Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Uncompare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Uncompare
Barcelona, SEILAB & Energy SmartLab PED Lab Uncompare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Vantaa, Aviapolis
Leon, Former Sugar Factory district
Uden, Loopkantstraat
Oulu, Kaukovainio
Barcelona, SEILAB & Energy SmartLab
Tartu, City centre area
Bologna, Pilastro-Roveri district
Istanbul, Ozyegin University Campus
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityVantaa, AviapolisLeon, Former Sugar Factory districtUden, LoopkantstraatOulu, KaukovainioBarcelona, SEILAB & Energy SmartLabTartu, City centre areaBologna, Pilastro-Roveri districtIstanbul, Ozyegin University Campus
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesnoyesnononono
PED relevant case studyyesyesnoyesnonoyesyesyes
PED Lab.noyesnononoyesyesnono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesnoyesyesnoyesyesyes
Annual energy surplusnonoyesyesnonononono
Energy communityyesnonononoyesnoyesno
Circularitynoyesnonoyesnoyesnono
Air quality and urban comfortyesnononononononoyes
Electrificationyesnonoyesyesyesyesnoyes
Net-zero energy costnonononononononono
Net-zero emissionnononononoyesyesnono
Self-sufficiency (energy autonomous)nononononoyesnonono
Maximise self-sufficiencynonoyesnononoyesnono
Othernononononoyesnonoyes
Other (A1P004)Green ITalmost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhaseIn operationIn operationIn operationImplementation PhasePlanning PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date01/2312/1806/1701/201102/1609/1910/24
A1P007: End Date
A1P007: End date12/2712/2305/2302/201307/2210/2310/28
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    •  https://makingcity.eu/wp-content/uploads/2021/12/MakingCity_D4_3_Analysis_of_FWC_candidate_areas_to_become_a_PED_Final.pdf.
    • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
    • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
    • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
    • https://www.synikia.eu/no/bibliotek/
    • Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190,
    • Barroco Fontes Cunha F., Carani C., Nucci C.A., Castro C., Santana Silva M., Andrade Torres E. (2021) Transitioning to a low carbon society through energy communities: Lessons learned from Brazil and Italy, ENERGY RESEARCH & SOCIAL SCIENCE, 2021, 75, 1-19.,
    • GRETA Project, Pilastro-Roveri case study. Available at: https://projectgreta.eu/case-study/renewable-energy-district/
      A1P011: Geographic coordinates
      X Coordinate (longitude):23.81458824.958821-5.5847955.619125.5175950840935072.126.72273711.39732329.258300
      Y Coordinate (latitude):38.07734960.30548842.59339151.660664.9928809817313241.358.38071344.50710641.030600
      A1P012: Country
      A1P012: CountryGreeceFinlandSpainNetherlandsFinlandSpainEstoniaItalyTurkey
      A1P013: City
      A1P013: CityMunicipality of KifissiaVantaaLeonUdenOuluBarcelona and TarragonaTartuBolognaIstanbul
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CsaDfbCsbCfbDfcCsaDfbCfaCfa
      A1P015: District boundary
      A1P015: District boundaryVirtualGeographicGeographicGeographicVirtualFunctionalGeographicGeographic
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodRegional (close to virtual)
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedMixedPrivateMixedPublicPrivateMixedPrivate
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersSingle OwnerSingle OwnerSingle OwnerMultiple OwnersMultiple OwnersSingle Owner
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED2116018196215
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]16.0690023601970035217
      A1P020: Total ground area
      A1P020: Total ground area [m²]388100073.145693860600007931447800000285.400
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area000100000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenoyesnoyesyesnoyesnoyes
      A1P022a: Add the value in EUR if available [EUR]78044406500000
      A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernoyesnonononononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnonononononoyesnono
      A1P022d: Add the value in EUR if available [EUR]4000000
      A1P022e: Financing - PUBLIC - National fundingnonononononoyesyesno
      A1P022e: Add the value in EUR if available [EUR]8000000
      A1P022f: Financing - PUBLIC - Regional fundingnononononononoyesno
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnoyesnonoyesnonoyesno
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernonononononononono
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnoyesnonoyesnonoyesyes
      A1P022i: Add the value in EUR if available [EUR]
      A1P022j: Financing - RESEARCH FUNDING - Nationalnonononononononono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononoyesno
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production
      • Positive externalities,
      • Boosting local and sustainable production
      • Job creation,
      • Boosting local and sustainable production
      • Positive externalities
      • Job creation,
      • Positive externalities,
      • Boosting local businesses
      • Positive externalities,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      A1P023: OtherDeveloping and demonstrating new solutions
      A1P024: More comments:
