Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Uncompare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Umeå, Ålidhem district
Zaragoza, Actur
Leipzig, Baumwollspinnerei district
Barcelona, SEILAB & Energy SmartLab
Vidin, Himik and Bononia
Amsterdam, Buiksloterham PED
Groningen, PED South
Vantaa, Aviapolis
Borlänge, Rymdgatan’s Residential Portfolio
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityUmeå, Ålidhem districtZaragoza, ActurLeipzig, Baumwollspinnerei districtBarcelona, SEILAB & Energy SmartLabVidin, Himik and BononiaAmsterdam, Buiksloterham PEDGroningen, PED SouthVantaa, AviapolisBorlänge, Rymdgatan’s Residential Portfolio
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnoyesnoyesyesnoyesno
PED relevant case studyyesnoyesnononononoyesyes
PED Lab.nonononoyesnonoyesyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesnoyesyesyesyesyes
Annual energy surplusnonoyesnonoyesyesyesnoyes
Energy communityyesnononoyesnoyesyesnoyes
Circularitynonononononoyesyesyesno
Air quality and urban comfortyesnonoyesnononononono
Electrificationyesnoyesyesyesnoyesnonoyes
Net-zero energy costnononononononononono
Net-zero emissionnonoyesnoyesnoyesyesnono
Self-sufficiency (energy autonomous)nonononoyesnonononono
Maximise self-sufficiencynononononononononoyes
Othernononoyesyesnonononono
Other (A1P004)Net-zero emission; Annual energy surplusGreen IT
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhaseImplementation PhaseIn operationPlanning PhaseImplementation PhaseImplementation PhasePlanning PhasePlanning Phase
A1P006: Start Date
A1P006: Start date10/2201/2301/201112/1811/1912/1801/23
A1P007: End Date
A1P007: End date09/2502/201312/3010/2512/2312/27
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • General statistical datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards
A1P009: Otherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • Umeå Energi
          • TNO, Hanze, RUG,
          • Ped noord book
            A1P011: Geographic coordinates
            X Coordinate (longitude):23.81458820.2630-0.889112.3184582.122.88264.90416.59065524.95882115.394495
            Y Coordinate (latitude):38.07734963.825841.648851.32649241.343.993652.367653.20408760.30548860.486609
            A1P012: Country
            A1P012: CountryGreeceSwedenSpainGermanySpainBulgariaNetherlandsNetherlandsFinlandSweden
            A1P013: City
            A1P013: CityMunicipality of KifissiaUmeåZaragozaLeipzigBarcelona and TarragonaVidinAmsterdamGroningenVantaaBorlänge
            A1P014: Climate Zone (Köppen Geiger classification)
            A1P014: Climate Zone (Köppen Geiger classification).CsaDfbBSkDfbCsaCfaCfbCfaDfbDsb
            A1P015: District boundary
            A1P015: District boundaryVirtualGeographicGeographicFunctionalVirtualGeographicFunctionalFunctionalGeographicGeographic
            OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodGeographic
            A1P016: Ownership of the case study/PED Lab
            A1P016: Ownership of the case study/PED Lab:PublicPublicPublicMixedMixedMixedMixedMixed
            A1P017: Ownership of the land / physical infrastructure
            A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle Owner
            A1P018: Number of buildings in PED
            A1P018: Number of buildings in PED6207460410
            A1P019: Conditioned space
            A1P019: Conditioned space [m²]420001700098759.53285007.863700
            A1P020: Total ground area
            A1P020: Total ground area [m²]5200030000195234.8045.09338810009945
            A1P021: Floor area ratio: Conditioned space / total ground area
            A1P021: Floor area ratio: Conditioned space / total ground area0101010000
            A1P022: Financial schemes
            A1P022a: Financing - PRIVATE - Real estatenonononononoyesyesyesno
            A1P022a: Add the value in EUR if available [EUR]
            A1P022b: Financing - PRIVATE - ESCO schemenononononononononono
            A1P022b: Add the value in EUR if available [EUR]
            A1P022c: Financing - PRIVATE - Othernononononononoyesyesno
            A1P022c: Add the value in EUR if available [EUR]
            A1P022d: Financing - PUBLIC - EU structural fundingnononononononononono
            A1P022d: Add the value in EUR if available [EUR]
            A1P022e: Financing - PUBLIC - National fundingnononononoyesnoyesnono
            A1P022e: Add the value in EUR if available [EUR]
            A1P022f: Financing - PUBLIC - Regional fundingnononononononononono
            A1P022f: Add the value in EUR if available [EUR]
            A1P022g: Financing - PUBLIC - Municipal fundingnononononononoyesyesno
            A1P022g: Add the value in EUR if available [EUR]
            A1P022h: Financing - PUBLIC - Othernononononononononono
            A1P022h: Add the value in EUR if available [EUR]
            A1P022i: Financing - RESEARCH FUNDING - EUnonononononoyesyesyesno
            A1P022i: Add the value in EUR if available [EUR]
