Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Uncompare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Lublin
Barcelona, SEILAB & Energy SmartLab
Vantaa, Aviapolis
Kladno, Sletiště (Sport Area), PED Winter Stadium
Stor-Elvdal, Campus Evenstad
Findhorn, the Park
Zaragoza, Actur
Istanbul, Ozyegin University Campus
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityLublinBarcelona, SEILAB & Energy SmartLabVantaa, AviapolisKladno, Sletiště (Sport Area), PED Winter StadiumStor-Elvdal, Campus EvenstadFindhorn, the ParkZaragoza, ActurIstanbul, Ozyegin University Campus
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnoyesnonoyesnono
PED relevant case studyyesnonoyesyesyesnoyesyes
PED Lab.nonoyesyesnonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesnoyesyesyesyesyesyes
Annual energy surplusnoyesnonoyesyesyesyesno
Energy communityyesyesyesnoyesnoyesnono
Circularitynoyesnoyesnonoyesnono
Air quality and urban comfortyesyesnonononononoyes
Electrificationyesnoyesnoyesnoyesyesyes
Net-zero energy costnoyesnonononononono
Net-zero emissionnoyesyesnononoyesyesno
Self-sufficiency (energy autonomous)noyesyesnononononono
Maximise self-sufficiencynoyesnonononoyesnono
Othernonoyesnonoyesnonoyes
Other (A1P004)Green ITEnergy-flexibilityalmost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseIn operationPlanning PhasePlanning PhaseIn operationIn operationPlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date01/201101/23202201/1301/6201/2310/24
A1P007: End Date
A1P007: End date02/201312/2712/2410/28
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets,
  • GIS open datasets,
  • Vehicle registration datasets
  • General statistical datasets
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • General statistical datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts,
  • Meteorological open data
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.81458822.56842.124.95882114.0929611.078770773531746-3.6099-0.889129.258300
        Y Coordinate (latitude):38.07734951.246541.360.30548850.1371561.4260442039911257.653041.648841.030600
        A1P012: Country
        A1P012: CountryGreecePolandSpainFinlandCzech RepublicNorwayUnited KingdomSpainTurkey
        A1P013: City
        A1P013: CityMunicipality of KifissiaLublinBarcelona and TarragonaVantaaKladnoEvenstad, Stor-Elvdal municipalityFindhornZaragozaIstanbul
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaCfbCsaDfbCfbDwcDwcBSkCfa
        A1P015: District boundary
        A1P015: District boundaryVirtualGeographicVirtualGeographicGeographicGeographicGeographicGeographicGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodV1* (ca 8 buildings)
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PrivatePublicMixedMixedPublicMixedPublicPrivate
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle Owner
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED50822160615
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]21664.7310000
        A1P020: Total ground area
        A1P020: Total ground area [m²]72833.473881000180000285.400
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area000000000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenononoyesyesnoyesnoyes
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenonononoyesnononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernononoyesnonononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononoyesnononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnononononoyesyesnono
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnonononononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnononoyesyesnononono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnononoyesyesnoyesnoyes
        A1P022i: Add the value in EUR if available [EUR]
        A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyesyesnonono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Job creation,
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Job creation,
        • Boosting local and sustainable production
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Job creation,
        • Positive externalities
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Positive externalities,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        A1P023: Other
        A1P024: More comments:
        A1P024: More comments:Lublin PED Area is geographically bounded and the ambition is to reach Self-Sufficiency. There is a shopping centre with a large rooftop area for solar generation and there are also an empty lot (just on the east side of the building) and a carpark area (on the north side) next to the commercial centre. These areas can also be evaluated for on-site (on the ground – or canopies for cars) energy generation. There are also new built (mainly in 2012) residential blocks with high efficiency and this district is so-called an “eco-district”. Thanks to the District Heating Grid (DHN), all buildings are connected to each other the network has potential for sharing mechanisms in the PED Area. Another opportunity for renewable energy is that these buildings are connected to more or less the end point of DHN and for this reason, a waste heat potential from the return pipe may also be considered. There are also small size residentials, that are not connected to the DHN, around the PED area and this enlightened the technical team for exporting energy from PED to these areas with a new infrastructure.Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]1
