Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Uncompare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Uncompare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Schönbühel-Aggsbach, Schönbühel an der Donau
Vienna, Kriegerheimstätten
Pamplona
Borlänge, Rymdgatan’s Residential Portfolio
Barcelona, SEILAB & Energy SmartLab
Roubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’Oran
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communitySchönbühel-Aggsbach, Schönbühel an der DonauVienna, KriegerheimstättenPamplonaBorlänge, Rymdgatan’s Residential PortfolioBarcelona, SEILAB & Energy SmartLabRoubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’Oran
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonononononono
PED relevant case studyyesyesyesnoyesnoyes
PED Lab.nononoyesnoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesnoyes
Annual energy surplusnonononoyesnoyes
Energy communityyesyesnoyesyesyesno
Circularitynonononononono
Air quality and urban comfortyesnoyesnononoyes
Electrificationyesnoyesnoyesyesno
Net-zero energy costnoyesnonononono
Net-zero emissionnononononoyesno
Self-sufficiency (energy autonomous)nononononoyesno
Maximise self-sufficiencynoyesnonoyesnono
Othernononononoyesno
Other (A1P004)Green IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseImplementation PhasePlanning PhaseImplementation PhasePlanning PhaseIn operationCompleted
A1P006: Start Date
A1P006: Start date01/2306/2401/201101/22
A1P007: End Date
A1P007: End date12/3007/2802/201301/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
              A1P011: Geographic coordinates
              X Coordinate (longitude):23.81458815.396916.475416-1.6432315.3944952.13.1651
              Y Coordinate (latitude):38.07734948.275248.23401142.8168760.48660941.350.6937
              A1P012: Country
              A1P012: CountryGreeceAustriaAustriaSpainSwedenSpainFrance
              A1P013: City
              A1P013: CityMunicipality of KifissiaSchönbühel an der DonauViennaPamplonaBorlängeBarcelona and TarragonaRoubaix
              A1P014: Climate Zone (Köppen Geiger classification)
              A1P014: Climate Zone (Köppen Geiger classification).CsaDfbCfbCfbDsbCsaCfb
              A1P015: District boundary
              A1P015: District boundaryVirtualGeographicGeographicGeographicGeographicVirtualOther
              OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodPEB
              A1P016: Ownership of the case study/PED Lab
              A1P016: Ownership of the case study/PED Lab:PrivatePrivateMixedMixedPublicPrivate
              A1P017: Ownership of the land / physical infrastructure
              A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerSingle OwnerSingle Owner
              A1P018: Number of buildings in PED
              A1P018: Number of buildings in PED01001
              A1P019: Conditioned space
              A1P019: Conditioned space [m²]47737001442
              A1P020: Total ground area
              A1P020: Total ground area [m²]24501240002355000099452500
              A1P021: Floor area ratio: Conditioned space / total ground area
              A1P021: Floor area ratio: Conditioned space / total ground area0000001
              A1P022: Financial schemes
              A1P022a: Financing - PRIVATE - Real estatenoyesnonononoyes
              A1P022a: Add the value in EUR if available [EUR]0
              A1P022b: Financing - PRIVATE - ESCO schemenonononononono
              A1P022b: Add the value in EUR if available [EUR]
              A1P022c: Financing - PRIVATE - Othernonoyesnononono
              A1P022c: Add the value in EUR if available [EUR]
              A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
              A1P022d: Add the value in EUR if available [EUR]
              A1P022e: Financing - PUBLIC - National fundingnoyesnonononono
              A1P022e: Add the value in EUR if available [EUR]
              A1P022f: Financing - PUBLIC - Regional fundingnoyesnonononoyes
              A1P022f: Add the value in EUR if available [EUR]
              A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnonoyes
              A1P022g: Add the value in EUR if available [EUR]
              A1P022h: Financing - PUBLIC - Othernonononononono
              A1P022h: Add the value in EUR if available [EUR]
              A1P022i: Financing - RESEARCH FUNDING - EUnonononononoyes
              A1P022i: Add the value in EUR if available [EUR]
              A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononono
              A1P022j: Add the value in EUR if available [EUR]
              A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
              A1P022k: Add the value in EUR if available [EUR]
              A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
              A1P022l: Add the value in EUR if available [EUR]
              A1P022: OtherRetrofitted through various subsidies
              A1P023: Economic Targets
              A1P023: Economic Targets
              • Positive externalities,
              • Boosting local businesses,
              • Boosting consumption of local and sustainable products
              • Job creation,
              • Boosting local and sustainable production
              A1P023: Other
              A1P024: More comments:
              A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The building comprises 32 homes. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.