            A1P022j: Financing - RESEARCH FUNDING - Nationalnononononononononono
            A1P022j: Add the value in EUR if available [EUR]
            A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononononono
            A1P022k: Add the value in EUR if available [EUR]
            A1P022l: Financing - RESEARCH FUNDING - Othernononononononononono
            A1P022l: Add the value in EUR if available [EUR]
            A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
            A1P023: Economic Targets
            A1P023: Economic Targets
            • Job creation,
            • Boosting local and sustainable production
            • Boosting local businesses,
            • Boosting local and sustainable production,
            • Boosting consumption of local and sustainable products
            • Boosting local businesses,
            • Boosting local and sustainable production
            • Positive externalities,
            • Boosting local businesses,
            • Boosting local and sustainable production
            • Positive externalities,
            • Boosting local businesses,
            • Boosting consumption of local and sustainable products
            A1P023: OtherSustainable and replicable business models regarding renewable energy systems
            A1P024: More comments:
            A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.
            A1P025: Estimated PED case study / PED LAB costs
            A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
            Contact person for general enquiries
            A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaGireesh NairClara LorenteSimon BaumDr. Jaume Salom, Dra. Cristina CorcheroDaniela KostovaOmar ShafqatJasper Tonen, Elisabeth KoopsEira LinkoJingchun Shen
            A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamUmea MunicipalityCIRCECENERO Energy GmbHIRECGreen Synergy ClusterAmsterdam University of Applied SciencesMunicipality of GroningenCity of VantaaHögskolan Dalarna
            A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityOtherResearch Center / UniversityOtherResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / University
            A1P028: OtherCENERO Energy GmbHCluster
            A1P029: Emailgiavasoglou@kifissia.grgireesh.nair@umu.seCLORENTEM@FCIRCE.COMsib@cenero.deJsalom@irec.catdaniela@greensynergycluster.euo.shafqat@hva.nlJasper.tonen@groningen.nleira.linko@vantaa.fijih@du.se
            Contact person for other special topics
            A1P030: NameStavros Zapantis - vice mayorSimon BaumOmar ShafqatXingxing Zhang
            A1P031: Emailstavros.zapantis@gmail.comsib@cenero.deo.shafqat@hva.nlxza@du.se
            Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
            A2P001: Fields of application
            A2P001: Fields of application
            • Energy production
            • Energy efficiency,
            • Energy flexibility,
            • Energy production
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Construction materials
            • Energy efficiency,
            • Energy flexibility,
            • Energy production
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies
            • Energy efficiency,
            • Energy production
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies,
            • Water use,
            • Waste management,
            • Construction materials
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Waste management
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Digital technologies,
            • Construction materials,
            • Other
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Construction materials
            A2P001: Other
            A2P002: Tools/strategies/methods applied for each of the above-selected fields
            A2P002: Tools/strategies/methods applied for each of the above-selected fieldsSimulation tools: City Energy Analyst and PolysunEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)City vision, Innovation AteliersEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsPilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, coolingLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM
            A2P003: Application of ISO52000
            A2P003: Application of ISO52000NoNoYesNoNoNo
            A2P004: Appliances included in the calculation of the energy balance
            A2P004: Appliances included in the calculation of the energy balanceYesYesNoNoNoYes
            A2P005: Mobility included in the calculation of the energy balance
            A2P005: Mobility included in the calculation of the energy balanceNoYesYesNoNoNo
            A2P006: Description of how mobility is included (or not included) in the calculation
            A2P006: Description of how mobility is included (or not included) in the calculation– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhMobility, till now, is not included in the energy model.The calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.