      A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.Semi-Virtual Energy Integration Laboratory (SEILAB) The Energy Smart Lab is an infrastructure conceived as a flexible and versatile platform for innovative technological developments for both industry and competitive R+D projects. The areas of expertise of this laboratory pivot around the following technologies: – Power Electronics for the integration and control of the elements within a building or community: Renewable Energy Sources (RES), Energy Storage Systems and Electric Vehicles (EV) – ICT Platform for smart communications and energy management of systems, building, networks and communities. – Energy System Integration technologies for smart and flexible buildings and grids including RES and EV. The laboratory operation is based on the hardware emulation approach, which allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation. The laboratory is pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.The Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190]In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]78044405251
      Contact person for general enquiries
      A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaEira LinkoBegoña Gonzalo OrdenTonje Healey TrulsrudSamuli RinneDr. Jaume Salom, Dra. Cristina CorcheroJaanus TammProf. Danila LongoCem Keskin
      A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamCity of VantaaMunicipality of LeonNorwegian University of Science and Technology (NTNU)City of OuluIRECTartu City GovernmentUniversity of Bologna - Architecture DepartmentCenter for Energy, Environment and Economy, Ozyegin University
      A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesOtherResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversityResearch Center / University
      A1P028: OtherMunicipality of Leon - ILRUV
      A1P029: Emailgiavasoglou@kifissia.greira.linko@vantaa.fibegona.gonzalo@aytoleon.estonje.h.trulsrud@ntnu.nosamuli.rinne@ouka.fiJsalom@irec.catJaanus.tamm@tartu.eecem.keskin@ozyegin.edu.tr
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorMonica Prada CorralSamuli RinneKaspar AlevM. Pınar Mengüç
      A1P031: Emailstavros.zapantis@gmail.comMonica.Prada@ilruv.essamuli.rinne@ouka.fiKaspar.alev@tartu.eepinar.menguc@ozyegin.edu.tr
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Construction materials,
      • Other
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Waste management,
      • Indoor air quality,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Water use,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Waste management,
      • Indoor air quality,
      • Construction materials
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsPilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, coolingEnergy efficiency: - buildings energy retrofit Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; Energy flexibility: - testing share energy solutions (public-private stakeholders) Digital technologies - smart city platform - smart energy management E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation.Energy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.Energy SmartLab capacities - Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network. Energy SmartLab systems - SAFT Li-ion battery: maximum stored energy 20000 Wh, rated power 150 kW, rated discharge current 200 A, rated charge current 34 A, operating voltage 189 V – 227 V – 254 V, capacity 82 Ah. – Ultracapacitors: maximum stored energy 57 Wh, rated power 10 kW, rated current 20 A, peak current (<1s) 200 Apk, operating voltage 250 V – 500 V, capacity 1,65 F. – Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 Ah - 5 microgrid emulators (emulated power 5.5 kVA, max generation connected 10kVA, max consumption connected 10 kVA) - 1 grid emulator (Rated power: 200 kVA, Rated current per phase: 350 A, Rated current per neutral conductor: 35)Energy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)Energy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulationLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste document
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoNoYesNoNoYesYes
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceNoNoNoYesYesNoYes
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoNoYesNoNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationThe calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.not includedNot included. However, there is a charging place for a shared EV in one building.– Electric vehicle second life battery: maximum stored energy 23300 Wh, rated power 40 kW, rated current 150 A, operating voltage 240 V – 400 V, capacity 32 AhNot included, the campus is a non car area except emergencies
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]3.490.1482.19.1
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.570.1090.2
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesyesyesyesyesyesyesyesyes
      A2P011: PV - specify production in GWh/annum [GWh/annum]1.240.0580.1
      A2P011: Windnonononononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydrononoyesnononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]1.28
      A2P011: Biomass_elnonononononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnonononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnonoyesnononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.28
      A2P011: Othernonononononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnoyesnoyesnonononono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnonononononoyesyesno
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.5
      A2P012: Biomass_heatnononononononoyesno
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnoyesnonoyesnononono
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