              A1P025: Estimated PED case study / PED LAB costs
              A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.6
              Contact person for general enquiries
              A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaGhazal EtminanGerhard Hofer (e7 GmbH)Oscar Puyal LAtorreJingchun ShenDr. Jaume Salom, Dra. Cristina CorcheroJulien Holgard
              A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamGhazal.Etminan@ait.ac.ate7 GmbHEndef Engineering SLHögskolan DalarnaIRECVilogia
              A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversitySME / IndustrySME / IndustryResearch Center / UniversityResearch Center / UniversityOther
              A1P028: OtherSocial Housing Company
              A1P029: Emailgiavasoglou@kifissia.grGhazal.Etminan@ait.ac.atgerhard.hofer@e-sieben.atoscar.puyal@endef.comjih@du.seJsalom@irec.catjulien.holgard@vilogia.fr
              Contact person for other special topics
              A1P030: NameStavros Zapantis - vice mayorXingxing ZhangJulien Holgard
              A1P031: Emailstavros.zapantis@gmail.comxza@du.sejulien.holgard@vilogia.fr
              Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
              A2P001: Fields of application
              A2P001: Fields of application
              • Energy production
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • Urban comfort (pollution, heat island, noise level etc.),
              • Other
              • Energy efficiency
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Construction materials
              • Energy efficiency,
              • Energy flexibility,
              • Energy production,
              • E-mobility,
              • Digital technologies
              • Energy efficiency,
              • Energy production,
              • Urban comfort (pollution, heat island, noise level etc.),
              • Indoor air quality,
              • Construction materials
              A2P001: OtherReducing CO2eq Emissions
              A2P002: Tools/strategies/methods applied for each of the above-selected fields
              A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy modelingLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)
              A2P003: Application of ISO52000
              A2P003: Application of ISO52000NoNoNo
              A2P004: Appliances included in the calculation of the energy balance
              A2P004: Appliances included in the calculation of the energy balanceYesYesYesYes
              A2P005: Mobility included in the calculation of the energy balance
              A2P005: Mobility included in the calculation of the energy balanceNoNoYesNo
              A2P006: Description of how mobility is included (or not included) in the calculation
              A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah
              A2P007: Annual energy demand in buildings / Thermal demand
              A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.0664.970.6777
              A2P008: Annual energy demand in buildings / Electric Demand
              A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.0120.750.03656
              A2P009: Annual energy demand for e-mobility
              A2P009: Annual energy demand for e-mobility [GWh/annum]0
              A2P010: Annual energy demand for urban infrastructure
              A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
              A2P011: Annual renewable electricity production on-site during target year
              A2P011: PVyesyesnononoyesyes
              A2P011: PV - specify production in GWh/annum [GWh/annum]
              A2P011: Windnonononononono
              A2P011: Wind - specify production in GWh/annum [GWh/annum]
              A2P011: Hydrononononononono
              A2P011: Hydro - specify production in GWh/annum [GWh/annum]
              A2P011: Biomass_elnonononononono
              A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
              A2P011: Biomass_peat_elnonononononono
              A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
              A2P011: PVT_elnonononoyesnono
              A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
              A2P011: Othernonononononono
              A2P011: Other - specify production in GWh/annum [GWh/annum]
              A2P012: Annual renewable thermal production on-site during target year
              A2P012: Geothermalnonononononono
              A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
              A2P012: Solar Thermalnonononononono
              A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
              A2P012: Biomass_heatnonononononono
              A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
              A2P012: Waste heat+HPnonononononono
              A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
              A2P012: Biomass_peat_heatnonononononono
              A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
              A2P012: PVT_thnonononoyesnono
              A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
              A2P012: Biomass_firewood_thnonononononono
              A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
              A2P012: Othernonononononono
              A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
              A2P013: Renewable resources on-site - Additional notes