            A2P007: Annual energy demand in buildings / Thermal demand
            A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]1.651.860.6777
            A2P008: Annual energy demand in buildings / Electric Demand
            A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]01.450.03656
            A2P009: Annual energy demand for e-mobility
            A2P009: Annual energy demand for e-mobility [GWh/annum]00
            A2P010: Annual energy demand for urban infrastructure
            A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
            A2P011: Annual renewable electricity production on-site during target year
            A2P011: PVyesyesnoyesyesnoyesnoyesno
            A2P011: PV - specify production in GWh/annum [GWh/annum]0.249
            A2P011: Windnononononononononono
            A2P011: Wind - specify production in GWh/annum [GWh/annum]
            A2P011: Hydronononononononononono
            A2P011: Hydro - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_elnonononononoyesnonono
            A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_peat_elnononononononononono
            A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
            A2P011: PVT_elnononononononononoyes
            A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
            A2P011: Othernononononononononono
            A2P011: Other - specify production in GWh/annum [GWh/annum]
            A2P012: Annual renewable thermal production on-site during target year
            A2P012: Geothermalnonononononoyesyesyesno
            A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Solar Thermalnononononononoyesnono
            A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_heatnonononononoyesyesnono
            A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: Waste heat+HPnonononononoyesyesyesno
            A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_peat_heatnononononononononono
            A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: PVT_thnononononononoyesnoyes
            A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
            A2P012: Biomass_firewood_thnononononononononono
            A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
            A2P012: Othernononononononononono
            A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
            A2P013: Renewable resources on-site - Additional notes
            A2P013: Renewable resources on-site - Additional notesGeothermal heatpump systems, Waste heat from data centers
            A2P014: Annual energy use
            A2P014: Annual energy use [GWh/annum]6.12.4210.318
            A2P015: Annual energy delivered
            A2P015: Annual energy delivered [GWh/annum]0.2055
            A2P016: Annual non-renewable electricity production on-site during target year
            A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
            A2P017: Annual non-renewable thermal production on-site during target year
            A2P017: Gasnonononoyesnoyesnonono
            A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Coalnonononononoyesnonono
            A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Oilnonononononoyesnonono
            A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Othernononononononononoyes
            A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
            A2P018: Annual renewable electricity imports from outside the boundary during target year
            A2P018: PVnonononononoyesnoyesno
            A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
            A2P018: Windnonononononoyesnoyesno
            A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
            A2P018: Hydrononononononoyesnoyesno
            A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_elnonononononoyesnoyesno
            A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_peat_elnonononononoyesnonono
            A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: PVT_elnonononononoyesnonono
            A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Othernononononononononoyes
            A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
            A2P019: Annual renewable thermal imports from outside the boundary during target year
            A2P019: Geothermalnonononononoyesnonono
            A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Solar Thermalnonononononoyesnonono
            A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_heatnoyesnonononoyesnoyesno
            A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Waste heat+HPnoyesnonononoyesnoyesno
            A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_peat_heatnonononononoyesnonono
            A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: PVT_thnonononononoyesnonono
            A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_firewood_thnonononononoyesnonono
            A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Othernononononononononoyes
            A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
            A2P020: Share of RES on-site / RES outside the boundary
            A2P020: Share of RES on-site / RES outside the boundary0000000000.53839572192513
            A2P021: GHG-balance calculated for the PED
            A2P021: GHG-balance calculated for the PED [tCO2/annum]2506.93
