Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Uncompare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Uncompare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Aalborg East, Aalborg Municipality, Region of Northern Jutland, Denmark
Barcelona, SEILAB & Energy SmartLab
Oslo, Verksbyen
Graz, Reininghausgründe
Kladno, Sletiště (Sport Area), PED Winter Stadium
Groningen, PED North
Istanbul, Ozyegin University Campus
Espoo, Kera
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityAalborg East, Aalborg Municipality, Region of Northern Jutland, DenmarkBarcelona, SEILAB & Energy SmartLabOslo, VerksbyenGraz, ReininghausgründeKladno, Sletiště (Sport Area), PED Winter StadiumGroningen, PED NorthIstanbul, Ozyegin University CampusEspoo, Kera
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesyesnononoyes
PED relevant case studyyesyesnononoyesnoyesyes
PED Lab.noyesyesnononoyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesnoyesyesyesyesyesyes
Annual energy surplusnononoyesnoyesyesnono
Energy communityyesnoyesnonoyesyesnono
Circularitynonononononoyesnoyes
Air quality and urban comfortyesnonoyesnononoyesno
Electrificationyesnoyesnonoyesnoyesno
Net-zero energy costnonononononononono
Net-zero emissionnonoyesyesnonoyesnono
Self-sufficiency (energy autonomous)nonoyesnononononono
Maximise self-sufficiencynoyesnonononononono
Othernonoyesnonononoyesno
Other (A1P004)Green ITalmost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseIn operationImplementation PhaseImplementation PhasePlanning PhaseImplementation PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date11/2201/201107/182019202212/1810/2401/15
A1P007: End Date
A1P007: End date11/2502/201308/24202512/2310/2812/35
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • GIS open datasets
  • General statistical datasets
  • GIS open datasets
  • Open data city platform – different dashboards,
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
    • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
    • TNO, Hanze, RUG,
    • Ped noord book
      A1P011: Geographic coordinates
      X Coordinate (longitude):23.81458810.0072.110.98617335443299215.40744014.092966.53512129.25830024.75377778
      Y Coordinate (latitude):38.07734957.04102841.359.2242971664204647.060750.1371553.23484641.03060060.21622222
      A1P012: Country
      A1P012: CountryGreeceDenmarkSpainNorwayAustriaCzech RepublicNetherlandsTurkeyFinland
      A1P013: City
      A1P013: CityMunicipality of KifissiaAalborgBarcelona and TarragonaFredrikstadGrazKladnoGroningenIstanbulEspoo
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CsaDfbCsaCfbDfbCfbCfaCfaDfb
      A1P015: District boundary
      A1P015: District boundaryVirtualVirtualVirtualGeographicGeographicGeographicFunctionalGeographicGeographic
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodV1* (ca 8 buildings)
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:PublicPublicPrivateMixedMixedMixedPrivateMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED021008715
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]35501.01
      A1P020: Total ground area
      A1P020: Total ground area [m²]31308000100000017.132285.400580000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area000000000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenononoyesyesyesyesyesno
      A1P022a: Add the value in EUR if available [EUR]
      A1P022b: Financing - PRIVATE - ESCO schemenononononoyesnonono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernonononononoyesnono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnononononoyesnonono
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnonononoyesnoyesnono
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnonononononononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesyesyesnono
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernonononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnononononoyesyesyesno
      A1P022i: Add the value in EUR if available [EUR]
      A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnononoyesnonono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: OtherMultiple different funding schemes depending on the case.
