | 3 - Moderately important | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important | 3 - Moderately important | |
C1P001: Decreasing costs of innovative materials | 4 - Important | 5 - Very important | 4 - Important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 4 - Important |
C1P001: Financial mechanisms to reduce costs and maximize benefits | 4 - Important | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P001: The ability to predict Multiple Benefits | 3 - Moderately important | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 2 - Slightly important | |
C1P001: The ability to predict the distribution of benefits and impacts | 1 - Unimportant | 4 - Important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important | |
C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up) | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P001: Social acceptance (top-down) | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.) | 3 - Moderately important | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P001: Presence of integrated urban strategies and plans | 3 - Moderately important | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P001: Multidisciplinary approaches available for systemic integration | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important |
C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects | 4 - Important | 3 - Moderately important | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P001: Availability of RES on site (Local RES) | 4 - Important | 5 - Very important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important | |
C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders | 4 - Important | 4 - Important | 2 - Slightly important | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P001: Any other UNLOCKING FACTORS | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | |
C1P001: Any other UNLOCKING FACTORS (if any) | ||||||||
C1P002: Driving Factors | ||||||||
C1P002: Climate Change adaptation need | 4 - Important | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P002: Climate Change mitigation need (local RES production and efficiency) | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important | 5 - Very important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P002: Rapid urbanization trend and need of urban expansions | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 3 - Moderately important |
C1P002: Urban re-development of existing built environment | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 5 - Very important |
C1P002: Economic growth need | 2 - Slightly important | 3 - Moderately important | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 4 - Important |
C1P002: Improved local environmental quality (air, noise, aesthetics, etc.) | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P002: Territorial and market attractiveness | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important | 5 - Very important |
C1P002: Energy autonomy/independence | 5 - Very important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant |
C1P002: Any other DRIVING FACTOR | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | |
C1P002: Any other DRIVING FACTOR (if any) | ||||||||
C1P003: Administrative barriers | ||||||||
C1P003: Difficulty in the coordination of high number of partners and authorities | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P003: Lack of good cooperation and acceptance among partners | 3 - Moderately important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P003: Lack of public participation | 3 - Moderately important | 4 - Important | 3 - Moderately important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P003: Lack of institutions/mechanisms to disseminate information | 3 - Moderately important | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P003:Long and complex procedures for authorization of project activities | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy | 4 - Important | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P003: Complicated and non-comprehensive public procurement | 4 - Important | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P003: Fragmented and or complex ownership structure | 3 - Moderately important | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P003: City administration & cross-sectoral attitude/approaches (silos) | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P003: Lack of internal capacities to support energy transition | 3 - Moderately important | 5 - Very important | 5 - Very important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 1 - Unimportant |
C1P003: Any other Administrative BARRIER | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | |
C1P003: Any other Administrative BARRIER (if any) | ||||||||
C1P004: Policy barriers | ||||||||
C1P004: Lack of long-term and consistent energy plans and policies | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P004: Lacking or fragmented local political commitment and support on the long term | 4 - Important | 4 - Important | 5 - Very important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P004: Lack of Cooperation & support between national-regional-local entities | 3 - Moderately important | 3 - Moderately important | 4 - Important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P004: Any other Political BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | |
C1P004: Any other Political BARRIER (if any) | ||||||||
C1P005: Legal and Regulatory barriers | ||||||||
C1P005: Inadequate regulations for new technologies | 4 - Important | 3 - Moderately important | 4 - Important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P005: Regulatory instability | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P005: Non-effective regulations | 4 - Important | 3 - Moderately important | 2 - Slightly important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P005: Unfavorable local regulations for innovative technologies | 3 - Moderately important | 3 - Moderately important | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P005: Building code and land-use planning hindering innovative technologies | 4 - Important | 3 - Moderately important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P005: Insufficient or insecure financial incentives | 4 - Important | 5 - Very important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation | 4 - Important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P005: Shortage of proven and tested solutions and examples | 3 - Moderately important | 4 - Important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important | |
C1P005: Any other Legal and Regulatory BARRIER | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | |
C1P005: Any other Legal and Regulatory BARRIER (if any) | ||||||||
C1P006: Environmental barriers | ||||||||
C1P006: Environmental barriers | 2 - Slightly important | Air Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important) | ? | |||||
C1P007: Technical barriers | ||||||||
C1P007: Lack of skilled and trained personnel | 4 - Important | 4 - Important | 4 - Important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P007: Deficient planning | 3 - Moderately important | 3 - Moderately important | 4 - Important | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important |