              A2P013: Renewable resources on-site - Additional notes
              A2P014: Annual energy use
              A2P014: Annual energy use [GWh/annum]0.0790.3180.084
              A2P015: Annual energy delivered
              A2P015: Annual energy delivered [GWh/annum]0.00110.20550.11
              A2P016: Annual non-renewable electricity production on-site during target year
              A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
              A2P017: Annual non-renewable thermal production on-site during target year
              A2P017: Gasnononononoyesno
              A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
              A2P017: Coalnonononononono
              A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
              A2P017: Oilnonononononono
              A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
              A2P017: Othernonononoyesnono
              A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
              A2P018: Annual renewable electricity imports from outside the boundary during target year
              A2P018: PVnoyesnonononono
              A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
              A2P018: Windnoyesnonononono
              A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
              A2P018: Hydronoyesnonononono
              A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
              A2P018: Biomass_elnoyesnonononono
              A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
              A2P018: Biomass_peat_elnonononononono
              A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
              A2P018: PVT_elnonononononono
              A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
              A2P018: Othernonononoyesnono
              A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
              A2P019: Annual renewable thermal imports from outside the boundary during target year
              A2P019: Geothermalnonononononono
              A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Solar Thermalnonononononono
              A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Biomass_heatnonononononono
              A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Waste heat+HPnonononononono
              A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Biomass_peat_heatnonononononono
              A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
              A2P019: PVT_thnonononononono
              A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Biomass_firewood_thnoyesnonononono
              A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
              A2P019: Othernonononoyesnono
              A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
              A2P020: Share of RES on-site / RES outside the boundary
              A2P020: Share of RES on-site / RES outside the boundary00000.5383957219251300
              A2P021: GHG-balance calculated for the PED
              A2P021: GHG-balance calculated for the PED [tCO2/annum]46.93
              A2P022: KPIs related to the PED case study / PED Lab
              A2P022: Safety & Securitynone
              A2P022: Healththermal comfort diagram
              A2P022: Educationnone
              A2P022: Mobilitynone
              A2P022: EnergyYesnormalized CO2/GHG & Energy intensity
              A2P022: Water
              A2P022: Economic developmentcost of excess emissions
              A2P022: Housing and CommunitySpecify the associated KPIsNumber of people interested in participating in an energy community
              A2P022: Waste
              A2P022: Other
              A2P023: Technological Solutions / Innovations - Energy Generation
              A2P023: Photovoltaicsnoyesyesyesyesyesyes
              A2P023: Solar thermal collectorsnonoyesnoyesnono
              A2P023: Wind Turbinesnonononononono
              A2P023: Geothermal energy systemnonoyesnoyesnono
              A2P023: Waste heat recoverynonononoyesnono
              A2P023: Waste to energynonononononono
              A2P023: Polygenerationnonononononono
              A2P023: Co-generationnonononononono
              A2P023: Heat Pumpnoyesyesnoyesnono
              A2P023: Hydrogennonononononono
              A2P023: Hydropower plantnonononononono
              A2P023: Biomassnonononononono
              A2P023: Biogasnonononononono
              A2P023: Other
              A2P024: Technological Solutions / Innovations - Energy Flexibility
              A2P024: A2P024: Information and Communication Technologies (ICT)nonononoyesyesno
              A2P024: Energy management systemnoyesnononoyesno
              A2P024: Demand-side managementnonononononono
              A2P024: Smart electricity gridnononononoyesno
              A2P024: Thermal Storagenonoyesnoyesnono
              A2P024: Electric Storagenononononoyesno
              A2P024: District Heating and Coolingnonoyesnoyesnono
              A2P024: Smart metering and demand-responsive control systemsnononoyesnonoyes
              A2P024: P2P – buildingsnoyesnonononono
              A2P024: Other
              A2P025: Technological Solutions / Innovations - Energy Efficiency
              A2P025: Deep Retrofittingnoyesnonoyesnoyes
              A2P025: Energy efficiency measures in historic buildingsnoyesnonononono