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Job creation,
      • Boosting local and sustainable production
      • Job creation,
      • Boosting local businesses,
      • Boosting consumption of local and sustainable products
      • Job creation,
      • Positive externalities
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      • Job creation,
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      A1P023: OtherCircular economy
      A1P024: More comments:
      A1P024: More comments:Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]1
      Contact person for general enquiries
      A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaKristian OlesenDr. Jaume Salom, Dra. Cristina CorcheroTonje Healey TrulsrudKatharina SchwarzDavid ŠkorňaJasper Tonen, Elisabeth KoopsCem KeskinJoni Mäkinen
      A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamAalborg UniversityIRECNorwegian University of Science and technology (NTNU)StadtLABOR, Innovationen für urbane Lebensqualität GmbHMěsto KladnoMunicipality of GroningenCenter for Energy, Environment and Economy, Ozyegin UniversityCity of Espoo
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversitySME / IndustryMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public Bodies
      A1P028: Other
      A1P029: Emailgiavasoglou@kifissia.grKristian@plan.aau.dkJsalom@irec.cattonje.h.trulsrud@ntnu.nokatharina.schwarz@stadtlaborgraz.atdavid.skorna@mestokladno.czJasper.tonen@groningen.nlcem.keskin@ozyegin.edu.trjoni.makinen@espoo.fi
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorAlex Søgaard MorenoHans SchnitzerMichal KuzmičM. Pınar Mengüç
      A1P031: Emailstavros.zapantis@gmail.comasm@aalborg.dkhans.schnitzer@stadtlaborgraz.atmichal.kuzmic@cvut.czpinar.menguc@ozyegin.edu.tr
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Water use,
      • Indoor air quality,
      • Other
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management,
      • Indoor air quality,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management,
      • Construction materials
      A2P001: OtherUrban Management; Air Quality
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsStakeholder engagement, expert energy system analysis, future scenariosEnergy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Energy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilationEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtTrnsys, PV modelling tools, CADEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste document- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoYesNoNoNoYesNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoYesNoYesYesNoYesNo
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoYesNoYesNoNoNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationLarge combined industrial, residential, and commercial area with complex flows of in- and outgoing traffic.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)Not yet included.Mobility, till now, is not included in the energy model.Not included, the campus is a non car area except emergencies
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]2180.161.42.354.5
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]1480.0530.30.3319.4
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesnoyesyesyesyesnoyesyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.181.14
      A2P011: Windnoyesnonononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnonononononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonononononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
      A2P011: Othernoyesnonononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnonononoyesnoyesnono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnonononoyesnoyesnono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnonononononoyesnono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
      A2P012: Waste heat+HPnoyesnonoyesyesyesnoyes
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]3001.7
      A2P012: Biomass_peat_heatnonononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnonononononoyesnono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnonononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notesVery little wind production currently exists in the area. The electricity production of the waste incineration plant will be included at a later date. Aalborg East is partly a remarkable area for hosting a Portland cement factory that accounts for a substantial share of Denmark’s total CO2 emissions. In turn, it also provides waste heat to the district heating grid for all of Aalborg city and some of the smaller towns that are connected to the same DH grid.Groundwater (used for heat pumps)Waste heat from cooling the ice rink.Geothermal heatpump systems, Waste heat from data centersLocal energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]6202.13.578.8
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]39915.4
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnonoyesnononononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernoyesnonononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]300
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonononoyesnonoyesno
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
      A2P018: Windnonononoyesnononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononoyesnononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononononononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononononononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononoyesnononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononoyesnononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Waste heat+HPnonononoyesnononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary000000000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]-6.0350.036-104450000
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & SecurityPersonal Safety
      A2P022: HealthHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)
      A2P022: Education
      A2P022: MobilitySustainable mobilityx
      A2P022: EnergyEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissionsxEnergy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balance
      A2P022: Waterx
      A2P022: Economic developmentEconomic Performance: capital costs, operational costs, overall performancexInvestment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROI
      A2P022: Housing and Communitydemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousnessx
      A2P022: Waste
      A2P022: OtherSmartness and Flexibility
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsnoyesyesyesyesyesyesyesyes
      A2P023: Solar thermal collectorsnoyesnonononoyesnono
      A2P023: Wind Turbinesnononononononoyesno
      A2P023: Geothermal energy systemnononoyesnonoyesnono
      A2P023: Waste heat recoverynoyesnonoyesyesyesnoyes
      A2P023: Waste to energynoyesnonononoyesnono
      A2P023: Polygenerationnonononononononono
      A2P023: Co-generationnononononononoyesno
      A2P023: Heat Pumpnoyesnoyesyesyesyesyesyes
      A2P023: Hydrogennonononononononono
      A2P023: Hydropower plantnonononononononono
      A2P023: Biomassnoyesnonononononono
      A2P023: Biogasnonononononononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesyesyesyesyesyesyes
      A2P024: Energy management systemnoyesyesyesnoyesyesyesyes
      A2P024: Demand-side managementnoyesnoyesnoyesyesyesyes
      A2P024: Smart electricity gridnoyesyesnononononoyes
      A2P024: Thermal Storagenoyesnonoyesnoyesnono
      A2P024: Electric Storagenoyesyesnononoyesyesno