            A2P022: KPIs related to the PED case study / PED Lab
            A2P022: Safety & Securitynone
            A2P022: Healththermal comfort diagram
            A2P022: Educationnone
            A2P022: Mobilitynone
            A2P022: EnergyEnergyapplynormalized CO2/GHG & Energy intensity
            A2P022: Water
            A2P022: Economic developmentcost of excess emissions
            A2P022: Housing and Community
            A2P022: Waste
            A2P022: Other
            A2P023: Technological Solutions / Innovations - Energy Generation
            A2P023: Photovoltaicsnoyesyesnoyesyesyesyesyesyes
            A2P023: Solar thermal collectorsnononononononoyesnoyes
            A2P023: Wind Turbinesnononononononononono
            A2P023: Geothermal energy systemnonoyesnonoyesyesyesyesyes
            A2P023: Waste heat recoverynonononononoyesyesyesyes
            A2P023: Waste to energynonononononoyesyesyesno
            A2P023: Polygenerationnonononononononoyesno
            A2P023: Co-generationnononononononononono
            A2P023: Heat Pumpnonoyesnonoyesyesyesyesyes
            A2P023: Hydrogennononononononononono
            A2P023: Hydropower plantnononononononononono
            A2P023: Biomassnonononononoyesnoyesno
            A2P023: Biogasnonononononoyesnonono
            A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
            A2P024: Technological Solutions / Innovations - Energy Flexibility
            A2P024: A2P024: Information and Communication Technologies (ICT)noyesnonoyesnoyesyesyesyes
            A2P024: Energy management systemnonoyesnoyesnoyesyesyesno
            A2P024: Demand-side managementnoyesnonononoyesnoyesno
            A2P024: Smart electricity gridnonononoyesnoyesnoyesno
            A2P024: Thermal Storagenonononononoyesyesyesyes
            A2P024: Electric Storagenonononoyesyesyesyesyesno
            A2P024: District Heating and Coolingnonononononoyesyesyesyes
            A2P024: Smart metering and demand-responsive control systemsnonononononoyesyesyesno
            A2P024: P2P – buildingsnonononononoyesnonono
            A2P024: OtherDistrict HeatingThe technological solutions can vary within the PED Lab area and will be specified case by case.
            A2P025: Technological Solutions / Innovations - Energy Efficiency
            A2P025: Deep Retrofittingnoyesnononoyesyesnonoyes
            A2P025: Energy efficiency measures in historic buildingsnonononononoyesyesnono
            A2P025: High-performance new buildingsnonononononoyesyesyesno
            A2P025: Smart Public infrastructure (e.g. smart lighting)nonononononoyesyesnono
            A2P025: Urban data platformsnonononononoyesyesnono
            A2P025: Mobile applications for citizensnonononononoyesnonono
            A2P025: Building services (HVAC & Lighting)nonononoyesnoyesnoyesyes
            A2P025: Smart irrigationnonononononoyesnonono
            A2P025: Digital tracking for waste disposalnonononononoyesnonono
            A2P025: Smart surveillancenononononononononono
            A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
            A2P026: Technological Solutions / Innovations - Mobility
            A2P026: Efficiency of vehicles (public and/or private)nonononoyesnoyesnoyesno
            A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononononoyesnoyesno
            A2P026: e-Mobilitynonoyesnononoyesyesyesno
            A2P026: Soft mobility infrastructures and last mile solutionsnonononononoyesnoyesno
            A2P026: Car-free areanonononononoyesnonono
            A2P026: Other
            A2P027: Mobility strategies - Additional notes
            A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
            A2P028: Energy efficiency certificates
            A2P028: Energy efficiency certificatesYesYesYesYesNo
            A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance Certificate
            A2P029: Any other building / district certificates
            A2P029: Any other building / district certificatesNo
            A2P029: If yes, please specify and/or enter notes
            A3P001: Relevant city /national strategy
            A3P001: Relevant city /national strategy
            • Energy master planning (SECAP, etc.),
            • Promotion of energy communities (REC/CEC)
            • Smart cities strategies,
            • Energy master planning (SECAP, etc.),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Climate change adaption plan/strategy (e.g. Climate City contract)
            • Smart cities strategies,
            • New development strategies
            • Energy master planning (SECAP, etc.),
            • New development strategies
            • Smart cities strategies,
            • Energy master planning (SECAP, etc.),
            • New development strategies,
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Energy master planning (SECAP, etc.),
            • New development strategies,
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Energy master planning (SECAP, etc.),
            • New development strategies,
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract)
            A3P002: Quantitative targets included in the city / national strategy
            A3P002: Quantitative targets included in the city / national strategyCarbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