      A2P012: Biomass_peat_heatnonononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnonoyesnononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_firewood_thnonononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernonoyesnononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notes*Annual energy use below is presentedin primary energy consumptionHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]0.1942.33.5
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]0.0368
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnononononoyesnonono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnonononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnonononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernonononononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnoyesnonoyesnononoyes
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
      A2P018: Windnoyesnonoyesnononono
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydronoyesnonoyesnononono
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnoyesnonoyesnononono
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononoyesnononono
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnonononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernonononononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnonononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnonononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnoyesnonoyesnononono
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
      A2P019: Waste heat+HPnoyesnonononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnonononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnonononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnonononononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernonononononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00003.28571428571430000
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]-0.000430980
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & SecurityPersonal Safety
      A2P022: HealthHealthy communityEncouraging a healthy lifestyle
      A2P022: Education
      A2P022: MobilitySustainable mobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging
      A2P022: EnergyNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reduction
      A2P022: Water
      A2P022: Economic developmentcapital costs, operational cots, overall economic performance (5 KPIs)Total investments, Payback time, Economic value of savings
      A2P022: Housing and Communitydemographic composition, diverse community, social cohesionDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty
      A2P022: WasteRecycling rate
      A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)Smart Cities strategies, Quality of open data
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsnoyesyesyesyesyesyesyesyes
      A2P023: Solar thermal collectorsnonoyesnonononoyesno
      A2P023: Wind Turbinesnonononononononoyes
      A2P023: Geothermal energy systemnoyesnoyesnononoyesno
      A2P023: Waste heat recoverynoyesnonoyesnononono
      A2P023: Waste to energynoyesnononononoyesno
      A2P023: Polygenerationnoyesnonononononono
      A2P023: Co-generationnonononoyesnonoyesyes
      A2P023: Heat Pumpnoyesyesyesyesnonoyesyes
      A2P023: Hydrogennonononononononono
      A2P023: Hydropower plantnonoyesnononononono
      A2P023: Biomassnoyesnonoyesnoyesnono
      A2P023: Biogasnonononononoyesnono
      A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesnoyesyesyesyesyes
      A2P024: Energy management systemnoyesyesyesyesyesyesnoyes
      A2P024: Demand-side managementnoyesyesyesnonononoyes
      A2P024: Smart electricity gridnoyesnononoyesnonono
      A2P024: Thermal Storagenoyesnonoyesnononono
      A2P024: Electric Storagenoyesnononoyesnoyesyes
      A2P024: District Heating and Coolingnoyesnonoyesnoyesyesyes
      A2P024: Smart metering and demand-responsive control systemsnoyesnoyesnonononoyes
      A2P024: P2P – buildingsnonoyesnononononono
      A2P024: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnonoyesnoyesnoyesyesno
      A2P025: Energy efficiency measures in historic buildingsnonoyesnononononono
      A2P025: High-performance new buildingsnoyesnoyesyesnonoyesyes
      A2P025: Smart Public infrastructure (e.g. smart lighting)nonononononoyesyesno
      A2P025: Urban data platformsnonoyesnoyesnoyesnono
      A2P025: Mobile applications for citizensnonononononoyesyesno
      A2P025: Building services (HVAC & Lighting)noyesnoyesyesyesnoyesyes
      A2P025: Smart irrigationnonononononononoyes
      A2P025: Digital tracking for waste disposalnononononononoyesno
      A2P025: Smart surveillancenonononononoyesyesyes
      A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)noyesyesnoyesyesyesyesno
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnonoyesnoyesyesno
      A2P026: e-Mobilitynoyesyesnoyesnoyesyesyes
      A2P026: Soft mobility infrastructures and last mile solutionsnoyesyesnoyesnonoyesyes
      A2P026: Car-free areanonononononononoyes
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notes
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesYesYesYesYesYesYesYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance Certificate - in Spain it is mandatory in order to buy or rent a house or a dwelling)EPC = 0, energy neutral buildingThe obligatory buildijng energy classificationEnergy Performance Certificate for each dwelling
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoNoYes
      A2P029: If yes, please specify and/or enter notesLEED BD+C, LEED NC CAMPUS
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.)
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • New development strategies
      • Energy master planning (SECAP, etc.)