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaDorota Wolińska-PietrzakDr. Jaume Salom, Dra. Cristina CorcheroEira LinkoDavid ŠkorňaÅse Lekang SørensenStefano NebioloClara LorenteCem Keskin
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamLublin MunicipalityIRECCity of VantaaMěsto KladnoSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesFindhorn Innovation Research and Education CICCIRCECenter for Energy, Environment and Economy, Ozyegin University
        A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityResearch Center / University
        A1P028: Other
        A1P029: Emailgiavasoglou@kifissia.grdwolinska@lublin.euJsalom@irec.cateira.linko@vantaa.fidavid.skorna@mestokladno.czase.sorensen@sintef.nostefanonebiolo@gmail.comCLORENTEM@FCIRCE.COMcem.keskin@ozyegin.edu.tr
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorMichal KuzmičM. Pınar Mengüç
        A1P031: Emailstavros.zapantis@gmail.commichal.kuzmic@cvut.czpinar.menguc@ozyegin.edu.tr
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Construction materials,
        • Other
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Indoor air quality
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsSEE: D4.1 - Methodology and Guidelines for PED design https://makingcity.eu/results/#1551708358627-aefa76ef-66b2Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Pilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, coolingTrnsys, PV modelling tools, CADCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.LEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste document
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNoNoYes
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesYesYesYesYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoYesNoYesNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhThe calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.Not yet included.At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.Not included, the campus is a non car area except emergencies
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]1.40.77
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.30.761.2
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnoyesyesyesyesyesnoyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]1.10.065
        A2P011: Windnonononononoyesnono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnononononoyesnonono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
        A2P011: Biomass_peat_elnonononononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnonononononononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernonononononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnononoyesnonononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnononononoyesyesnono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
        A2P012: Biomass_heatnononononoyesyesnono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
        A2P012: Waste heat+HPnononoyesyesnoyesnono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]1.7
        A2P012: Biomass_peat_heatnonononononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnonononononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnonononononoyesnono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesWaste heat from cooling the ice rink.Listed values are measurements from 2018. Renewable energy share is increasing.3x225 kW wind turbines + 100 kW PV
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]2.11.5001.23.5
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]11.2
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonoyesnononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernonononononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnononoyesnonononoyes
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
        A2P018: Windnononoyesnonononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydronononoyesnonononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnononoyesnonononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernonononononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnononoyesnonononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnononoyesnonononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernonononononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary000000000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]-104
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Health
        A2P022: Education
        A2P022: Mobility
        A2P022: EnergyEnergy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balance
        A2P022: Water
        A2P022: Economic developmentInvestment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROI
        A2P022: Housing and Community
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesyesyesyesyesyesyesyes
        A2P023: Solar thermal collectorsnononononoyesyesnono
        A2P023: Wind Turbinesnonononononoyesnoyes
        A2P023: Geothermal energy systemnononoyesnononoyesno
        A2P023: Waste heat recoverynononoyesyesnoyesnono
        A2P023: Waste to energynononoyesnonononono
        A2P023: Polygenerationnononoyesnonononono
        A2P023: Co-generationnononononoyesnonoyes
        A2P023: Heat Pumpnoyesnoyesyesnoyesyesyes
        A2P023: Hydrogennoyesnonononononono
        A2P023: Hydropower plantnonononononononono
        A2P023: Biomassnononoyesnoyesyesnono
        A2P023: Biogasnonononononononono
        A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.The Co-generation is biomass based.