            A3P003: Strategies towards decarbonization of the gas grid
            A3P003: Strategies towards decarbonization of the gas grid
            • Electrification of Heating System based on Heat Pumps
            • Biogas
            • Electrification of Heating System based on Heat Pumps,
            • Electrification of Cooking Methods,
            • Biogas,
            • Hydrogen
            • Electrification of Heating System based on Heat Pumps,
            • Electrification of Cooking Methods,
            • Biogas
            A3P003: OtherNA
            A3P004: Identification of needs and priorities
            A3P004: Identification of needs and priorities-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
            A3P005: Sustainable behaviour
            A3P005: Sustainable behaviour-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
            A3P006: Economic strategies
            A3P006: Economic strategies
            • Innovative business models,
            • Other
            • Demand management Living Lab
            • Innovative business models,
            • Life Cycle Cost,
            • Circular economy models,
            • Demand management Living Lab,
            • Local trading,
            • Existing incentives
            • Innovative business models,
            • Blockchain
            • Innovative business models,
            • PPP models,
            • Life Cycle Cost,
            • Circular economy models
            • Open data business models,
            • Life Cycle Cost,
            • Circular economy models,
            • Local trading
            A3P006: Otheroperational savings through efficiency measures
            A3P007: Social models
            A3P007: Social models
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement
            • Behavioural Change / End-users engagement
            • Digital Inclusion,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Quality of Life,
            • Prevention of energy poverty
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Citizen Social Research,
            • Social incentives,
            • Quality of Life,
            • Digital Inclusion,
            • Citizen/owner involvement in planning and maintenance,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Citizen Social Research,
            • Prevention of energy poverty,
            • Citizen/owner involvement in planning and maintenance
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Citizen Social Research,
            • Policy Forums,
            • Quality of Life,
            • Strategies towards social mix,
            • Affordability,
            • Prevention of energy poverty,
            • Citizen/owner involvement in planning and maintenance,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Strategies towards (local) community-building,
            • Behavioural Change / End-users engagement,
            • Social incentives,
            • Affordability,
            • Digital Inclusion
            A3P007: Other
            A3P008: Integrated urban strategies
            A3P008: Integrated urban strategies
            • District Energy plans
            • Strategic urban planning,
            • City Vision 2050,
            • SECAP Updates
            • Strategic urban planning,
            • Digital twinning and visual 3D models,
            • District Energy plans,
            • City Vision 2050,
            • SECAP Updates,
            • Building / district Certification
            • Strategic urban planning,
            • District Energy plans,
            • City Vision 2050,
            • SECAP Updates
            • Strategic urban planning,
            • SECAP Updates
            • Strategic urban planning,
            • Digital twinning and visual 3D models,
            • District Energy plans,
            • Building / district Certification
            A3P008: Other
            A3P009: Environmental strategies
            A3P009: Environmental strategies
            • Carbon-free
            • Other
            • Energy Neutral,
            • Low Emission Zone,
            • Pollutants Reduction,
            • Greening strategies
            • Pollutants Reduction,
            • Greening strategies
            • Energy Neutral,
            • Life Cycle approach
            • Energy Neutral
            • Net zero carbon footprint,
            • Life Cycle approach,
            • Greening strategies,
            • Nature Based Solutions (NBS)
            • Low Emission Zone,
            • Net zero carbon footprint,
            • Life Cycle approach,
            • Sustainable Urban drainage systems (SUDS)
            A3P009: OtherPositive Energy Balance for the demo site
            A3P010: Legal / Regulatory aspects
            A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.Regulatory sandboxAt national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricity
            B1P001: PED/PED relevant concept definition
            B1P001: PED/PED relevant concept definitionFunctional PEDNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
            B1P002: Motivation behind PED/PED relevant project development
            B1P002: Motivation behind PED/PED relevant project developmentBrown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.Borlänge city has committed to become the carbon-neutral city by 2030.
