Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Lublin
Kladno, Sletiště (Sport Area), PED Winter Stadium
Borlänge, Rymdgatan’s Residential Portfolio
Leipzig, Baumwollspinnerei district
Graz, Reininghausgründe
Trenčín
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityLublinKladno, Sletiště (Sport Area), PED Winter StadiumBorlänge, Rymdgatan’s Residential PortfolioLeipzig, Baumwollspinnerei districtGraz, ReininghausgründeTrenčín
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnonoyesyesyes
PED relevant case studyyesnoyesyesnonono
PED Lab.nonononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyes
Annual energy surplusnoyesyesyesnonoyes
Energy communityyesyesyesyesnonoyes
Circularitynoyesnonononono
Air quality and urban comfortyesyesnonoyesnono
Electrificationyesnoyesyesyesnono
Net-zero energy costnoyesnonononono
Net-zero emissionnoyesnonononono
Self-sufficiency (energy autonomous)noyesnonononoyes
Maximise self-sufficiencynoyesnoyesnonono
Othernonononoyesnono
Other (A1P004)Net-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhasePlanning PhaseImplementation PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date2022201906/19
A1P007: End Date
A1P007: End date202511/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets,
  • GIS open datasets,
  • Vehicle registration datasets
  • Open data city platform – different dashboards,
  • General statistical datasets
  • Open data city platform – different dashboards
  • GIS open datasets
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
        • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.81458822.568414.0929615.39449512.31845815.40744018.046870515442922
        Y Coordinate (latitude):38.07734951.246550.1371560.48660951.32649247.060748.899251380340274
        A1P012: Country
        A1P012: CountryGreecePolandCzech RepublicSwedenGermanyAustriaSlovakia
        A1P013: City
        A1P013: CityMunicipality of KifissiaLublinKladnoBorlängeLeipzigGrazTrencin
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaCfbCfbDsbDfbDfbCfb
        A1P015: District boundary
        A1P015: District boundaryVirtualGeographicGeographicGeographicFunctionalGeographicFunctional
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodV1* (ca 8 buildings)Geographic
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PrivateMixedMixedMixedMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED5810210010
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]21664.733700170002000
        A1P020: Total ground area
        A1P020: Total ground area [m²]72833.47994530000100000075000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area0000100
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonoyesnonoyesyes
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenonoyesnononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonoyesnononoyes
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnononononoyesno
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnonononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnonoyesnonoyesyes
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononoyes
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnonoyesnononono
        A1P022i: Add the value in EUR if available [EUR]
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Job creation,
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Job creation,
        • Positive externalities
        • Positive externalities,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        • Job creation,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        • Boosting local businesses,
        • Boosting local and sustainable production
        A1P023: OtherSustainable and replicable business models regarding renewable energy systems
        A1P024: More comments:
        A1P024: More comments:Lublin PED Area is geographically bounded and the ambition is to reach Self-Sufficiency. There is a shopping centre with a large rooftop area for solar generation and there are also an empty lot (just on the east side of the building) and a carpark area (on the north side) next to the commercial centre. These areas can also be evaluated for on-site (on the ground – or canopies for cars) energy generation. There are also new built (mainly in 2012) residential blocks with high efficiency and this district is so-called an “eco-district”. Thanks to the District Heating Grid (DHN), all buildings are connected to each other the network has potential for sharing mechanisms in the PED Area. Another opportunity for renewable energy is that these buildings are connected to more or less the end point of DHN and for this reason, a waste heat potential from the return pipe may also be considered. There are also small size residentials, that are not connected to the DHN, around the PED area and this enlightened the technical team for exporting energy from PED to these areas with a new infrastructure.The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]0
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaDorota Wolińska-PietrzakDavid ŠkorňaJingchun ShenSimon BaumKatharina SchwarzVladimír Škola
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamLublin MunicipalityMěsto KladnoHögskolan DalarnaCENERO Energy GmbHStadtLABOR, Innovationen für urbane Lebensqualität GmbHCity of Trencin
        A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityOtherSME / IndustryOther
        A1P028: OtherCENERO Energy GmbHProject Manager
        A1P029: Emailgiavasoglou@kifissia.grdwolinska@lublin.eudavid.skorna@mestokladno.czjih@du.sesib@cenero.dekatharina.schwarz@stadtlaborgraz.atvladimir.skola@trencin.sk
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorMichal KuzmičXingxing ZhangSimon BaumHans SchnitzerVladimír Škola
        A1P031: Emailstavros.zapantis@gmail.commichal.kuzmic@cvut.czxza@du.sesib@cenero.dehans.schnitzer@stadtlaborgraz.atvladimir.skola@trencin.sk
        Pursuant to the General Data Protection RegulationYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production
        • Energy efficiency,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Water use,
        • Indoor air quality,
        • Other
        • Energy efficiency,
        • Energy flexibility
        A2P001: OtherUrban Management; Air Quality
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsSEE: D4.1 - Methodology and Guidelines for PED design https://makingcity.eu/results/#1551708358627-aefa76ef-66b2Trnsys, PV modelling tools, CADLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the district