              A2P025: High-performance new buildingsnonononononono
              A2P025: Smart Public infrastructure (e.g. smart lighting)nonononononono
              A2P025: Urban data platformsnonononononono
              A2P025: Mobile applications for citizensnonononononono
              A2P025: Building services (HVAC & Lighting)nonononoyesyesno
              A2P025: Smart irrigationnonononononono
              A2P025: Digital tracking for waste disposalnonononononono
              A2P025: Smart surveillancenononoyesnonono
              A2P025: Other
              A2P026: Technological Solutions / Innovations - Mobility
              A2P026: Efficiency of vehicles (public and/or private)nononononoyesno
              A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononononono
              A2P026: e-Mobilitynonononononono
              A2P026: Soft mobility infrastructures and last mile solutionsnonononononono
              A2P026: Car-free areanonononononono
              A2P026: Other
              A2P027: Mobility strategies - Additional notes
              A2P027: Mobility strategies - Additional notes
              A2P028: Energy efficiency certificates
              A2P028: Energy efficiency certificatesYesNoNo
              A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling
              A2P029: Any other building / district certificates
              A2P029: Any other building / district certificatesNoNoNo
              A2P029: If yes, please specify and/or enter notes
              A3P001: Relevant city /national strategy
              A3P001: Relevant city /national strategy
              • Energy master planning (SECAP, etc.),
              • Promotion of energy communities (REC/CEC)
              • Promotion of energy communities (REC/CEC)
              • Promotion of energy communities (REC/CEC),
              • Climate change adaption plan/strategy (e.g. Climate City contract)
              • Smart cities strategies,
              • New development strategies
              • Climate change adaption plan/strategy (e.g. Climate City contract)
              A3P002: Quantitative targets included in the city / national strategy
              A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
              A3P003: Strategies towards decarbonization of the gas grid
              A3P003: Strategies towards decarbonization of the gas grid
              • Electrification of Heating System based on Heat Pumps
              A3P003: Other
              A3P004: Identification of needs and priorities
              A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
              A3P005: Sustainable behaviour
              A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.
              A3P006: Economic strategies
              A3P006: Economic strategies
              • Local trading,
              • Existing incentives
              • Innovative business models
              • Open data business models,
              • Life Cycle Cost,
              • Circular economy models,
              • Local trading
              • Demand management Living Lab
              A3P006: Other
              A3P007: Social models
              A3P007: Social models
              • Strategies towards (local) community-building,
              • Co-creation / Citizen engagement strategies,
              • Behavioural Change / End-users engagement,
              • Quality of Life,
              • Citizen/owner involvement in planning and maintenance,
              • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
              • Co-creation / Citizen engagement strategies,
              • Affordability,
              • Prevention of energy poverty
              • Co-creation / Citizen engagement strategies
              • Strategies towards (local) community-building,
              • Behavioural Change / End-users engagement,
              • Social incentives,
              • Affordability,
              • Digital Inclusion
              • Digital Inclusion,
              • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
              • Behavioural Change / End-users engagement,
              • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
              A3P007: Other
              A3P008: Integrated urban strategies
              A3P008: Integrated urban strategies
              • Strategic urban planning,
              • District Energy plans
              • Strategic urban planning,
              • Digital twinning and visual 3D models,
              • District Energy plans,
              • Building / district Certification
              A3P008: Other
              A3P009: Environmental strategies
              A3P009: Environmental strategies
              • Low Emission Zone,
              • Net zero carbon footprint,
              • Carbon-free
              • Low Emission Zone,
              • Carbon-free
              • Greening strategies
              • Low Emission Zone,
              • Net zero carbon footprint,
              • Life Cycle approach,
              • Sustainable Urban drainage systems (SUDS)
              • Energy Neutral,
              • Low Emission Zone,
              • Pollutants Reduction,
              • Greening strategies
              • Energy Neutral
              A3P009: Other
              A3P010: Legal / Regulatory aspects
              A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.