            B1P003: Environment of the case study area
            B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban areaUrban areaUrban area
            B1P004: Type of district
            B2P004: Type of district
            • Renovation
            • Renovation
            • Renovation
            • New construction
            • New construction,
            • Renovation
            • Renovation
            B1P005: Case Study Context
            B1P005: Case Study Context
            • Retrofitting Area
            • Retrofitting Area
            • Preservation Area
            • Retrofitting Area
            • New Development
            • Re-use / Transformation Area,
            • New Development
            • Re-use / Transformation Area,
            • Retrofitting Area
            B1P006: Year of construction
            B1P006: Year of construction1990
            B1P007: District population before intervention - Residential
            B1P007: District population before intervention - Residential100
            B1P008: District population after intervention - Residential
            B1P008: District population after intervention - Residential100
            B1P009: District population before intervention - Non-residential
            B1P009: District population before intervention - Non-residential6
            B1P010: District population after intervention - Non-residential
            B1P010: District population after intervention - Non-residential6
            B1P011: Population density before intervention
            B1P011: Population density before intervention0000000000
            B1P012: Population density after intervention
            B1P012: Population density after intervention0000000000.010658622423328
            B1P013: Building and Land Use before intervention
            B1P013: Residentialnoyesnononoyesnonoyesyes
            B1P013 - Residential: Specify the sqm [m²]64 787,574360
            B1P013: Officenonononononononoyesno
            B1P013 - Office: Specify the sqm [m²]
            B1P013: Industry and Utilitynonononononoyesnoyesno
            B1P013 - Industry and Utility: Specify the sqm [m²]
            B1P013: Commercialnononononoyesnonoyesno
            B1P013 - Commercial: Specify the sqm [m²]262,33
            B1P013: Institutionalnonononononononoyesno
            B1P013 - Institutional: Specify the sqm [m²]
            B1P013: Natural areasnononononononononono
            B1P013 - Natural areas: Specify the sqm [m²]
            B1P013: Recreationalnonononononononoyesno
            B1P013 - Recreational: Specify the sqm [m²]
            B1P013: Dismissed areasnonononononononoyesno
            B1P013 - Dismissed areas: Specify the sqm [m²]
            B1P013: Othernononononononononoyes
            B1P013 - Other: Specify the sqm [m²]706
            B1P014: Building and Land Use after intervention
            B1P014: Residentialnoyesnonononoyesnoyesyes
            B1P014 - Residential: Specify the sqm [m²]4360
            B1P014: Officenonononononoyesnoyesno
            B1P014 - Office: Specify the sqm [m²]
            B1P014: Industry and Utilitynonononononononoyesno
            B1P014 - Industry and Utility: Specify the sqm [m²]
            B1P014: Commercialnonononononoyesnoyesno
            B1P014 - Commercial: Specify the sqm [m²]
            B1P014: Institutionalnononononoyesnonoyesno
            B1P014 - Institutional: Specify the sqm [m²]35322.21
            B1P014: Natural areasnononononononononono
            B1P014 - Natural areas: Specify the sqm [m²]
            B1P014: Recreationalnonononononoyesnoyesno
            B1P014 - Recreational: Specify the sqm [m²]
            B1P014: Dismissed areasnononononononononono
            B1P014 - Dismissed areas: Specify the sqm [m²]
            B1P014: Othernononononononononoyes
            B1P014 - Other: Specify the sqm [m²]706
            B2P001: PED Lab concept definition
            B2P001: PED Lab concept definitionaddressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility AggregationGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
            B2P002: Installation life time
            B2P002: Installation life timeThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
            B2P003: Scale of action
            B2P003: ScaleVirtualDistrictDistrict
            B2P004: Operator of the installation
            B2P004: Operator of the installationIRECThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.The City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
            B2P006: Circular Economy Approach
            B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
            B2P006: Other
            B2P007: Motivation for developing the PED Lab
            B2P007: Motivation for developing the PED Lab
            • Strategic,
            • Private
            • Civic
            • Strategic
            B2P007: Other
            B2P008: Lead partner that manages the PED Lab
            B2P008: Lead partner that manages the PED LabResearch center/UniversityMunicipalityMunicipality
            B2P008: Other
            B2P009: Collaborative partners that participate in the PED Lab
            B2P009: Collaborative partners that participate in the PED Lab
            • Academia,
            • Private,
            • Industrial,
            • Other
            • Academia,
            • Private,
            • Industrial,
            • Citizens, public, NGO
            B2P009: Otherresearch companies, monitoring company, ict company
            B2P010: Synergies between the fields of activities
            B2P010: Synergies between the fields of activities
            B2P011: Available facilities to test urban configurations in PED Lab
            B2P011: Available facilities to test urban configurations in PED Lab
            • Demand-side management,
            • Energy storage,
            • Energy networks,
            • Efficiency measures,
            • Information and Communication Technologies (ICT)
            • Buildings,
            • Demand-side management,
            • Energy storage,
            • Energy networks,
            • Waste management,
            • Lighting,
            • E-mobility,
            • Information and Communication Technologies (ICT),
            • Social interactions,
            • Business models
            B2P011: Other
            B2P012: Incubation capacities of PED Lab
            B2P012: Incubation capacities of PED Lab
            • Monitoring and evaluation infrastructure,
            • Tools for prototyping and modelling,
            • Tools, spaces, events for testing and validation
            • Tools for prototyping and modelling
            B2P013: Availability of the facilities for external people
            B2P013: Availability of the facilities for external people
            B2P014: Monitoring measures
            B2P014: Monitoring measures
            • Equipment
            • Execution plan,
            • Available data,
            • Type of measured data,
            • Equipment,
            • Level of access
            B2P015: Key Performance indicators
            B2P015: Key Performance indicators