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNoNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesYesYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoNoYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationNot yet included.- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]1.40.67771.65
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.30.03656
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]00
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnoyesnoyesyesno
        A2P011: PV - specify production in GWh/annum [GWh/annum]1.1
        A2P011: Windnonononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnononoyesnonono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
        A2P011: Othernonononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnononononoyesno
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnononononoyesno
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnonononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnonoyesnonoyesno
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]1.7
        A2P012: Biomass_peat_heatnonononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnononoyesnonono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
        A2P012: Biomass_firewood_thnonononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesWaste heat from cooling the ice rink.Groundwater (used for heat pumps)
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]2.10.3182.421
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.2055
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernononoyesnonono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononononoyesno
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnononononoyesno
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononononoyesno
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernononoyesnonono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononoyesno
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononononoyesno
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnononononoyesno
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernononoyesnonono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary0000.53839572192513000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]-1046.930.036
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Securitynone
        A2P022: Healththermal comfort diagram
        A2P022: Educationnone
        A2P022: Mobilitynonex
        A2P022: EnergyEnergy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balancenormalized CO2/GHG & Energy intensityapplyx
        A2P022: Waterx
        A2P022: Economic developmentInvestment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROIcost of excess emissionsx
        A2P022: Housing and Communityx
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesyesyesnoyesno
        A2P023: Solar thermal collectorsnononoyesnonono
        A2P023: Wind Turbinesnonononononono
        A2P023: Geothermal energy systemnononoyesnonono
        A2P023: Waste heat recoverynonoyesyesnoyesno
        A2P023: Waste to energynonononononono
        A2P023: Polygenerationnonononononono
        A2P023: Co-generationnonononononono
        A2P023: Heat Pumpnoyesyesyesnoyesno
        A2P023: Hydrogennoyesnonononono
        A2P023: Hydropower plantnonononononono
        A2P023: Biomassnonononononono
        A2P023: Biogasnonononononono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesnoyesno
        A2P024: Energy management systemnoyesyesnononoyes
        A2P024: Demand-side managementnoyesyesnononono
        A2P024: Smart electricity gridnoyesnonononono
        A2P024: Thermal Storagenoyesnoyesnoyesyes
        A2P024: Electric Storagenoyesnonononoyes
        A2P024: District Heating and Coolingnoyesyesyesnoyesyes
        A2P024: Smart metering and demand-responsive control systemsnoyesyesnononono
        A2P024: P2P – buildingsnonononononono
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnoyesyesyesnonoyes
        A2P025: Energy efficiency measures in historic buildingsnoyesnonononoyes
        A2P025: High-performance new buildingsnoyesnononoyesno
        A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnononoyesno
        A2P025: Urban data platformsnoyesyesnononono
        A2P025: Mobile applications for citizensnoyesnononoyesno
        A2P025: Building services (HVAC & Lighting)noyesyesyesnonoyes
        A2P025: Smart irrigationnononononoyesno
        A2P025: Digital tracking for waste disposalnonononononono
        A2P025: Smart surveillancenonononononono
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)noyesnononoyesno
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnononoyesno
        A2P026: e-Mobilitynoyesnononoyesno
        A2P026: Soft mobility infrastructures and last mile solutionsnononononoyesno
        A2P026: Car-free areanononononoyesno
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District managementSUMP AVAILABLE
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesNoYesNoYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingNational standards apply.Energieausweis mandatory if buildings/ flats/ apartments are sold
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNoYes
        A2P029: If yes, please specify and/or enter notesKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCarbon neutrality 2050The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Other
        • Electrification of Heating System based on Heat Pumps
        • Biogas
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods,
        • Biogas
        A3P003: OtherHeating GridSECAP developed in 2023
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.Reininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared officesSELF SUSTAINABILITY, SELF EFFICIENCY
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.BASED ON SECAP DEVELOPED IN 2023
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Innovative business models,
        • PPP models,
        • Existing incentives
        • Open data business models,
        • Life Cycle Cost,
        • Circular economy models,
        • Local trading
        • Innovative business models,
        • Other
        • PPP models,
        • Local trading
        A3P006: Otheroperational savings through efficiency measures
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies
        • Strategies towards (local) community-building,
        • Affordability
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Affordability,
        • Digital Inclusion
        • Behavioural Change / End-users engagement
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Quality of Life,