      A2P024: District Heating and Coolingnoyesnonoyesyesyesyesyes
      A2P024: Smart metering and demand-responsive control systemsnoyesnoyesnoyesyesyesno
      A2P024: P2P – buildingsnonononononononono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnoyesnononoyesnonono
      A2P025: Energy efficiency measures in historic buildingsnonononononoyesnono
      A2P025: High-performance new buildingsnononoyesyesnoyesyesyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)nonononoyesnoyesnoyes
      A2P025: Urban data platformsnononononoyesyesnoyes
      A2P025: Mobile applications for citizensnonononoyesnononono
      A2P025: Building services (HVAC & Lighting)nonoyesyesnoyesnoyesyes
      A2P025: Smart irrigationnonononoyesnonoyesno
      A2P025: Digital tracking for waste disposalnonononononononono
      A2P025: Smart surveillancenoyesnononononoyesno
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nonoyesnoyesnononoyes
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononoyesnononoyes
      A2P026: e-Mobilitynonononoyesnoyesyesyes
      A2P026: Soft mobility infrastructures and last mile solutionsnonononoyesnonoyesyes
      A2P026: Car-free areanonononoyesnonoyesno
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesYesYesYesYesNo
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingNS3700 Norwegian Passive HouseEnergieausweis mandatory if buildings/ flats/ apartments are soldNational standards apply.Energy Performance Certificate
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoYesNoYesNo
      A2P029: If yes, please specify and/or enter notesKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/goldLEED BD+C, LEED NC CAMPUS
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • New development strategies
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyReduction of 1018000 tons CO2 by 2030City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supplyCarbon neutrality 2050
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps,
      • Biogas
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      • Electrification of Heating System based on Heat Pumps
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods,
      • Biogas
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods
      A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesDecarbonize part of Aalborg city as a way of working incrementally towards being a zero-emission city.-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Reininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared officesCarbon and Energy Neutrality
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviour- Stakeholder engagement; - Focus on implementing renewable energy production where possible; - Rretrofitting and energy optimization of existing buildings.-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Life Cycle Cost,
      • Circular economy models
      • Demand management Living Lab
      • PPP models,
      • Local trading
      • Innovative business models,
      • PPP models,
      • Existing incentives
      • Innovative business models,
      • Blockchain
      • PPP models,
      • Circular economy models
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Policy Forums,
      • Citizen/owner involvement in planning and maintenance
      • Digital Inclusion,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Quality of Life,
      • Affordability,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Affordability
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Citizen Social Research,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Quality of Life
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • District Energy plans
      • Strategic urban planning,
      • City Vision 2050,
      • Building / district Certification
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Energy Neutral,
      • Net zero carbon footprint
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction,
      • Greening strategies
      • Pollutants Reduction,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Net zero carbon footprint
      • Energy Neutral
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Greening strategies,
      • Cool Materials
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Greening strategies,
      • Nature Based Solutions (NBS)
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspectsCurrent energy tariffs disincentivize both individual and collective PV systems – meaning energy communities are not economically feasible, housing associations and public buildings struggle with finding a secure RoI for solar panels, and citizens and local industry lack an incentive to install solar panels on their own- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.Mobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionThe large scale provides interesting opportunities for both urban development and strategic energy planning; the diverse mix of buildings and functions also allow for interesting discussions regarding PEDs. Another interesting facet is that the district heating grid is almost fully supplied by waste heat.The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.Onsite Energy Ratio > 1The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.Implementation of district level heating system to make heating energy positive and expanding local renewable electricity production.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentThe area has an interesting history of development and has recently undergone several urban improvements. This is coupled with a strong local network of business owners and other stakeholders, all with an interest in developing the area in the best way possible. This made for an interesting case from a planning perspective to investigate how this network would pick up on the concept of PED and whether they could see any potential utility in relation to their everyday experiences.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.Strategic, economicThe purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaSuburban areaSuburban areaUrban areaUrban areaSuburban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • New construction
      • New construction
      • New construction,
      • Renovation
      • Renovation
      • New construction
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Retrofitting Area
      • New Development
      • New Development
      • New Development,
      • Retrofitting Area
      • Retrofitting Area
      • Re-use / Transformation Area
      B1P006: Year of construction
      B1P006: Year of construction20252024
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential16.9310
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential1000014000
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential09800
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential980010000
      B1P011: Population density before intervention
      B1P011: Population density before intervention0000000340
      B1P012: Population density after intervention
      B1P012: Population density after intervention00000.010034.3377715487040.041379310344828
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnononononoyesnonoyes
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officenononononoyesnonoyes
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynononoyesyesnononoyes
      B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
      B1P013: Commercialnonononononononono
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononononononoyesno
      B1P013 - Institutional: Specify the sqm [m²]285.400
      B1P013: Natural areasnonononoyesnononono