            • Energy,
            • Environmental
            • Energy,
            • Social,
            • Economical / Financial
            • Energy,
            • Environmental,
            • Social,
            • Economical / Financial
            B2P016: Execution of operations
            B2P016: Execution of operations
            B2P017: Capacities
            B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
            B2P018: Relations with stakeholders
            B2P018: Relations with stakeholders
            B2P019: Available tools
            B2P019: Available tools
            • Energy modelling
            • Energy modelling,
            • Social models,
            • Business and financial models
            • Energy modelling
            B2P019: Available tools
            B2P020: External accessibility
            B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
            C1P001: Unlocking Factors
            C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important4 - Important
            C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important4 - Important5 - Very important
            C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important
            C1P001: Storage systems and E-mobility market penetration1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important5 - Very important3 - Moderately important
            C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important4 - Important4 - Important
            C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important5 - Very important
            C1P001: The ability to predict Multiple Benefits1 - Unimportant3 - Moderately important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important4 - Important
            C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant5 - Very important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
            C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important5 - Very important3 - Moderately important5 - Very important
            C1P001: Social acceptance (top-down)5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important5 - Very important
            C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important4 - Important5 - Very important4 - Important
            C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important5 - Very important5 - Very important
            C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important4 - Important2 - Slightly important4 - Important5 - Very important
            C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important4 - Important3 - Moderately important3 - Moderately important4 - Important
            C1P001: Availability of RES on site (Local RES)1 - Unimportant5 - Very important4 - Important5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important
            C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important2 - Slightly important3 - Moderately important5 - Very important2 - Slightly important
            C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
            C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situation
            C1P002: Driving Factors
            C1P002: Climate Change adaptation need4 - Important1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important2 - Slightly important4 - Important5 - Very important
            C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important
            C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
            C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important4 - Important5 - Very important4 - Important
            C1P002: Economic growth need2 - Slightly important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important4 - Important
            C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
            C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important5 - Very important1 - Unimportant
            C1P002: Energy autonomy/independence5 - Very important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important
            C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
            C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
            C1P003: Administrative barriers
            C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important4 - Important
            C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important4 - Important
            C1P003: Lack of public participation3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
            C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
            C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important
            C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant4 - Important
            C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
            C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant5 - Very important5 - Very important5 - Very important2 - Slightly important4 - Important5 - Very important4 - Important
            C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important5 - Very important
            C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
            C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P003: Any other Administrative BARRIER (if any)
            C1P004: Policy barriers
            C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important
            C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
            C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
            C1P004: Any other Political BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P004: Any other Political BARRIER (if any)
            C1P005: Legal and Regulatory barriers
            C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant2 - Slightly important5 - Very important5 - Very important3 - Moderately important4 - Important3 - Moderately important4 - Important
            C1P005: Regulatory instability3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important
            C1P005: Non-effective regulations4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important2 - Slightly important3 - Moderately important4 - Important2 - Slightly important
            C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant1 - Unimportant4 - Important5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important4 - Important
            C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important
            C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
            C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important
            C1P005: Shortage of proven and tested solutions and examples1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important2 - Slightly important2 - Slightly important4 - Important
            C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P005: Any other Legal and Regulatory BARRIER (if any)
            C1P006: Environmental barriers
            C1P006: Environmental barriers2 - Slightly important
            C1P007: Technical barriers
            C1P007: Lack of skilled and trained personnel4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important4 - Important