              B1P001: PED/PED relevant concept definition
              B1P001: PED/PED relevant concept definitionThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.Refurbishment of social housing. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.
              B1P002: Motivation behind PED/PED relevant project development
              B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.Refurbishment of social housing
              B1P003: Environment of the case study area
              B2P003: Environment of the case study areaRurbanUrban areaSuburban area
              B1P004: Type of district
              B2P004: Type of district
              • Renovation
              • Renovation
              • Renovation
              B1P005: Case Study Context
              B1P005: Case Study Context
              • Retrofitting Area,
              • Preservation Area
              • Re-use / Transformation Area,
              • Retrofitting Area
              • Retrofitting Area
              B1P006: Year of construction
              B1P006: Year of construction19901958
              B1P007: District population before intervention - Residential
              B1P007: District population before intervention - Residential100
              B1P008: District population after intervention - Residential
              B1P008: District population after intervention - Residential100
              B1P009: District population before intervention - Non-residential
              B1P009: District population before intervention - Non-residential6
              B1P010: District population after intervention - Non-residential
              B1P010: District population after intervention - Non-residential6
              B1P011: Population density before intervention
              B1P011: Population density before intervention0000000
              B1P012: Population density after intervention
              B1P012: Population density after intervention00000.01065862242332800
              B1P013: Building and Land Use before intervention
              B1P013: Residentialnoyesnonoyesnoyes
              B1P013 - Residential: Specify the sqm [m²]4360
              B1P013: Officenoyesnonononono
              B1P013 - Office: Specify the sqm [m²]
              B1P013: Industry and Utilitynonononononono
              B1P013 - Industry and Utility: Specify the sqm [m²]
              B1P013: Commercialnonononononono
              B1P013 - Commercial: Specify the sqm [m²]
              B1P013: Institutionalnonononononono
              B1P013 - Institutional: Specify the sqm [m²]
              B1P013: Natural areasnonononononono
              B1P013 - Natural areas: Specify the sqm [m²]
              B1P013: Recreationalnonononononono
              B1P013 - Recreational: Specify the sqm [m²]
              B1P013: Dismissed areasnonononononono
              B1P013 - Dismissed areas: Specify the sqm [m²]
              B1P013: Othernonononoyesnono
              B1P013 - Other: Specify the sqm [m²]706
              B1P014: Building and Land Use after intervention
              B1P014: Residentialnoyesnonoyesnoyes
              B1P014 - Residential: Specify the sqm [m²]4360
              B1P014: Officenoyesnonononono
              B1P014 - Office: Specify the sqm [m²]
              B1P014: Industry and Utilitynonononononono
              B1P014 - Industry and Utility: Specify the sqm [m²]
              B1P014: Commercialnonononononono
              B1P014 - Commercial: Specify the sqm [m²]
              B1P014: Institutionalnonononononono
              B1P014 - Institutional: Specify the sqm [m²]
              B1P014: Natural areasnonononononono
              B1P014 - Natural areas: Specify the sqm [m²]
              B1P014: Recreationalnonononononono
              B1P014 - Recreational: Specify the sqm [m²]
              B1P014: Dismissed areasnonononononono
              B1P014 - Dismissed areas: Specify the sqm [m²]
              B1P014: Othernonononoyesnono
              B1P014 - Other: Specify the sqm [m²]706
              B2P001: PED Lab concept definition
              B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
              B2P002: Installation life time
              B2P002: Installation life time
              B2P003: Scale of action
              B2P003: ScaleVirtual
              B2P004: Operator of the installation
              B2P004: Operator of the installationIREC
              B2P005: Replication framework: Applied strategy to reuse and recycling the materials
              B2P005: Replication framework: Applied strategy to reuse and recycling the materials
              B2P006: Circular Economy Approach
              B2P006: Do you apply any strategy to reuse and recycling the materials?No
              B2P006: Other
              B2P007: Motivation for developing the PED Lab
              B2P007: Motivation for developing the PED Lab
              • Strategic,
              • Private
              B2P007: Other
              B2P008: Lead partner that manages the PED Lab
              B2P008: Lead partner that manages the PED LabResearch center/University
              B2P008: Other
              B2P009: Collaborative partners that participate in the PED Lab
              B2P009: Collaborative partners that participate in the PED Lab
              B2P009: Other
              B2P010: Synergies between the fields of activities
              B2P010: Synergies between the fields of activities
              B2P011: Available facilities to test urban configurations in PED Lab
              B2P011: Available facilities to test urban configurations in PED Lab
              • Demand-side management,
              • Energy storage,
              • Energy networks,
              • Efficiency measures,
              • Information and Communication Technologies (ICT)
              B2P011: Other
              B2P012: Incubation capacities of PED Lab
              B2P012: Incubation capacities of PED Lab
              • Monitoring and evaluation infrastructure,
              • Tools for prototyping and modelling,
              • Tools, spaces, events for testing and validation
              B2P013: Availability of the facilities for external people
              B2P013: Availability of the facilities for external people
              B2P014: Monitoring measures
              B2P014: Monitoring measures
              • Equipment