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnononononoyesnonono
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnonononononononoyes
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernonononononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnononoyesyesyesnonoyes
      B1P014 - Residential: Specify the sqm [m²]
      B1P014: Officenonononoyesyesnonoyes
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynonononononononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnonononoyesnononoyes
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnonononoyesnonoyesno
      B1P014 - Institutional: Specify the sqm [m²]280000
      B1P014: Natural areasnonononoyesnononono
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnonononoyesyesnonoyes
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnonononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernonononononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionAn ongoing process and dialogue with local stakeholders to determine the future development of the area.addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility AggregationGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
      B2P002: Installation life time
      B2P002: Installation life timeNo new installation will be made throughout the project. Rather the project will attempt to establish a local PED network with the aim of empowering the stakeholders to better engage with sustainable technologies.The MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
      B2P003: Scale of action
      B2P003: ScaleDistrictVirtualDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationKristian OlesenIRECThe Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materialsReplication is primarily focused on the establishment of a local network with an interest in and understanding of PED.Groningen does not have a strategy to reuse and recyle materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Civic
      • Strategic,
      • Private
      • Civic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabResearch center/UniversityResearch center/UniversityMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private
      • Academia,
      • Private,
      • Industrial,
      • Other
      B2P009: Otherresearch companies, monitoring company, ict company
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Efficiency measures,
      • Information and Communication Technologies (ICT)
      • Buildings,
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Waste management,
      • Lighting,
      • E-mobility,
      • Information and Communication Technologies (ICT),
      • Social interactions,
      • Business models
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      • Tools for prototyping and modelling
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Equipment
      • Execution plan,
      • Available data,
      • Type of measured data,
      • Equipment,
      • Level of access
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Environmental
      • Energy,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling
      • Energy modelling,
      • Social models,
      • Business and financial models
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important4 - Important3 - Moderately important5 - Very important5 - Very important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important4 - Important1 - Unimportant4 - Important2 - Slightly important4 - Important3 - Moderately important5 - Very important4 - Important
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important3 - Moderately important
      C1P001: Storage systems and E-mobility market penetration3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important4 - Important4 - Important
      C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important4 - Important3 - Moderately important
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important5 - Very important5 - Very important3 - Moderately important
      C1P001: The ability to predict Multiple Benefits2 - Slightly important4 - Important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important4 - Important3 - Moderately important
      C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important5 - Very important5 - Very important5 - Very important
      C1P001: Social acceptance (top-down)5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important4 - Important3 - Moderately important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important4 - Important5 - Very important3 - Moderately important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important4 - Important
      C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important4 - Important5 - Very important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important2 - Slightly important5 - Very important1 - Unimportant4 - Important5 - Very important3 - Moderately important4 - Important3 - Moderately important
      C1P001: Availability of RES on site (Local RES)2 - Slightly important4 - Important5 - Very important3 - Moderately important4 - Important4 - Important5 - Very important4 - Important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important3 - Moderately important4 - Important5 - Very important
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)Collaboration with the local partners
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need4 - Important2 - Slightly important4 - Important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important5 - Very important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important4 - Important5 - Very important5 - Very important4 - Important3 - Moderately important5 - Very important5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
      C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important5 - Very important
      C1P002: Economic growth need2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important4 - Important4 - Important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important3 - Moderately important4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant5 - Very important4 - Important
      C1P002: Territorial and market attractiveness2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important5 - Very important3 - Moderately important2 - Slightly important4 - Important3 - Moderately important
      C1P002: Energy autonomy/independence5 - Very important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important5 - Very important2 - Slightly important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important4 - Important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important5 - Very important5 - Very important
      C1P003: Lack of public participation3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important4 - Important
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important4 - Important4 - Important
      C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important5 - Very important3 - Moderately important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important
      C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important
      C1P003: Fragmented and or complex ownership structure3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important3 - Moderately important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important4 - Important
      C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important
      C1P003: Any other Administrative BARRIER1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)Fragmented financial support; lack of experimental budget for complex projects, etc.
