Filters:
NameProjectTypeCompare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Uncompare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
Izmir, District of Karşıyaka
Évora, Portugal
Sharing Cities, Milano
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityAalborg East, Aalborg Municipality, Region of Northern Jutland, DenmarkIzmir, District of KarşıyakaÉvora, PortugalSharing Cities, Milano
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesnono
PED relevant case studyyesyesnoyesyes
PED Lab.noyesnoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesnoyes
Annual energy surplusnonoyesyesno
Energy communityyesnonoyesno
Circularitynonononono
Air quality and urban comfortyesnoyesnono
Electrificationyesnononono
Net-zero energy costnonoyesnono
Net-zero emissionnonononono
Self-sufficiency (energy autonomous)nonononono
Maximise self-sufficiencynoyesyesnono
Othernonononoyes
Other (A1P004)Energy efficient; Sustainable neighbourhood; Social aspects/affordability
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhaseImplementation PhaseCompleted
A1P006: Start Date
A1P006: Start date11/2210/2210/1901/16
A1P007: End Date
A1P007: End date11/2510/2509/2412/20
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • GIS open datasets
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    A1P011: Geographic coordinates
    X Coordinate (longitude):23.81458810.00727.110049-7.9093779.202527
    Y Coordinate (latitude):38.07734957.04102838.49605438.57080445.452203
    A1P012: Country
    A1P012: CountryGreeceDenmarkTurkeyPortugalItaly
    A1P013: City
    A1P013: CityMunicipality of KifissiaAalborgİzmirÉvoraMilano
    A1P014: Climate Zone (Köppen Geiger classification)
    A1P014: Climate Zone (Köppen Geiger classification).CsaDfbCsaCsaCfa
    A1P015: District boundary
    A1P015: District boundaryVirtualVirtualGeographicGeographic
    OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
    A1P016: Ownership of the case study/PED Lab
    A1P016: Ownership of the case study/PED Lab:PublicPrivateMixedPrivate
    A1P017: Ownership of the land / physical infrastructure
    A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple Owners
    A1P018: Number of buildings in PED
    A1P018: Number of buildings in PED21
    A1P019: Conditioned space
    A1P019: Conditioned space [m²]102795
    A1P020: Total ground area
    A1P020: Total ground area [m²]313080003260028.000
    A1P021: Floor area ratio: Conditioned space / total ground area
    A1P021: Floor area ratio: Conditioned space / total ground area00300
    A1P022: Financial schemes
    A1P022a: Financing - PRIVATE - Real estatenonononono
    A1P022a: Add the value in EUR if available [EUR]
    A1P022b: Financing - PRIVATE - ESCO schemenonononono
    A1P022b: Add the value in EUR if available [EUR]
    A1P022c: Financing - PRIVATE - Othernonononono
    A1P022c: Add the value in EUR if available [EUR]
    A1P022d: Financing - PUBLIC - EU structural fundingnonononoyes
    A1P022d: Add the value in EUR if available [EUR]
    A1P022e: Financing - PUBLIC - National fundingnonononono
    A1P022e: Add the value in EUR if available [EUR]
    A1P022f: Financing - PUBLIC - Regional fundingnonononono
    A1P022f: Add the value in EUR if available [EUR]
    A1P022g: Financing - PUBLIC - Municipal fundingnonononoyes
    A1P022g: Add the value in EUR if available [EUR]
    A1P022h: Financing - PUBLIC - Othernonononono
    A1P022h: Add the value in EUR if available [EUR]
    A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesno
    A1P022i: Add the value in EUR if available [EUR]119335519998275
    A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesyesnono
    A1P022j: Add the value in EUR if available [EUR]
    A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononono
    A1P022k: Add the value in EUR if available [EUR]
    A1P022l: Financing - RESEARCH FUNDING - Othernonononono
    A1P022l: Add the value in EUR if available [EUR]
    A1P022: Other
    A1P023: Economic Targets
    A1P023: Economic Targets
    • Positive externalities,
    • Boosting local businesses,
    • Boosting local and sustainable production
    • Positive externalities,
    • Boosting local and sustainable production
    A1P023: Other
    A1P024: More comments:
    A1P024: More comments:
    A1P025: Estimated PED case study / PED LAB costs
    A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
    Contact person for general enquiries
    A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaKristian OlesenOzlem SenyolJoão Bravo DiasChristoph Gollner
    A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamAalborg UniversityKarsiyaka MunicipalityEDP LabelecFFG
    A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesSME / IndustryOther
    A1P028: Other
    A1P029: Emailgiavasoglou@kifissia.grKristian@plan.aau.dkozlemkocaer2@gmail.comjoao.bravodias@edp.ptchristoph.gollner@ffg.at
    Contact person for other special topics
    A1P030: NameStavros Zapantis - vice mayorAlex Søgaard MorenoHasan Burak Cavka
    A1P031: Emailstavros.zapantis@gmail.comasm@aalborg.dkhasancavka@iyte.edu.tr
    Pursuant to the General Data Protection RegulationYesYesYesYes
    A2P001: Fields of application
    A2P001: Fields of application
    • Energy production
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Urban comfort (pollution, heat island, noise level etc.),
    • Digital technologies
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • Urban comfort (pollution, heat island, noise level etc.)