              B2P015: Key Performance indicators
              B2P015: Key Performance indicators
              • Energy,
              • Environmental
              B2P016: Execution of operations
              B2P016: Execution of operations
              B2P017: Capacities
              B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
              B2P018: Relations with stakeholders
              B2P018: Relations with stakeholders
              B2P019: Available tools
              B2P019: Available tools
              • Energy modelling
              B2P019: Available tools
              B2P020: External accessibility
              B2P020: External accessibility
              C1P001: Unlocking Factors
              C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
              C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
              C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
              C1P001: Storage systems and E-mobility market penetration4 - Important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
              C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant
              C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
              C1P001: The ability to predict Multiple Benefits2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
              C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant
              C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
              C1P001: Social acceptance (top-down)5 - Very important3 - Moderately important5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
              C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant
              C1P001: Presence of integrated urban strategies and plans3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
              C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant
              C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant4 - Important2 - Slightly important4 - Important5 - Very important1 - Unimportant
              C1P001: Availability of RES on site (Local RES)1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important1 - Unimportant
              C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
              C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P001: Any other UNLOCKING FACTORS (if any)
              C1P002: Driving Factors
              C1P002: Climate Change adaptation need4 - Important5 - Very important2 - Slightly important3 - Moderately important5 - Very important4 - Important1 - Unimportant
              C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant
              C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
              C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant
              C1P002: Economic growth need2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important4 - Important1 - Unimportant
              C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
              C1P002: Territorial and market attractiveness2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P002: Energy autonomy/independence5 - Very important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
              C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P002: Any other DRIVING FACTOR (if any)
              C1P003: Administrative barriers
              C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important3 - Moderately important4 - Important3 - Moderately important4 - Important4 - Important1 - Unimportant
              C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important3 - Moderately important4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
              C1P003: Lack of public participation3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant
              C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
              C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant
              C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant
              C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
              C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant
              C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant5 - Very important4 - Important1 - Unimportant
              C1P003: Lack of internal capacities to support energy transition3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important4 - Important1 - Unimportant
              C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
              C1P003: Any other Administrative BARRIER (if any)
              C1P004: Policy barriers
              C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
              C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important4 - Important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
              C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important4 - Important3 - Moderately important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant
              C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P004: Any other Political BARRIER (if any)
              C1P005: Legal and Regulatory barriers
              C1P005: Inadequate regulations for new technologies4 - Important2 - Slightly important4 - Important4 - Important4 - Important5 - Very important1 - Unimportant
              C1P005: Regulatory instability3 - Moderately important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant
              C1P005: Non-effective regulations4 - Important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
              C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important2 - Slightly important4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant
              C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
              C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant
              C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
              C1P005: Shortage of proven and tested solutions and examples1 - Unimportant3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant
              C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
              C1P005: Any other Legal and Regulatory BARRIER (if any)
              C1P006: Environmental barriers
              C1P006: Environmental barriers2 - Slightly important
              C1P007: Technical barriers
