Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Findhorn, the Park
Halmstad, Fyllinge
Romania, Alba Iulia PED
Uden, Loopkantstraat
Leipzig, Baumwollspinnerei district
Stor-Elvdal, Campus Evenstad
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityFindhorn, the ParkHalmstad, FyllingeRomania, Alba Iulia PEDUden, LoopkantstraatLeipzig, Baumwollspinnerei districtStor-Elvdal, Campus Evenstad
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnoyesnoyesno
PED relevant case studyyesnoyesnoyesnoyes
PED Lab.nonononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesnoyesyesyesyes
Annual energy surplusnoyesnoyesyesnoyes
Energy communityyesyesyesyesnonono
Circularitynoyesnonononono
Air quality and urban comfortyesnonoyesnoyesno
Electrificationyesyesnoyesyesyesno
Net-zero energy costnonononononono
Net-zero emissionnoyesnonononono
Self-sufficiency (energy autonomous)nononoyesnonono
Maximise self-sufficiencynoyesnoyesnonono
Othernononononoyesyes
Other (A1P004)Net-zero emission; Annual energy surplusEnergy-flexibility
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationPlanning PhaseImplementation PhaseIn operationImplementation PhaseIn operation
A1P006: Start Date
A1P006: Start date01/6201/2101/2406/1701/13
A1P007: End Date
A1P007: End date01/3012/2605/2312/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Meteorological open data
  • General statistical datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        • Historical sources,
        • GIS of the municipality,
        • Basic BEMs
        • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
        • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
        • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
        • https://www.synikia.eu/no/bibliotek/
          A1P011: Geographic coordinates
          X Coordinate (longitude):23.814588-3.609912.9205423.5801120980232355.619112.31845811.078770773531746
          Y Coordinate (latitude):38.07734957.653056.6519446.07701527868011551.660651.32649261.42604420399112
          A1P012: Country
          A1P012: CountryGreeceUnited KingdomSwedenRomaniaNetherlandsGermanyNorway
          A1P013: City
          A1P013: CityMunicipality of KifissiaFindhornHalmstadAlba IuliaUdenLeipzigEvenstad, Stor-Elvdal municipality
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CsaDwcDwbDfbCfbDfbDwc
          A1P015: District boundary
          A1P015: District boundaryVirtualGeographicGeographicFunctionalGeographicFunctionalGeographic
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodGeographicGeographic
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedMixedPublicPrivatePublic
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerSingle OwnerSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED16025061222
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]23601700010000
          A1P020: Total ground area
          A1P020: Total ground area [m²]1800008423.45386030000
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area0000110
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenoyesyesnoyesnono
          A1P022a: Add the value in EUR if available [EUR]7804440
          A1P022b: Financing - PRIVATE - ESCO schemenonononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernonononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnononoyesnonono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnoyesnoyesnonoyes
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnononoyesnonono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnonono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernonononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesnononono
          A1P022i: Add the value in EUR if available [EUR]
          A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononoyes
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Boosting local and sustainable production
          • Job creation,
          • Positive externalities,
          • Other
          • Boosting local businesses,
          • Boosting local and sustainable production
          A1P023: OtherBoosting sustainability for public schoolsSustainable and replicable business models regarding renewable energy systems
          A1P024: More comments:
          A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.57804440
          Contact person for general enquiries
          A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaStefano NebioloMarkus OlofsgårdTudor DrâmbăreanTonje Healey TrulsrudSimon BaumÅse Lekang Sørensen
          A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamFindhorn Innovation Research and Education CICAFRYMunicipality of Alba IuliaNorwegian University of Science and Technology (NTNU)CENERO Energy GmbHSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities
          A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityOtherMunicipality / Public BodiesResearch Center / UniversityOtherResearch Center / University
          A1P028: OtherMaria Elena SeemannCENERO Energy GmbH
          A1P029: Emailgiavasoglou@kifissia.grstefanonebiolo@gmail.commarkus.olofsgard@afry.comtudor.drambarean@apulum.rotonje.h.trulsrud@ntnu.nosib@cenero.dease.sorensen@sintef.no
          Contact person for other special topics
          A1P030: NameStavros Zapantis - vice mayorMaria-Elena SeemannSimon Baum
          A1P031: Emailstavros.zapantis@gmail.commaria.seemann@apulum.roapulsib@cenero.de
          Pursuant to the General Data Protection RegulationYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Waste management
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Waste management,
          • Indoor air quality,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Construction materials
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldslink based regulation of electricity gridThermal rehabilitation of the main building, and investments in the energy efficiency and consumption fields.Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoYesYesNo
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoYesNoYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceYesNoNoYes
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationThere will be 1 EV station placed nearby the main building. This would be the link to the mobility field.not includedAt Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.9820.1481.650.77
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]1.20.0484410.1090.76
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]0
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesyesyesyesyesyesyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.0580.065
          A2P011: Windnoyesnonononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnonononononoyes
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
          A2P011: Biomass_peat_elnonononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnonononononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
          A2P011: Othernonononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnonoyesnoyesnono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnoyesnonononoyes
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
          A2P012: Biomass_heatnoyesnonononoyes
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
          A2P012: Waste heat+HPnoyesnonononono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnonononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnonononononono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnoyesnonononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernononoyesnonono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notes3x225 kW wind turbines + 100 kW PVOnly PVs - 940 PVs on the main building*Annual energy use below is presentedin primary energy consumptionListed values are measurements from 2018. Renewable energy share is increasing.