        • Affordability,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • Building / district Certification
        • Strategic urban planning,
        • City Vision 2050,
        • Building / district Certification
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Carbon-free,
        • Life Cycle approach,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        • Net zero carbon footprint
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Sustainable Urban drainage systems (SUDS)
        • Other
        • Pollutants Reduction,
        • Greening strategies,
        • Sustainable Urban drainage systems (SUDS),
        • Nature Based Solutions (NBS)
        A3P009: OtherPositive Energy Balance for the demo site
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionOnsite Energy Ratio > 1The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.GOOD MIX OF PUBLIC PRIVATE BUILDINGS
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentStrategic, economicBorlänge city has committed to become the carbon-neutral city by 2030.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.Replication of unique PED know how
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction,
        • Renovation
        • Renovation
        • New construction
        • New construction,
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • New Development,
        • Retrofitting Area
        • Re-use / Transformation Area,
        • Retrofitting Area
        • Preservation Area
        • New Development
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction19902025
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential1000
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential10010000
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential60
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential6
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention0000.01065862242332800.010
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnonoyesyesnonono
        B1P013 - Residential: Specify the sqm [m²]4360
        B1P013: Officenonoyesnononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynononononoyesno
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonononononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonononononono
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnononononoyesno
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnonoyesnononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernononoyesnonono
        B1P013 - Other: Specify the sqm [m²]706
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnonoyesyesnoyesno
        B1P014 - Residential: Specify the sqm [m²]4360
        B1P014: Officenonoyesnonoyesno
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonononononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnononononoyesno
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnononononoyesno
        B1P014 - Institutional: Specify the sqm [m²]
        B1P014: Natural areasnononononoyesno
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnonoyesnonoyesno
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernononoyesnonono
        B1P014 - Other: Specify the sqm [m²]706
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installation
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?Yes
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipality
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Efficiency measures,
        • Waste management,
        • Water treatment,
        • Lighting,
        • E-mobility,
        • Green areas,
        • Circular economy models
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Available data
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important4 - Important5 - Very important2 - Slightly important1 - Unimportant
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
        C1P001: Storage systems and E-mobility market penetration5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
        C1P001: Decreasing costs of innovative materials4 - Important5 - Very important3 - Moderately important4 - Important2 - Slightly important1 - Unimportant
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important4 - Important5 - Very important2 - Slightly important1 - Unimportant
        C1P001: The ability to predict Multiple Benefits5 - Very important2 - Slightly important4 - Important4 - Important1 - Unimportant
        C1P001: The ability to predict the distribution of benefits and impacts5 - Very important3 - Moderately important4 - Important4 - Important1 - Unimportant
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
        C1P001: Social acceptance (top-down)5 - Very important5 - Very important2 - Slightly important5 - Very important4 - Important1 - Unimportant
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important2 - Slightly important4 - Important5 - Very important1 - Unimportant
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant
        C1P001: Availability of RES on site (Local RES)5 - Very important4 - Important5 - Very important3 - Moderately important1 - Unimportant
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important4 - Important2 - Slightly important5 - Very important1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)Collaboration with the local partners
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
        C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant
        C1P002: Economic growth need2 - Slightly important5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
        C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
        C1P002: Energy autonomy/independence5 - Very important5 - Very important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
        C1P002: Any other DRIVING FACTOR5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important5 - Very important5 - Very important4 - Important2 - Slightly important1 - Unimportant
        C1P003: Lack of public participation3 - Moderately important5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important5 - Very important3 - Moderately important4 - Important2 - Slightly important1 - Unimportant
        C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement4 - Important5 - Very important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant
        C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important5 - Very important4 - Important5 - Very important3 - Moderately important1 - Unimportant
        C1P003: Any other Administrative BARRIER5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)Fragmented financial support; lack of experimental budget for complex projects, etc.