              C1P007: Lack of skilled and trained personnel4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant
              C1P007: Deficient planning3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important5 - Very important1 - Unimportant
              C1P007: Retrofitting work in dwellings in occupied state4 - Important3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
              C1P007: Lack of well-defined process4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant
              C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important1 - Unimportant
              C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
              C1P007: Grid congestion, grid instability4 - Important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant
              C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
              C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P007: Difficult definition of system boundaries3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
              C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P007: Any other Thecnical BARRIER (if any)
              C1P008: Social and Cultural barriers
              C1P008: Inertia4 - Important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important4 - Important1 - Unimportant
              C1P008: Lack of values and interest in energy optimization measurements5 - Very important2 - Slightly important4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant
              C1P008: Low acceptance of new projects and technologies5 - Very important2 - Slightly important4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
              C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant
              C1P008: Lack of trust beyond social network4 - Important4 - Important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
              C1P008: Rebound effect4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant
              C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important5 - Very important1 - Unimportant
              C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
              C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
              C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
              C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P008: Any other Social BARRIER (if any)
              C1P009: Information and Awareness barriers
              C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
              C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
              C1P009: Lack of awareness among authorities3 - Moderately important1 - Unimportant4 - Important5 - Very important2 - Slightly important1 - Unimportant
              C1P009: Information asymmetry causing power asymmetry of established actors4 - Important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
              C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant
              C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P009: Any other Information and Awareness BARRIER (if any)
              C1P010: Financial barriers
              C1P010: Hidden costs3 - Moderately important2 - Slightly important2 - Slightly important5 - Very important5 - Very important1 - Unimportant
              C1P010: Insufficient external financial support and funding for project activities3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important1 - Unimportant
              C1P010: Economic crisis4 - Important4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant
              C1P010: Risk and uncertainty3 - Moderately important5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
              C1P010: Lack of consolidated and tested business models4 - Important2 - Slightly important4 - Important5 - Very important5 - Very important1 - Unimportant
              C1P010: Limited access to capital and cost disincentives4 - Important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant
              C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P010: Any other Financial BARRIER (if any)
              C1P011: Market barriers
              C1P011: Split incentives4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant
              C1P011: Energy price distortion4 - Important3 - Moderately important3 - Moderately important4 - Important5 - Very important1 - Unimportant
              C1P011: Energy market concentration, gatekeeper actors (DSOs)2 - Slightly important5 - Very important5 - Very important3 - Moderately important5 - Very important1 - Unimportant
              C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
              C1P011: Any other Market BARRIER (if any)
              C1P012: Stakeholders involved
              C1P012: Government/Public Authorities
              • Monitoring/operation/management
              C1P012: Research & Innovation
              • Design/demand aggregation
              • Planning/leading
              C1P012: Financial/Funding
              • Planning/leading
              • None
              C1P012: Analyst, ICT and Big Data
              • Planning/leading
              • None
              C1P012: Business process management
              • Planning/leading
              • None
              C1P012: Urban Services providers
              • Planning/leading
              • None
              C1P012: Real Estate developers
              • Planning/leading
              • Design/demand aggregation
              C1P012: Design/Construction companies
              • Planning/leading
              • None
              C1P012: End‐users/Occupants/Energy Citizens
              • Monitoring/operation/management
              • Monitoring/operation/management
              C1P012: Social/Civil Society/NGOs
              • Construction/implementation
              • Monitoring/operation/management
              C1P012: Industry/SME/eCommerce
              • Design/demand aggregation
              • None
              C1P012: Other
              C1P012: Other (if any)
              Summary

              Authors (framework concept)

              Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

              Contributors (to the content)

              Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

              Implemented by

              Boutik.pt: Filipe Martins, Jamal Khan
              Marek Suchánek (Czech Technical University in Prague)