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]1.20.0000484410.1942.4211.500
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]1.20.0001133310.03681
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonononononono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnonononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnonononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernononoyesnonono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnonononononono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
          A2P018: Windnonononononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononononononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnonononononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnonononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnonononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernononoyesnonono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnonononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnonononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnonononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnonononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernononoyesnonono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary0000000
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]-0.00043
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & SecurityyesPersonal Safety
          A2P022: HealthyesHealthy community
          A2P022: Educationyes
          A2P022: MobilityyesSustainable mobility
          A2P022: EnergyyesNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionapply
          A2P022: Wateryes
          A2P022: Economic developmentyescapital costs, operational cots, overall economic performance (5 KPIs)
          A2P022: Housing and Communitydemographic composition, diverse community, social cohesion
          A2P022: Waste
          A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsnoyesyesyesyesnoyes
          A2P023: Solar thermal collectorsnoyesnoyesnonoyes
          A2P023: Wind Turbinesnoyesnonononono
          A2P023: Geothermal energy systemnonononoyesnono
          A2P023: Waste heat recoverynoyesnonononono
          A2P023: Waste to energynonononononono
          A2P023: Polygenerationnononoyesnonono
          A2P023: Co-generationnononoyesnonoyes
          A2P023: Heat Pumpnoyesnoyesyesnono
          A2P023: Hydrogennonononononono
          A2P023: Hydropower plantnonononononono
          A2P023: Biomassnoyesnonononoyes
          A2P023: Biogasnonononononono
          A2P023: OtherThe Co-generation is biomass based.
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesyesnonoyes
          A2P024: Energy management systemnoyesnoyesyesnoyes
          A2P024: Demand-side managementnonoyesyesyesnoyes
          A2P024: Smart electricity gridnonoyesyesnonono
          A2P024: Thermal Storagenoyesnonononoyes
          A2P024: Electric Storagenoyesnoyesnonoyes
          A2P024: District Heating and Coolingnoyesnonononoyes
          A2P024: Smart metering and demand-responsive control systemsnonoyesyesyesnoyes
          A2P024: P2P – buildingsnononoyesnonono
          A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnononoyesnonono
          A2P025: Energy efficiency measures in historic buildingsnonononononono
          A2P025: High-performance new buildingsnoyesnonoyesnoyes
          A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesnonono
          A2P025: Urban data platformsnononoyesnonono
          A2P025: Mobile applications for citizensnonononononono
          A2P025: Building services (HVAC & Lighting)nononoyesyesnono
          A2P025: Smart irrigationnonononononono
          A2P025: Digital tracking for waste disposalnonononononono
          A2P025: Smart surveillancenonononononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nononoyesnonono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnonono
          A2P026: e-Mobilitynoyesnoyesnonoyes
          A2P026: Soft mobility infrastructures and last mile solutionsnonononononono
          A2P026: Car-free areanonononononono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notesThe new mobility plan integrates the PED areaTest-Concept for bidirectional charging.