C1P007: Retrofitting work in dwellings in occupied state | 4 - Important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P007: Lack of well-defined process | 4 - Important | 5 - Very important | 2 - Slightly important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 4 - Important |
C1P007: Inaccuracy in energy modelling and simulation | 4 - Important | 3 - Moderately important | 2 - Slightly important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P007: Lack/cost of computational scalability | 4 - Important | 5 - Very important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P007: Grid congestion, grid instability | 4 - Important | 3 - Moderately important | 5 - Very important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P007: Negative effects of project intervention on the natural environment | 3 - Moderately important | 3 - Moderately important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important |
C1P007: Energy retrofitting work in dense and/or historical urban environment | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 5 - Very important | 1 - Unimportant | 4 - Important | 1 - Unimportant |
C1P007: Difficult definition of system boundaries | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 1 - Unimportant | 4 - Important | 1 - Unimportant | 4 - Important | 2 - Slightly important |
C1P007: Any other Thecnical BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | |
C1P007: Any other Thecnical BARRIER (if any) | ||||||||
C1P008: Social and Cultural barriers | ||||||||
C1P008: Inertia | 4 - Important | 4 - Important | 2 - Slightly important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P008: Lack of values and interest in energy optimization measurements | 5 - Very important | 5 - Very important | 5 - Very important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P008: Low acceptance of new projects and technologies | 5 - Very important | 4 - Important | 5 - Very important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 5 - Very important | 2 - Slightly important |
C1P008: Difficulty of finding and engaging relevant actors | 5 - Very important | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important | 5 - Very important |
C1P008: Lack of trust beyond social network | 4 - Important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 4 - Important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P008: Rebound effect | 4 - Important | 3 - Moderately important | 4 - Important | 4 - Important | 2 - Slightly important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant |
C1P008: Hostile or passive attitude towards environmentalism | 5 - Very important | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P008: Exclusion of socially disadvantaged groups | 2 - Slightly important | 3 - Moderately important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important |
C1P008: Non-energy issues are more important and urgent for actors | 3 - Moderately important | 4 - Important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important |
C1P008: Hostile or passive attitude towards energy collaboration | 4 - Important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | |
C1P008: Any other Social BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | |
C1P008: Any other Social BARRIER (if any) | ||||||||
C1P009: Information and Awareness barriers | ||||||||
C1P009: Insufficient information on the part of potential users and consumers | 4 - Important | 3 - Moderately important | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 4 - Important | |
C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | 4 - Important | |
C1P009: Lack of awareness among authorities | 4 - Important | 5 - Very important | 2 - Slightly important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | |
C1P009: Information asymmetry causing power asymmetry of established actors | 3 - Moderately important | 5 - Very important | 1 - Unimportant | 4 - Important | 1 - Unimportant | 4 - Important | 2 - Slightly important | |
C1P009: High costs of design, material, construction, and installation | 5 - Very important | 5 - Very important | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important | 5 - Very important | |
C1P009: Any other Information and Awareness BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | |
C1P009: Any other Information and Awareness BARRIER (if any) | ||||||||
C1P010: Financial barriers | ||||||||
C1P010: Hidden costs | 3 - Moderately important | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 4 - Important | 3 - Moderately important | |
C1P010: Insufficient external financial support and funding for project activities | 4 - Important | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 2 - Slightly important | |
C1P010: Economic crisis | 3 - Moderately important | 5 - Very important | 4 - Important | 4 - Important | 1 - Unimportant | 4 - Important | 5 - Very important | |
C1P010: Risk and uncertainty | 4 - Important | 5 - Very important | 5 - Very important | 3 - Moderately important | 1 - Unimportant | 5 - Very important | 5 - Very important | |
C1P010: Lack of consolidated and tested business models | 3 - Moderately important | 5 - Very important | 5 - Very important | 4 - Important | 1 - Unimportant | 4 - Important | 4 - Important | |
C1P010: Limited access to capital and cost disincentives | 3 - Moderately important | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | 5 - Very important | ||
C1P010: Any other Financial BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | |
C1P010: Any other Financial BARRIER (if any) | ||||||||
C1P011: Market barriers | ||||||||
C1P011: Split incentives | 3 - Moderately important | 4 - Important | 4 - Important | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | |
C1P011: Energy price distortion | 5 - Very important | 4 - Important | 5 - Very important | 4 - Important | 1 - Unimportant | 5 - Very important | 3 - Moderately important | |
C1P011: Energy market concentration, gatekeeper actors (DSOs) | 3 - Moderately important | 3 - Moderately important | 5 - Very important | 2 - Slightly important | 1 - Unimportant | 4 - Important | 2 - Slightly important | |
C1P011: Any other Market BARRIER | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 1 - Unimportant | 3 - Moderately important | 1 - Unimportant | |
C1P011: Any other Market BARRIER (if any) | ||||||||
C1P012: Stakeholders involved | ||||||||
C1P012: Government/Public Authorities |
|
|
|
| ||||
C1P012: Research & Innovation |
|
|
|
|
| |||
C1P012: Financial/Funding |
|
|
|
|
| |||
C1P012: Analyst, ICT and Big Data |
|
|
|
|
| |||
C1P012: Business process management |
|
|
|
|
| |||
C1P012: Urban Services providers |
|
|
|
|
| |||
C1P012: Real Estate developers |
|
|
|
|
| |||
C1P012: Design/Construction companies |
|
|
|
|
| |||
C1P012: End‐users/Occupants/Energy Citizens |
|
|
|
|
| |||
C1P012: Social/Civil Society/NGOs |
|
|
|
|
| |||
C1P012: Industry/SME/eCommerce |
|
|
|
|
| |||
C1P012: Other |
| |||||||
C1P012: Other (if any) | ||||||||
Summary |
Authors (framework concept)
Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)
Contributors (to the content)
Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)
Implemented by
Boutik.pt: Filipe Martins, Jamal Khan
Marek Suchánek (Czech Technical University in Prague)