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important5 - Very important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important5 - Very important5 - Very important2 - Slightly important1 - Unimportant
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant
        C1P004: Any other Political BARRIER5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
        C1P005: Regulatory instability3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P005: Non-effective regulations4 - Important5 - Very important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important5 - Very important4 - Important4 - Important4 - Important1 - Unimportant
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important5 - Very important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P005: Insufficient or insecure financial incentives4 - Important5 - Very important5 - Very important3 - Moderately important4 - Important1 - Unimportant
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important5 - Very important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples5 - Very important3 - Moderately important4 - Important2 - Slightly important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers2 - Slightly important
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important5 - Very important4 - Important4 - Important2 - Slightly important1 - Unimportant
        C1P007: Deficient planning3 - Moderately important5 - Very important4 - Important4 - Important2 - Slightly important1 - Unimportant
        C1P007: Retrofitting work in dwellings in occupied state4 - Important5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant
        C1P007: Lack of well-defined process4 - Important1 - Unimportant5 - Very important2 - Slightly important4 - Important1 - Unimportant
        C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant
        C1P007: Grid congestion, grid instability4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Difficult definition of system boundaries3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transition
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant
        C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important5 - Very important4 - Important4 - Important4 - Important1 - Unimportant
        C1P008: Lack of trust beyond social network4 - Important5 - Very important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
        C1P008: Rebound effect4 - Important5 - Very important3 - Moderately important4 - Important2 - Slightly important1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important5 - Very important5 - Very important3 - Moderately important4 - Important1 - Unimportant
        C1P008: Hostile or passive attitude towards energy collaboration5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant
        C1P009: Lack of awareness among authorities5 - Very important4 - Important5 - Very important2 - Slightly important1 - Unimportant
        C1P009: Information asymmetry causing power asymmetry of established actors5 - Very important3 - Moderately important5 - Very important4 - Important1 - Unimportant
        C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs5 - Very important4 - Important5 - Very important3 - Moderately important1 - Unimportant
        C1P010: Insufficient external financial support and funding for project activities5 - Very important4 - Important5 - Very important2 - Slightly important1 - Unimportant
        C1P010: Economic crisis5 - Very important3 - Moderately important5 - Very important4 - Important1 - Unimportant
        C1P010: Risk and uncertainty5 - Very important4 - Important5 - Very important2 - Slightly important1 - Unimportant
        C1P010: Lack of consolidated and tested business models5 - Very important4 - Important5 - Very important2 - Slightly important1 - Unimportant
        C1P010: Limited access to capital and cost disincentives5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
        C1P010: Any other Financial BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives5 - Very important5 - Very important4 - Important2 - Slightly important1 - Unimportant
        C1P011: Energy price distortion5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant
        C1P011: Energy market concentration, gatekeeper actors (DSOs)5 - Very important5 - Very important3 - Moderately important4 - Important1 - Unimportant
        C1P011: Any other Market BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • None
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Analyst, ICT and Big Data
        • None
        • None
        • Planning/leading,
        • Monitoring/operation/management
        C1P012: Business process management
        • None
        • None
        • None
        C1P012: Urban Services providers
        • None
        • Design/demand aggregation
        • None
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Real Estate developers
        • None
        • Design/demand aggregation
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • None
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • None
        • Design/demand aggregation
        • Monitoring/operation/management
        • Design/demand aggregation
        C1P012: Social/Civil Society/NGOs
        • None
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • None
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        • None
        • None
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)