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesNoYesYesYes
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEPC = 0, energy neutral buildingPassive house (2 buildings, 4 200 m2, from 2015)
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoYesNoYes
          A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies,
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Promotion of energy communities (REC/CEC),
          • National / international city networks addressing sustainable urban development and climate neutrality
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategy40% reduction in emissions by 2030 according to the Covenant of Mayors
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps
          • Biogas
          A3P003: Other
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and priorities- Thermal rehabilitation - Heat pumps - Smart system capable o various connections and data export - Usage of the energy produced by PVs placed on 3 buildings within the PED
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviour- Education - Replacement of the non-performant PVs - Professional maintenance of the PV system - Reduce of consumptions - Intelligent systems to recover heat - Intelligent system to permit the usage of domestic water from the heating system
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Local trading
          • Open data business models,
          • Innovative business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Demand management Living Lab
          • Innovative business models,
          • Other
          A3P006: Otheroperational savings through efficiency measures
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Quality of Life
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Policy Forums,
          • Social incentives,
          • Quality of Life,
          • Strategies towards social mix,
          • Affordability,
          • Prevention of energy poverty,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Co-creation / Citizen engagement strategies,
          • Social incentives,
          • Quality of Life
          • Behavioural Change / End-users engagement
          • Behavioural Change / End-users engagement,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
          • Other
          A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral,
          • Net zero carbon footprint
          • Energy Neutral,
          • Carbon-free
          • Energy Neutral,
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Carbon-free,
          • Life Cycle approach,
          • Pollutants Reduction,
          • Greening strategies,
          • Sustainable Urban drainage systems (SUDS),
          • Cool Materials,
          • Nature Based Solutions (NBS)
          • Other
          • Low Emission Zone
          A3P009: OtherPositive Energy Balance for the demo site
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionPositive energy districtThe demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentCreation of an area which aims to be sustainable in terms of energy sufficiency and efficiency.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaRuralSuburban areaUrban areaSuburban areaRural
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • New construction
          • Renovation
          • New construction
          • New construction,
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • New Development
          • New Development
          • Retrofitting Area
          • New Development
          • Preservation Area
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction1976
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P011: Population density before intervention
          B1P011: Population density before intervention0000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention0000000
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnonononononono
          B1P013 - Residential: Specify the sqm [m²]
          B1P013: Officenonononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynonononononono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnonononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnononoyesnonono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnoyesyesnononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnonononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnonononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernonononononono
          B1P013 - Other: Specify the sqm [m²]
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnoyesnonoyesnono
          B1P014 - Residential: Specify the sqm [m²]2394
          B1P014: Officenoyesnonononono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynonononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnonononononono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnononoyesnonono
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnoyesnonononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnonononononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnonononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernonononononono
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life time
          B2P003: Scale of action
          B2P003: Scale
          B2P004: Operator of the installation
          B2P004: Operator of the installation
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED Lab
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Other
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important5 - Very important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important5 - Very important
          C1P001: Storage systems and E-mobility market penetration1 - Unimportant5 - Very important3 - Moderately important4 - Important5 - Very important
          C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
          C1P001: The ability to predict Multiple Benefits1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant
          C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important
          C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important4 - Important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant4 - Important2 - Slightly important4 - Important4 - Important
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important1 - Unimportant
          C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant4 - Important2 - Slightly important5 - Very important1 - Unimportant
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
          C1P001: Availability of RES on site (Local RES)1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important3 - Moderately important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need4 - Important1 - Unimportant3 - Moderately important5 - Very important5 - Very important3 - Moderately important
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant
          C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
          C1P002: Economic growth need2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
          C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
          C1P002: Energy autonomy/independence5 - Very important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Lack of public participation3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
          C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
          C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
          C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
          C1P005: Non-effective regulations4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
          C1P007: Deficient planning3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
          C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P007: Lack of well-defined process4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important
          C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P007: Grid congestion, grid instability4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
          C1P008: Social and Cultural barriers
          C1P008: Inertia4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
          C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important
          C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant
          C1P008: Lack of trust beyond social network4 - Important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P008: Rebound effect4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P009: Lack of awareness among authorities1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
          C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
          C1P009: High costs of design, material, construction, and installation1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
          C1P010: Financial barriers
          C1P010: Hidden costs1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important
          C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important
          C1P010: Economic crisis1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P010: Risk and uncertainty1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important5 - Very important
          C1P010: Lack of consolidated and tested business models1 - Unimportant4 - Important4 - Important1 - Unimportant5 - Very important
          C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Energy price distortion1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Design/demand aggregation
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading
          C1P012: Research & Innovation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Construction/implementation
          C1P012: Analyst, ICT and Big Data
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Business process management
          • Design/demand aggregation
          • Planning/leading
          C1P012: Urban Services providers
          • Design/demand aggregation
          C1P012: Real Estate developers
          • Construction/implementation
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          C1P012: Design/Construction companies
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation
          • Construction/implementation
          C1P012: End‐users/Occupants/Energy Citizens
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Design/demand aggregation
          • None
          C1P012: Industry/SME/eCommerce
          • Construction/implementation
          • Construction/implementation
          C1P012: Other
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)