    • Energy efficiency,
    • Energy flexibility,
    • Energy production,
    • E-mobility,
    • Digital technologies,
    • Waste management,
    • Construction materials
    • Energy efficiency,
    • E-mobility,
    • Digital technologies
    A2P001: Other
    A2P002: Tools/strategies/methods applied for each of the above-selected fields
    A2P002: Tools/strategies/methods applied for each of the above-selected fieldsStakeholder engagement, expert energy system analysis, future scenariosMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.
    A2P003: Application of ISO52000
    A2P003: Application of ISO52000NoYesNo
    A2P004: Appliances included in the calculation of the energy balance
    A2P004: Appliances included in the calculation of the energy balanceNoYesYes
    A2P005: Mobility included in the calculation of the energy balance
    A2P005: Mobility included in the calculation of the energy balanceNoNoYes
    A2P006: Description of how mobility is included (or not included) in the calculation
    A2P006: Description of how mobility is included (or not included) in the calculationLarge combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.Mobility is not included in the calculations.
    A2P007: Annual energy demand in buildings / Thermal demand
    A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2183.862
    A2P008: Annual energy demand in buildings / Electric Demand
    A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]1481.226
    A2P009: Annual energy demand for e-mobility
    A2P009: Annual energy demand for e-mobility [GWh/annum]
    A2P010: Annual energy demand for urban infrastructure
    A2P010: Annual energy demand for urban infrastructure [GWh/annum]
    A2P011: Annual renewable electricity production on-site during target year
    A2P011: PVyesnoyesnono
    A2P011: PV - specify production in GWh/annum [GWh/annum]1.028
    A2P011: Windnoyesnonono
    A2P011: Wind - specify production in GWh/annum [GWh/annum]
    A2P011: Hydrononononono
    A2P011: Hydro - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_elnonononono
    A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
    A2P011: Biomass_peat_elnonononono
    A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
    A2P011: PVT_elnonononono
    A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
    A2P011: Othernoyesnonono
    A2P011: Other - specify production in GWh/annum [GWh/annum]
    A2P012: Annual renewable thermal production on-site during target year
    A2P012: Geothermalnonononono
    A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Solar Thermalnonononono
    A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_heatnonononono
    A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: Waste heat+HPnoyesnonono
    A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]300
    A2P012: Biomass_peat_heatnonononono
    A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
    A2P012: PVT_thnonononono
    A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Biomass_firewood_thnonononono
    A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
    A2P012: Othernonononono
    A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
    A2P013: Renewable resources on-site - Additional notes
    A2P013: Renewable resources on-site - Additional notesVery little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.