            C1P007: Deficient planning3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant4 - Important
            C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
            C1P007: Lack of well-defined process4 - Important1 - Unimportant4 - Important4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important
            C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant2 - Slightly important5 - Very important5 - Very important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important
            C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
            C1P007: Grid congestion, grid instability4 - Important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important5 - Very important4 - Important1 - Unimportant5 - Very important
            C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important
            C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant
            C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P007: Any other Thecnical BARRIER (if any)
            C1P008: Social and Cultural barriers
            C1P008: Inertia4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important
            C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important
            C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important
            C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
            C1P008: Lack of trust beyond social network4 - Important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important
            C1P008: Rebound effect4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
            C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
            C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important
            C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
            C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
            C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P008: Any other Social BARRIER (if any)
            C1P009: Information and Awareness barriers
            C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important3 - Moderately important
            C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important
            C1P009: Lack of awareness among authorities1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important
            C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important2 - Slightly important5 - Very important
            C1P009: High costs of design, material, construction, and installation1 - Unimportant5 - Very important5 - Very important5 - Very important3 - Moderately important4 - Important4 - Important5 - Very important
            C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P009: Any other Information and Awareness BARRIER (if any)
            C1P010: Financial barriers
            C1P010: Hidden costs1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important
            C1P010: Insufficient external financial support and funding for project activities1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
            C1P010: Economic crisis1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant2 - Slightly important5 - Very important
            C1P010: Risk and uncertainty1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important3 - Moderately important4 - Important5 - Very important
            C1P010: Lack of consolidated and tested business models1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important5 - Very important
            C1P010: Limited access to capital and cost disincentives1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important
            C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P010: Any other Financial BARRIER (if any)
            C1P011: Market barriers
            C1P011: Split incentives1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important2 - Slightly important4 - Important
            C1P011: Energy price distortion1 - Unimportant1 - Unimportant5 - Very important5 - Very important2 - Slightly important4 - Important2 - Slightly important4 - Important
            C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important3 - Moderately important
            C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P011: Any other Market BARRIER (if any)
            C1P012: Stakeholders involved
            C1P012: Government/Public Authorities
            • Planning/leading,
            • Monitoring/operation/management
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation
            • Planning/leading
            • Monitoring/operation/management
            C1P012: Research & Innovation
            • None
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Monitoring/operation/management
            • Design/demand aggregation
            • Planning/leading
            C1P012: Financial/Funding
            • Construction/implementation,
            • Monitoring/operation/management
            • Design/demand aggregation,
            • Construction/implementation
            • None
            C1P012: Analyst, ICT and Big Data
            • None
            • Construction/implementation
            • Design/demand aggregation,
            • Monitoring/operation/management
            • Design/demand aggregation
            • None
            C1P012: Business process management
            • None
            • Planning/leading
            • None
            C1P012: Urban Services providers
            • Design/demand aggregation,
            • Monitoring/operation/management
            • None
            C1P012: Real Estate developers
            • Construction/implementation
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Design/demand aggregation
            C1P012: Design/Construction companies
            • Design/demand aggregation,
            • Construction/implementation
            • Construction/implementation
            • Construction/implementation
            • None
            C1P012: End‐users/Occupants/Energy Citizens
            • Construction/implementation
            • Design/demand aggregation
            • None
            • Monitoring/operation/management
            • Monitoring/operation/management
            C1P012: Social/Civil Society/NGOs
            • Design/demand aggregation
            • Planning/leading,
            • Design/demand aggregation
            • Monitoring/operation/management
            C1P012: Industry/SME/eCommerce
            • Design/demand aggregation,
            • Construction/implementation
            • Construction/implementation
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Construction/implementation
            • None
            C1P012: Other
            C1P012: Other (if any)
            Summary

            Authors (framework concept)

            Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

            Contributors (to the content)

            Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

            Implemented by

            Boutik.pt: Filipe Martins, Jamal Khan
            Marek Suchánek (Czech Technical University in Prague)