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important4 - Important
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant5 - Very important4 - Important
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important5 - Very important3 - Moderately important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important3 - Moderately important
      C1P005: Regulatory instability3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
      C1P005: Non-effective regulations4 - Important2 - Slightly important2 - Slightly important5 - Very important3 - Moderately important4 - Important3 - Moderately important4 - Important3 - Moderately important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important3 - Moderately important
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important4 - Important
      C1P005: Insufficient or insecure financial incentives4 - Important4 - Important5 - Very important1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important5 - Very important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important2 - Slightly important
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important4 - Important2 - Slightly important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriersAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important4 - Important4 - Important5 - Very important3 - Moderately important
      C1P007: Deficient planning3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important5 - Very important3 - Moderately important
      C1P007: Retrofitting work in dwellings in occupied state4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
      C1P007: Lack of well-defined process4 - Important4 - Important4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important4 - Important3 - Moderately important
      C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important5 - Very important3 - Moderately important
      C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant4 - Important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important
      C1P007: Grid congestion, grid instability4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important3 - Moderately important
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important
      C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
      C1P007: Difficult definition of system boundaries3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important2 - Slightly important
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transition
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important4 - Important3 - Moderately important
      C1P008: Lack of values and interest in energy optimization measurements5 - Very important2 - Slightly important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important3 - Moderately important
      C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important5 - Very important3 - Moderately important
      C1P008: Difficulty of finding and engaging relevant actors5 - Very important2 - Slightly important5 - Very important1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important4 - Important
      C1P008: Lack of trust beyond social network4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important4 - Important3 - Moderately important
      C1P008: Rebound effect4 - Important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important
      C1P008: Hostile or passive attitude towards environmentalism5 - Very important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important4 - Important2 - Slightly important
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important4 - Important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important5 - Very important4 - Important
      C1P009: Lack of awareness among authorities3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important5 - Very important3 - Moderately important
      C1P009: Information asymmetry causing power asymmetry of established actors4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important
      C1P009: High costs of design, material, construction, and installation3 - Moderately important5 - Very important4 - Important4 - Important5 - Very important4 - Important4 - Important4 - Important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important4 - Important3 - Moderately important
      C1P010: Insufficient external financial support and funding for project activities3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important5 - Very important4 - Important
      C1P010: Economic crisis1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant4 - Important4 - Important
      C1P010: Risk and uncertainty5 - Very important5 - Very important4 - Important2 - Slightly important4 - Important3 - Moderately important5 - Very important3 - Moderately important
      C1P010: Lack of consolidated and tested business models4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important4 - Important3 - Moderately important
      C1P010: Limited access to capital and cost disincentives2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives2 - Slightly important4 - Important1 - Unimportant2 - Slightly important5 - Very important5 - Very important5 - Very important3 - Moderately important
      C1P011: Energy price distortion2 - Slightly important5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important3 - Moderately important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important4 - Important3 - Moderately important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Research & Innovation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      C1P012: Financial/Funding
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Analyst, ICT and Big Data
      • Planning/leading,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Business process management
      • None
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Urban Services providers
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation
      C1P012: Real Estate developers
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Design/Construction companies
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: End‐users/Occupants/Energy Citizens
      • Design/demand aggregation
      • Design/demand aggregation
      • None
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading
      C1P012: Industry/SME/eCommerce
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Other
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)