    A2P014: Annual energy use
    A2P014: Annual energy use [GWh/annum]6205.088
    A2P015: Annual energy delivered
    A2P015: Annual energy delivered [GWh/annum]399
    A2P016: Annual non-renewable electricity production on-site during target year
    A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
    A2P017: Annual non-renewable thermal production on-site during target year
    A2P017: Gasnonoyesnono
    A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Coalnonononono
    A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Oilnonononono
    A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
    A2P017: Othernoyesnonono
    A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]300
    A2P018: Annual renewable electricity imports from outside the boundary during target year
    A2P018: PVnonoyesnono
    A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.707
    A2P018: Windnonononono
    A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
    A2P018: Hydrononononono
    A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_elnonononono
    A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Biomass_peat_elnonononono
    A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: PVT_elnonononono
    A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
    A2P018: Othernonononono
    A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
    A2P019: Annual renewable thermal imports from outside the boundary during target year
    A2P019: Geothermalnonononono
    A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Solar Thermalnonononono
    A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_heatnonononono
    A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Waste heat+HPnonononono
    A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_peat_heatnonononono
    A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
    A2P019: PVT_thnonononono
    A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Biomass_firewood_thnonononono
    A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
    A2P019: Othernonononono
    A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
    A2P020: Share of RES on-site / RES outside the boundary
    A2P020: Share of RES on-site / RES outside the boundary001.454031117397500
    A2P021: GHG-balance calculated for the PED
    A2P021: GHG-balance calculated for the PED [tCO2/annum]
    A2P022: KPIs related to the PED case study / PED Lab
    A2P022: Safety & Security
    A2P022: Health
    A2P022: Education
    A2P022: Mobility
    A2P022: Energy
    A2P022: Water
    A2P022: Economic development
    A2P022: Housing and Community
    A2P022: Waste
    A2P022: Other
    A2P023: Technological Solutions / Innovations - Energy Generation
    A2P023: Photovoltaicsnoyesyesyesyes
    A2P023: Solar thermal collectorsnoyesnoyesyes
    A2P023: Wind Turbinesnonononono
    A2P023: Geothermal energy systemnonononoyes
    A2P023: Waste heat recoverynoyesnonono
    A2P023: Waste to energynoyesnonono
    A2P023: Polygenerationnonononono
    A2P023: Co-generationnonononono
    A2P023: Heat Pumpnoyesyesnoyes
    A2P023: Hydrogennonononono
    A2P023: Hydropower plantnonononono
    A2P023: Biomassnoyesnonono
    A2P023: Biogasnonononono
    A2P023: Other
    A2P024: Technological Solutions / Innovations - Energy Flexibility
    A2P024: A2P024: Information and Communication Technologies (ICT)nononoyesno
    A2P024: Energy management systemnoyesnoyesyes
    A2P024: Demand-side managementnoyesnonono
    A2P024: Smart electricity gridnoyesnoyesno
    A2P024: Thermal Storagenoyesnoyesno
    A2P024: Electric Storagenoyesnoyesno
    A2P024: District Heating and Coolingnoyesnonoyes
    A2P024: Smart metering and demand-responsive control systemsnoyesnoyesno
    A2P024: P2P – buildingsnononoyesno
    A2P024: Other
    A2P025: Technological Solutions / Innovations - Energy Efficiency
    A2P025: Deep Retrofittingnoyesyesnoyes
    A2P025: Energy efficiency measures in historic buildingsnononoyesno
    A2P025: High-performance new buildingsnonononono
    A2P025: Smart Public infrastructure (e.g. smart lighting)nonononoyes
    A2P025: Urban data platformsnononoyesno
    A2P025: Mobile applications for citizensnononoyesyes
    A2P025: Building services (HVAC & Lighting)nonoyesyesno
    A2P025: Smart irrigationnonononono
    A2P025: Digital tracking for waste disposalnononoyesno
    A2P025: Smart surveillancenoyesnoyesno
    A2P025: Other
    A2P026: Technological Solutions / Innovations - Mobility
    A2P026: Efficiency of vehicles (public and/or private)nonononoyes
    A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononono
    A2P026: e-Mobilitynononoyesyes
    A2P026: Soft mobility infrastructures and last mile solutionsnononoyesyes
    A2P026: Car-free areanonononono
    A2P026: Other
    A2P027: Mobility strategies - Additional notes
    A2P027: Mobility strategies - Additional notes
    A2P028: Energy efficiency certificates
    A2P028: Energy efficiency certificatesYesNoNo
    A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling
    A2P029: Any other building / district certificates
    A2P029: Any other building / district certificatesNoNoNo
    A2P029: If yes, please specify and/or enter notes
    A3P001: Relevant city /national strategy
    A3P001: Relevant city /national strategy
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC)
    • Smart cities strategies,
    • Urban Renewal Strategies,
    • New development strategies,
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Energy master planning (SECAP, etc.),
    • Promotion of energy communities (REC/CEC),
    • Climate change adaption plan/strategy (e.g. Climate City contract),
    • National / international city networks addressing sustainable urban development and climate neutrality
    • Smart cities strategies,
    • Urban Renewal Strategies
    A3P002: Quantitative targets included in the city / national strategy
    A3P002: Quantitative targets included in the city / national strategyReduction of 1018000 tons CO2 by 2030Karşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.