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Energy master planning (SECAP, etc.),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyCarbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),Carbon neutrality by 2035City level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal;
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Biogas,
      • Hydrogen
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods
      • Electrification of Heating System based on Heat Pumps,
      • Electrification of Cooking Methods
      A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesDeveloping and demonstrating solutions for carbon neutrality-Allows for real physical equipment to be operated under a broad range of scenarios without depending on the real occurrence of the boundary conditions suitable for the experimental validation -Pioneer in addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation.Bologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility.Carbon and Energy Neutrality
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourE. g. visualizing energy and water consumption-Improving the development of Net Zero Energy Buildings and Flexible Energy buildings.Bologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri.Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Circular economy models
      • Open data business models,
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Circular economy models
      • Demand management Living Lab
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Existing incentives
      • Innovative business models,
      • PPP models,
      • Circular economy models,
      • Demand management Living Lab,
      • Existing incentives
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Co-creation / Citizen engagement strategies,
      • Social incentives,
      • Quality of Life
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Digital Inclusion,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Social incentives,
      • Quality of Life,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Affordability,
      • Prevention of energy poverty,
      • Digital Inclusion,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • SECAP Updates
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      • City Vision 2050,
      • SECAP Updates,
      • Building / district Certification
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Greening strategies,
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Net zero carbon footprint
      • Energy Neutral,
      • Low Emission Zone,
      • Pollutants Reduction,
      • Greening strategies
      • Net zero carbon footprint,
      • Carbon-free,
      • Pollutants Reduction,
      • Greening strategies,
      • Sustainable Urban drainage systems (SUDS),
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Pollutants Reduction,
      • Greening strategies
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Greening strategies,
      • Cool Materials
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects- European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). - Spanish building certification is regulated through Royal Decree 235/2013.PEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’ISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.The original idea is that the area produces at least as much it consumes.Pilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentAccording to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.Developing systems towards carbon neutrality. Also urban renewal.Pilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030.The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaUrban areaSuburban areaSuburban areaUrban areaUrban areaSuburban area
      B1P004: Type of district
      B2P004: Type of district
      • New construction,
      • Renovation
      • New construction,
      • Renovation
      • New construction
      • New construction,
      • Renovation
      • Renovation
      • Renovation
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Re-use / Transformation Area,
      • New Development
      • Re-use / Transformation Area,
      • Retrofitting Area,
      • Preservation Area
      • New Development
      • New Development,
      • Retrofitting Area
      • Retrofitting Area
      • Retrofitting Area
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction2024
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential35004500
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential3500
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential9800
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential9800
      B1P011: Population density before intervention
      B1P011: Population density before intervention0000000034
      B1P012: Population density after intervention
      B1P012: Population density after intervention00000.05833333333333300034.337771548704
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnoyesyesnoyesnoyesyesno
      B1P013 - Residential: Specify the sqm [m²]
      B1P013: Officenoyesnononononoyesno
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynoyesnononononoyesno
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnoyesnonoyesnoyesyesno
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnoyesnononononoyesyes
      B1P013 - Institutional: Specify the sqm [m²]285.400
      B1P013: Natural areasnonononoyesnoyesyesno
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnoyesnonoyesnoyesyesno
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnoyesnononononoyesno
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernonoyesnononononono
      B1P013 - Other: Specify the sqm [m²]
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesyesyesyesnoyesyesno
      B1P014 - Residential: Specify the sqm [m²]2394
      B1P014: Officenoyesnononononoyesno
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynoyesnononononoyesno
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnoyesnonoyesnoyesyesno
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnoyesnononononoyesyes
      B1P014 - Institutional: Specify the sqm [m²]280000
      B1P014: Natural areasnonononoyesnoyesyesno
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnoyesnonoyesnoyesyesno
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononononononoyesno
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernonoyesnononononono
      B1P014 - Other: Specify the sqm [m²]
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definitionNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.addressing the concept and implementation of Microgrids and aims to become a leading experimental facility for improving the optimal development of Flexible Energy Buildings and Flexibility Aggregation
      B2P002: Installation life time
      B2P002: Installation life time
      B2P003: Scale of action
      B2P003: ScaleDistrictVirtualDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installationThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.IREC
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic
      • Strategic,
      • Private
      • Strategic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipalityResearch center/UniversityMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      B2P009: Other
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Demand-side management,
      • Energy storage,
      • Energy networks,
      • Efficiency measures,
      • Information and Communication Technologies (ICT)
      • Buildings,
      • Prosumers,
      • Renewable generation,
      • Energy networks,
      • Lighting,
      • E-mobility,
      • Green areas,
      • User interaction/participation,
      • Information and Communication Technologies (ICT)
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure,
      • Tools for prototyping and modelling,
      • Tools, spaces, events for testing and validation
      • Monitoring and evaluation infrastructure,
      • Pivoting and risk-mitigating measures
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Equipment
      • Available data,
      • Life Cycle Analysis
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy,
      • Environmental,
      • Social,
      • Economical / Financial
      • Energy,
      • Environmental
      • Energy,
      • Sustainability,
      • Social,
      • Economical / Financial
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities- Building simulation model: thermal inertia and thermal loads of a building or community can be co-simulated with a building model. – System Operator and Aggregator simulation models: the interaction with remote control actions carried out by electricity System Operators or flexibility Aggregators can be simulated as well. – Grid simulation model: the physical interaction of the building with the grid power supply can be simulated enabling the experimental validation of flexibility services to the network.