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesyesyesnonoyes
        A2P024: Energy management systemnoyesyesyesyesyesyesyesyes
        A2P024: Demand-side managementnoyesnoyesyesyesnonoyes
        A2P024: Smart electricity gridnoyesyesyesnonononono
        A2P024: Thermal Storagenoyesnoyesnoyesyesnono
        A2P024: Electric Storagenoyesyesyesnoyesyesnoyes
        A2P024: District Heating and Coolingnoyesnoyesyesyesyesnoyes
        A2P024: Smart metering and demand-responsive control systemsnoyesnoyesyesyesnonoyes
        A2P024: P2P – buildingsnonononononononono
        A2P024: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.Bidirectional electric vehicle (EV) charging (V2G)
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnoyesnonoyesnononono
        A2P025: Energy efficiency measures in historic buildingsnoyesnonononononono
        A2P025: High-performance new buildingsnoyesnoyesnoyesyesnoyes
        A2P025: Smart Public infrastructure (e.g. smart lighting)noyesnonononononono
        A2P025: Urban data platformsnoyesnonoyesnononono
        A2P025: Mobile applications for citizensnoyesnonononononono
        A2P025: Building services (HVAC & Lighting)noyesyesyesyesnononoyes
        A2P025: Smart irrigationnonononononononoyes
        A2P025: Digital tracking for waste disposalnonononononononono
        A2P025: Smart surveillancenonononononononoyes
        A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)noyesyesyesnonononono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnoyesnonononono
        A2P026: e-Mobilitynoyesnoyesnoyesyesyesyes
        A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnonononoyes
        A2P026: Car-free areanonononononononoyes
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesNoYesYesYesYesYes
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingNational standards apply.Passive house (2 buildings, 4 200 m2, from 2015)
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoYesYes
        A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)LEED BD+C, LEED NC CAMPUS
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • New development strategies
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Promotion of energy communities (REC/CEC),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCarbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),Carbon neutrality 2050
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Other
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods
        A3P003: OtherHeating GridBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Carbon and Energy Neutrality
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Demand management Living Lab
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Circular economy models
        • Innovative business models,
        • PPP models,
        • Existing incentives
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies
        • Digital Inclusion,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Strategies towards (local) community-building,
        • Affordability
        • Behavioural Change / End-users engagement,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
        • Other
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Quality of Life
        A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • SECAP Updates
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Carbon-free,
        • Life Cycle approach,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        • Energy Neutral,
        • Low Emission Zone,
        • Pollutants Reduction,
        • Greening strategies
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        • Net zero carbon footprint
        • Low Emission Zone
        • Energy Neutral,
        • Net zero carbon footprint
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Greening strategies,
        • Cool Materials
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.Campus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.ISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.Onsite Energy Ratio > 1The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentAccording to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.Strategic, economicIn line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaUrban areaRuralRuralUrban areaSuburban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction,
        • Renovation
        • New construction,
        • Renovation
        • New construction,
        • Renovation
        • New construction
        • Renovation
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Re-use / Transformation Area,
        • New Development
        • New Development,
        • Retrofitting Area
        • Retrofitting Area
        • New Development
        • Retrofitting Area
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction2024
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential9800
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential9800
        B1P011: Population density before intervention
        B1P011: Population density before intervention0000000034
        B1P012: Population density after intervention
        B1P012: Population density after intervention0000000034.337771548704
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnononoyesyesnononono
        B1P013 - Residential: Specify the sqm [m²]
        B1P013: Officenononoyesyesnononono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynononoyesnonononono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnononoyesnonononono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnononoyesnonononoyes
        B1P013 - Institutional: Specify the sqm [m²]285.400
        B1P013: Natural areasnonononononoyesnono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnononoyesyesnononono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnononoyesnonononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernonononononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnononoyesyesnoyesnono
        B1P014 - Residential: Specify the sqm [m²]
        B1P014: Officenononoyesyesnoyesnono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynononoyesnonononono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnononoyesnonononono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnononoyesnonononoyes
        B1P014 - Institutional: Specify the sqm [m²]280000
        B1P014: Natural areasnonononononoyesnono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnononoyesyesnononono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernonononononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility AggregationNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleDistrictVirtualDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installationIRECThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?YesNo
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic
        • Strategic,
        • Private
        • Strategic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipalityResearch center/UniversityMunicipality
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Efficiency measures,
        • Waste management,
        • Water treatment,
        • Lighting,
        • E-mobility,
        • Green areas,
        • Circular economy models
        • Demand-side management,
        • Energy storage,
        • Energy networks,
        • Efficiency measures,
        • Information and Communication Technologies (ICT)
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        • Available data
        • Equipment
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy
        • Energy,
        • Environmental
        • Energy,
        • Environmental,
        • Social,
        • Economical / Financial
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important4 - Important