    A3P003: Strategies towards decarbonization of the gas grid
    A3P003: Strategies towards decarbonization of the gas grid
    • Electrification of Heating System based on Heat Pumps,
    • Biogas
    • Electrification of Heating System based on Heat Pumps
    A3P003: Other
    A3P004: Identification of needs and priorities
    A3P004: Identification of needs and prioritiesDecarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.According to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.
    A3P005: Sustainable behaviour
    A3P005: Sustainable behaviour- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.
    A3P006: Economic strategies
    A3P006: Economic strategies
    • Life Cycle Cost,
    • Circular economy models
    A3P006: Other
    A3P007: Social models
    A3P007: Social models
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Policy Forums,
    • Citizen/owner involvement in planning and maintenance
    • Strategies towards (local) community-building,
    • Co-creation / Citizen engagement strategies,
    • Affordability
    • Co-creation / Citizen engagement strategies,
    • Citizen/owner involvement in planning and maintenance
    A3P007: Other
    A3P008: Integrated urban strategies
    A3P008: Integrated urban strategies
    • Strategic urban planning,
    • District Energy plans
    • Digital twinning and visual 3D models,
    • District Energy plans,
    • SECAP Updates
    A3P008: Other
    A3P009: Environmental strategies
    A3P009: Environmental strategies
    • Energy Neutral,
    • Net zero carbon footprint
    • Energy Neutral,
    • Low Emission Zone,
    • Pollutants Reduction
    A3P009: Other
    A3P010: Legal / Regulatory aspects
    A3P010: Legal / Regulatory aspectsCurrent energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their own
    B1P001: PED/PED relevant concept definition
    B1P001: PED/PED relevant concept definitionThe large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).The PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.
    B1P002: Motivation behind PED/PED relevant project development
    B1P002: Motivation behind PED/PED relevant project developmentThe area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.POCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.
    B1P003: Environment of the case study area
    B2P003: Environment of the case study areaSuburban areaUrban areaUrban areaUrban area
    B1P004: Type of district
    B2P004: Type of district
    • Renovation
    • Renovation
    • Renovation
    • Renovation
    B1P005: Case Study Context
    B1P005: Case Study Context
    • Retrofitting Area
    • Retrofitting Area
    • Preservation Area
    • Retrofitting Area
    B1P006: Year of construction
    B1P006: Year of construction2005
    B1P007: District population before intervention - Residential
    B1P007: District population before intervention - Residential16.931
    B1P008: District population after intervention - Residential
    B1P008: District population after intervention - Residential
    B1P009: District population before intervention - Non-residential
    B1P009: District population before intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P010: District population after intervention - Non-residential
    B1P011: Population density before intervention
    B1P011: Population density before intervention00000
    B1P012: Population density after intervention
    B1P012: Population density after intervention00000
    B1P013: Building and Land Use before intervention
    B1P013: Residentialnonoyesnoyes
    B1P013 - Residential: Specify the sqm [m²]102795
    B1P013: Officenonononono
    B1P013 - Office: Specify the sqm [m²]
    B1P013: Industry and Utilitynonononono
    B1P013 - Industry and Utility: Specify the sqm [m²]
    B1P013: Commercialnonononono
    B1P013 - Commercial: Specify the sqm [m²]
    B1P013: Institutionalnonononono
    B1P013 - Institutional: Specify the sqm [m²]
    B1P013: Natural areasnonononono
    B1P013 - Natural areas: Specify the sqm [m²]
    B1P013: Recreationalnonononono
    B1P013 - Recreational: Specify the sqm [m²]
    B1P013: Dismissed areasnonononono
    B1P013 - Dismissed areas: Specify the sqm [m²]
    B1P013: Othernonononono
    B1P013 - Other: Specify the sqm [m²]
    B1P014: Building and Land Use after intervention
    B1P014: Residentialnonoyesnoyes
    B1P014 - Residential: Specify the sqm [m²]102795
    B1P014: Officenonononono
    B1P014 - Office: Specify the sqm [m²]
    B1P014: Industry and Utilitynonononono
    B1P014 - Industry and Utility: Specify the sqm [m²]
    B1P014: Commercialnonononono
    B1P014 - Commercial: Specify the sqm [m²]
    B1P014: Institutionalnonononono
    B1P014 - Institutional: Specify the sqm [m²]
    B1P014: Natural areasnonononono
    B1P014 - Natural areas: Specify the sqm [m²]
    B1P014: Recreationalnonononono
    B1P014 - Recreational: Specify the sqm [m²]
    B1P014: Dismissed areasnonononono
    B1P014 - Dismissed areas: Specify the sqm [m²]
    B1P014: Othernonononono
    B1P014 - Other: Specify the sqm [m²]
    B2P001: PED Lab concept definition
    B2P001: PED Lab concept definitionAn ongoing process and dialogue with local stakeholders to determine the future development of the area.