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      • Energy modelling
      • Energy modelling
      • Social models
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important5 - Very important
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important4 - Important
      C1P001: Storage systems and E-mobility market penetration5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important4 - Important
      C1P001: Decreasing costs of innovative materials4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important4 - Important5 - Very important5 - Very important
      C1P001: The ability to predict Multiple Benefits4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important3 - Moderately important4 - Important4 - Important
      C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important5 - Very important
      C1P001: Social acceptance (top-down)5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important4 - Important
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important1 - Unimportant4 - Important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important5 - Very important
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant5 - Very important5 - Very important4 - Important
      C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important4 - Important4 - Important4 - Important4 - Important
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important4 - Important
      C1P001: Availability of RES on site (Local RES)5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important4 - Important4 - Important5 - Very important
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important4 - Important3 - Moderately important4 - Important
      C1P001: Any other UNLOCKING FACTORS5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situation
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P002: Urban re-development of existing built environment3 - Moderately important5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important3 - Moderately important5 - Very important4 - Important
      C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important2 - Slightly important3 - Moderately important4 - Important
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important4 - Important5 - Very important
      C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
      C1P002: Energy autonomy/independence5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important4 - Important5 - Very important
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important4 - Important4 - Important5 - Very important
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important
      C1P003: Lack of public participation3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important4 - Important
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important4 - Important
      C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important5 - Very important
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important3 - Moderately important
      C1P003: Complicated and non-comprehensive public procurement4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important4 - Important4 - Important4 - Important
      C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important5 - Very important4 - Important
      C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important5 - Very important5 - Very important5 - Very important
      C1P003: Lack of internal capacities to support energy transition3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important4 - Important4 - Important5 - Very important
      C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important4 - Important5 - Very important
      C1P005: Regulatory instability3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important
      C1P005: Non-effective regulations4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important4 - Important4 - Important4 - Important
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important2 - Slightly important2 - Slightly important4 - Important
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
      C1P005: Insufficient or insecure financial incentives4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important4 - Important5 - Very important
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important
      C1P005: Shortage of proven and tested solutions and examples2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important2 - Slightly important2 - Slightly important4 - Important
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriersAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important4 - Important5 - Very important
      C1P007: Deficient planning3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant5 - Very important
      C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important
      C1P007: Lack of well-defined process4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important5 - Very important4 - Important
      C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important4 - Important5 - Very important
      C1P007: Lack/cost of computational scalability4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important
      C1P007: Grid congestion, grid instability4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important4 - Important5 - Very important
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
      C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important
      C1P007: Difficult definition of system boundaries3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important5 - Very important4 - Important
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important4 - Important2 - Slightly important4 - Important
      C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important5 - Very important
      C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important2 - Slightly important3 - Moderately important5 - Very important
      C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important4 - Important4 - Important
      C1P008: Lack of trust beyond social network4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important4 - Important
      C1P008: Rebound effect4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important3 - Moderately important
      C1P008: Hostile or passive attitude towards environmentalism5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important2 - Slightly important5 - Very important
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important
      C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important5 - Very important
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important4 - Important5 - Very important
      C1P009: Lack of awareness among authorities3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important5 - Very important
      C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
      C1P009: High costs of design, material, construction, and installation4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important5 - Very important4 - Important4 - Important
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important4 - Important4 - Important
      C1P010: Insufficient external financial support and funding for project activities2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important5 - Very important4 - Important5 - Very important
      C1P010: Economic crisis2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important4 - Important4 - Important
      C1P010: Risk and uncertainty4 - Important1 - Unimportant5 - Very important3 - Moderately important5 - Very important4 - Important5 - Very important5 - Very important
      C1P010: Lack of consolidated and tested business models5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important5 - Very important4 - Important
      C1P010: Limited access to capital and cost disincentives2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important5 - Very important
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important4 - Important5 - Very important5 - Very important
      C1P011: Energy price distortion2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important5 - Very important5 - Very important
      C1P011: Energy market concentration, gatekeeper actors (DSOs)2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important4 - Important4 - Important
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Research & Innovation
      • Design/demand aggregation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Analyst, ICT and Big Data
      • Design/demand aggregation
      • Monitoring/operation/management
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Business process management
      • Planning/leading,
      • Monitoring/operation/management
      • Planning/leading
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Urban Services providers
      • Planning/leading
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Real Estate developers
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation
      • None
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Design/Construction companies
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation
      • Construction/implementation
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: End‐users/Occupants/Energy Citizens
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Industry/SME/eCommerce
      • Construction/implementation
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)