        C1P001: Storage systems and E-mobility market penetration5 - Very important5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P001: Decreasing costs of innovative materials4 - Important5 - Very important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P001: The ability to predict Multiple Benefits5 - Very important4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
        C1P001: The ability to predict the distribution of benefits and impacts5 - Very important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important5 - Very important
        C1P001: Social acceptance (top-down)5 - Very important5 - Very important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant5 - Very important4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important1 - Unimportant5 - Very important2 - Slightly important4 - Important1 - Unimportant4 - Important5 - Very important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P001: Availability of RES on site (Local RES)5 - Very important4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important5 - Very important5 - Very important4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important
        C1P001: Any other UNLOCKING FACTORS5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situationCollaboration with the local partners
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important5 - Very important4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant5 - Very important5 - Very important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
        C1P002: Economic growth need2 - Slightly important5 - Very important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P002: Energy autonomy/independence5 - Very important5 - Very important5 - Very important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Any other DRIVING FACTOR5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important5 - Very important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P003: Lack of public participation3 - Moderately important5 - Very important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Complicated and non-comprehensive public procurement4 - Important5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important4 - Important
        C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant5 - Very important4 - Important
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Any other Administrative BARRIER5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Any other Administrative BARRIER (if any)Fragmented financial support; lack of experimental budget for complex projects, etc.
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important5 - Very important2 - Slightly important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
        C1P004: Any other Political BARRIER5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
        C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important5 - Very important
        C1P005: Regulatory instability3 - Moderately important5 - Very important2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Non-effective regulations4 - Important5 - Very important2 - Slightly important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important5 - Very important4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important5 - Very important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P005: Insufficient or insecure financial incentives4 - Important5 - Very important5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Shortage of proven and tested solutions and examples5 - Very important4 - Important2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P005: Any other Legal and Regulatory BARRIER5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriersAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important5 - Very important5 - Very important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Deficient planning3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Retrofitting work in dwellings in occupied state4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
        C1P007: Lack of well-defined process4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant4 - Important4 - Important
        C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important
        C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Grid congestion, grid instability4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P007: Difficult definition of system boundaries3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
        C1P007: Any other Thecnical BARRIER5 - Very important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transitionEnergy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important5 - Very important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
        C1P008: Lack of trust beyond social network4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
        C1P008: Rebound effect4 - Important5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important5 - Very important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P008: Hostile or passive attitude towards energy collaboration5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P008: Any other Social BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P009: Lack of awareness among authorities5 - Very important2 - Slightly important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P009: Information asymmetry causing power asymmetry of established actors5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important
        C1P009: Any other Information and Awareness BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
        C1P010: Financial barriers
        C1P010: Hidden costs5 - Very important5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P010: Insufficient external financial support and funding for project activities5 - Very important5 - Very important2 - Slightly important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P010: Economic crisis5 - Very important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P010: Risk and uncertainty5 - Very important5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P010: Lack of consolidated and tested business models5 - Very important5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant1 - Unimportant4 - Important
        C1P010: Limited access to capital and cost disincentives5 - Very important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P010: Any other Financial BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives5 - Very important4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P011: Energy price distortion5 - Very important5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
        C1P011: Energy market concentration, gatekeeper actors (DSOs)5 - Very important5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P011: Any other Market BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Research & Innovation
        • Design/demand aggregation
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • None
        • Construction/implementation
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Analyst, ICT and Big Data
        • None
        • Design/demand aggregation
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Business process management
        • None
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Urban Services providers
        • None
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Real Estate developers
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • Planning/leading,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Design/Construction companies
        • None
        • Construction/implementation
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: End‐users/Occupants/Energy Citizens
        • None
        • Monitoring/operation/management
        • Design/demand aggregation
        • Monitoring/operation/management
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • None
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • None
        • Construction/implementation
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)