    B2P002: Installation life time
    B2P002: Installation life timeNo new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.
    B2P003: Scale of action
    B2P003: ScaleDistrictDistrictDistrict
    B2P004: Operator of the installation
    B2P004: Operator of the installationKristian Olesen
    B2P005: Replication framework: Applied strategy to reuse and recycling the materials
    B2P005: Replication framework: Applied strategy to reuse and recycling the materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.
    B2P006: Circular Economy Approach
    B2P006: Do you apply any strategy to reuse and recycling the materials?No
    B2P006: Other
    B2P007: Motivation for developing the PED Lab
    B2P007: Motivation for developing the PED Lab
    • Civic
    B2P007: Other
    B2P008: Lead partner that manages the PED Lab
    B2P008: Lead partner that manages the PED LabResearch center/University
    B2P008: Other
    B2P009: Collaborative partners that participate in the PED Lab
    B2P009: Collaborative partners that participate in the PED Lab
    • Academia,
    • Private
    B2P009: Other
    B2P010: Synergies between the fields of activities
    B2P010: Synergies between the fields of activities
    B2P011: Available facilities to test urban configurations in PED Lab
    B2P011: Available facilities to test urban configurations in PED Lab
    • Buildings,
    • Demand-side management,
    • Prosumers,
    • Renewable generation,
    • Energy storage,
    • Energy networks,
    • Waste management,
    • E-mobility,
    • Social interactions,
    • Circular economy models
    B2P011: Other
    B2P012: Incubation capacities of PED Lab
    B2P012: Incubation capacities of PED Lab
    • Monitoring and evaluation infrastructure,
    • Tools for prototyping and modelling,
    • Tools, spaces, events for testing and validation
    B2P013: Availability of the facilities for external people
    B2P013: Availability of the facilities for external people
    B2P014: Monitoring measures
    B2P014: Monitoring measures
    B2P015: Key Performance indicators
    B2P015: Key Performance indicators
    • Energy
    B2P016: Execution of operations
    B2P016: Execution of operations
    B2P017: Capacities
    B2P017: Capacities
    B2P018: Relations with stakeholders
    B2P018: Relations with stakeholders
    B2P019: Available tools
    B2P019: Available tools
    B2P019: Available tools
    B2P020: External accessibility
    B2P020: External accessibility
    C1P001: Unlocking Factors
    C1P001: Recent technological improvements for on-site RES production5 - Very important2 - Slightly important5 - Very important4 - Important1 - Unimportant
    C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant
    C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
    C1P001: Storage systems and E-mobility market penetration3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
    C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important4 - Important4 - Important4 - Important1 - Unimportant
    C1P001: The ability to predict Multiple Benefits2 - Slightly important4 - Important2 - Slightly important1 - Unimportant
    C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important3 - Moderately important1 - Unimportant
    C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant
    C1P001: Social acceptance (top-down)5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant
    C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant
    C1P001: Presence of integrated urban strategies and plans3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
    C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important4 - Important5 - Very important1 - Unimportant
    C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important2 - Slightly important5 - Very important4 - Important1 - Unimportant
    C1P001: Availability of RES on site (Local RES)2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant
    C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P001: Any other UNLOCKING FACTORS (if any)
    C1P002: Driving Factors
    C1P002: Climate Change adaptation need4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant
    C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant
    C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant
    C1P002: Economic growth need2 - Slightly important2 - Slightly important4 - Important4 - Important1 - Unimportant
    C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
    C1P002: Territorial and market attractiveness2 - Slightly important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
    C1P002: Energy autonomy/independence5 - Very important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P002: Any other DRIVING FACTOR (if any)
    C1P003: Administrative barriers
    C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important5 - Very important1 - Unimportant
    C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant
    C1P003: Lack of public participation3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
    C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant
    C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
    C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
    C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
    C1P003: Fragmented and or complex ownership structure3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
    C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant
    C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P003: Any other Administrative BARRIER (if any)
    C1P004: Policy barriers
    C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant
    C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant
    C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P004: Any other Political BARRIER (if any)
    C1P005: Legal and Regulatory barriers
    C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
    C1P005: Regulatory instability3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P005: Non-effective regulations4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
    C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
    C1P005: Building code and land-use planning hindering innovative technologies4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
    C1P005: Insufficient or insecure financial incentives4 - Important4 - Important4 - Important2 - Slightly important1 - Unimportant
    C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P005: Shortage of proven and tested solutions and examples2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P005: Any other Legal and Regulatory BARRIER (if any)
    C1P006: Environmental barriers
    C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1
    C1P007: Technical barriers
    C1P007: Lack of skilled and trained personnel4 - Important2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant
    C1P007: Deficient planning3 - Moderately important3 - Moderately important4 - Important2 - Slightly important1 - Unimportant
    C1P007: Retrofitting work in dwellings in occupied state4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant
    C1P007: Lack of well-defined process4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant
    C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
    C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P007: Grid congestion, grid instability4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant
    C1P007: Difficult definition of system boundaries3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P007: Any other Thecnical BARRIER (if any)
    C1P008: Social and Cultural barriers
    C1P008: Inertia4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
    C1P008: Lack of values and interest in energy optimization measurements5 - Very important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
    C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
    C1P008: Difficulty of finding and engaging relevant actors5 - Very important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
    C1P008: Lack of trust beyond social network4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
    C1P008: Rebound effect4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
    C1P008: Hostile or passive attitude towards environmentalism5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
    C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P008: Any other Social BARRIER (if any)
    C1P009: Information and Awareness barriers
    C1P009: Insufficient information on the part of potential users and consumers2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
    C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts5 - Very important4 - Important1 - Unimportant1 - Unimportant
    C1P009: Lack of awareness among authorities3 - Moderately important4 - Important2 - Slightly important1 - Unimportant
    C1P009: Information asymmetry causing power asymmetry of established actors4 - Important4 - Important1 - Unimportant1 - Unimportant
    C1P009: High costs of design, material, construction, and installation3 - Moderately important5 - Very important4 - Important1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P009: Any other Information and Awareness BARRIER (if any)
    C1P010: Financial barriers
    C1P010: Hidden costs4 - Important4 - Important1 - Unimportant1 - Unimportant
    C1P010: Insufficient external financial support and funding for project activities3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
    C1P010: Economic crisis1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
    C1P010: Risk and uncertainty5 - Very important4 - Important2 - Slightly important1 - Unimportant
    C1P010: Lack of consolidated and tested business models4 - Important4 - Important1 - Unimportant1 - Unimportant
    C1P010: Limited access to capital and cost disincentives2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P010: Any other Financial BARRIER (if any)
    C1P011: Market barriers
    C1P011: Split incentives2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
    C1P011: Energy price distortion2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
    C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant
    C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
    C1P011: Any other Market BARRIER (if any)
    C1P012: Stakeholders involved
    C1P012: Government/Public Authorities
    C1P012: Research & Innovation
    C1P012: Financial/Funding
    C1P012: Analyst, ICT and Big Data
    C1P012: Business process management
    C1P012: Urban Services providers
    C1P012: Real Estate developers
    C1P012: Design/Construction companies
    C1P012: End‐users/Occupants/Energy Citizens
    C1P012: Social/Civil Society/NGOs
    C1P012: Industry/SME/eCommerce
    C1P012: Other
    C1P012: Other (if any)
    Summary

    Authors (framework concept)

    Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

    Contributors (to the content)

    Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

    Implemented by

    Boutik.pt: Filipe Martins, Jamal Khan
    Marek Suchánek (Czech Technical University in Prague)