Filters:
NameProjectTypeCompare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Vidin, Himik and Bononia
Amsterdam, Buiksloterham PED
Leipzig, Baumwollspinnerei district
Freiburg, Waldsee
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityVidin, Himik and BononiaAmsterdam, Buiksloterham PEDLeipzig, Baumwollspinnerei districtFreiburg, Waldsee
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesyesyes
PED relevant case studyyesnononono
PED Lab.nonononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyes
Annual energy surplusnoyesyesnono
Energy communityyesnoyesnoyes
Circularitynonoyesnono
Air quality and urban comfortyesnonoyesno
Electrificationyesnoyesyesyes
Net-zero energy costnonononono
Net-zero emissionnonoyesnoyes
Self-sufficiency (energy autonomous)nonononono
Maximise self-sufficiencynonononono
Othernononoyesno
Other (A1P004)Net-zero emission; Annual energy surplus
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseImplementation PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date12/1811/1911/21
A1P007: End Date
A1P007: End date12/3010/2511/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
A1P009: Otherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
          • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
          • renewable energy potential,
          • own calculations based on publicly available data,
          • Some data can be found in https://geoportal.freiburg.de/freigis/
          A1P011: Geographic coordinates
          X Coordinate (longitude):23.81458822.88264.904112.3184587.885857135842917
          Y Coordinate (latitude):38.07734943.993652.367651.32649247.986535207080045
          A1P012: Country
          A1P012: CountryGreeceBulgariaNetherlandsGermanyGermany
          A1P013: City
          A1P013: CityMunicipality of KifissiaVidinAmsterdamLeipzigFreiburg im Breisgau
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CsaCfaCfbDfbCfb
          A1P015: District boundary
          A1P015: District boundaryVirtualGeographicFunctionalFunctionalVirtual
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodGeographic
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedMixedMixed
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple Owners
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED746022941
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]98759.532850017000284070
          A1P020: Total ground area
          A1P020: Total ground area [m²]195234.80300004920000
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area01010
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenonoyesnono
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenonononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernonononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnonononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnoyesnonono
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnonononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnonononoyes
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernonononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnonoyesnoyes
          A1P022i: Add the value in EUR if available [EUR]
          A1P022j: Financing - RESEARCH FUNDING - Nationalnonononoyes
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Boosting local businesses,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          A1P023: OtherSustainable and replicable business models regarding renewable energy systems
          A1P024: More comments:
          A1P024: More comments:
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
          Contact person for general enquiries
          A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaDaniela KostovaOmar ShafqatSimon BaumDr. Annette Steingrube
          A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamGreen Synergy ClusterAmsterdam University of Applied SciencesCENERO Energy GmbHFraunhofer Institute for solar energy systems
          A1P028: AffiliationMunicipality / Public BodiesOtherResearch Center / UniversityOtherResearch Center / University
          A1P028: OtherClusterCENERO Energy GmbH
          A1P029: Emailgiavasoglou@kifissia.grdaniela@greensynergycluster.euo.shafqat@hva.nlsib@cenero.deAnnette.Steingrube@ise.fraunhofer.de
          Contact person for other special topics
          A1P030: NameStavros Zapantis - vice mayorOmar ShafqatSimon Baum
          A1P031: Emailstavros.zapantis@gmail.como.shafqat@hva.nlsib@cenero.de
          Pursuant to the General Data Protection RegulationYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy production
          • Energy efficiency,
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Water use,
          • Waste management,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Waste management
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsCity vision, Innovation AteliersEnergy system modeling
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoYesYes
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceNoNoYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceYesNoYes
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationAll energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]1.65135.715
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]31.76
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]0
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesnoyesyesno
          A2P011: PV - specify production in GWh/annum [GWh/annum]
          A2P011: Windnonononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnonoyesnono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnonononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnonononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
          A2P011: Othernonononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnonoyesnono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnonononono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnonoyesnono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPnonoyesnono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnonononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnonononono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnonononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notes53 MW PV potential in all three quarters; no other internal renewable energy potentials known
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]2.421132.5
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnonoyesnono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnonoyesnono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnonoyesnono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernonononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnonoyesnono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
          A2P018: Windnonoyesnono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononoyesnono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnonoyesnono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnonoyesnono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnonoyesnono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernonononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnonoyesnono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonoyesnono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonoyesnono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnonoyesnono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnonoyesnono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnonoyesnono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonoyesnono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernonononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary00000
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]250
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Security
          A2P022: Health
          A2P022: Education
          A2P022: Mobilityyes
          A2P022: Energyapplyyes
          A2P022: Water
          A2P022: Economic development
          A2P022: Housing and Communityyes
          A2P022: Waste
          A2P022: Other
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsnoyesyesnoyes
          A2P023: Solar thermal collectorsnonononoyes
          A2P023: Wind Turbinesnonononono
          A2P023: Geothermal energy systemnoyesyesnoyes
          A2P023: Waste heat recoverynonoyesnoyes
          A2P023: Waste to energynonoyesnoyes
          A2P023: Polygenerationnonononono
          A2P023: Co-generationnonononoyes
          A2P023: Heat Pumpnoyesyesnoyes
          A2P023: Hydrogennonononoyes
          A2P023: Hydropower plantnonononoyes
          A2P023: Biomassnonoyesnoyes
          A2P023: Biogasnonoyesnoyes
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesnoyes
          A2P024: Energy management systemnonoyesnoyes
          A2P024: Demand-side managementnonoyesnoyes
          A2P024: Smart electricity gridnonoyesnoyes
          A2P024: Thermal Storagenonoyesnoyes
          A2P024: Electric Storagenoyesyesnoyes
          A2P024: District Heating and Coolingnonoyesnoyes
          A2P024: Smart metering and demand-responsive control systemsnonoyesnoyes
          A2P024: P2P – buildingsnonoyesnoyes
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnoyesyesnoyes
          A2P025: Energy efficiency measures in historic buildingsnonoyesnoyes
          A2P025: High-performance new buildingsnonoyesnono
          A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesnono
          A2P025: Urban data platformsnonoyesnoyes
          A2P025: Mobile applications for citizensnonoyesnono
          A2P025: Building services (HVAC & Lighting)nonoyesnono
          A2P025: Smart irrigationnonoyesnono
          A2P025: Digital tracking for waste disposalnonoyesnono
          A2P025: Smart surveillancenonononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nonoyesnoyes
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnoyes
          A2P026: e-Mobilitynonoyesnoyes
          A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnoyes
          A2P026: Car-free areanonoyesnono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notesTest-Concept for bidirectional charging.
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesNo
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNo
          A2P029: If yes, please specify and/or enter notes
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Energy master planning (SECAP, etc.),
          • New development strategies
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyClimate neutrality by 2035
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas,
          • Hydrogen
          • Biogas
          • Electrification of Heating System based on Heat Pumps,
          • Biogas,
          • Hydrogen
          A3P003: Other
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesFreiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district level
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourEnergy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Innovative business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Demand management Living Lab,
          • Local trading,
          • Existing incentives
          • Innovative business models,
          • Other
          • Demand management Living Lab,
          • Local trading,
          • Existing incentives
          A3P006: Otheroperational savings through efficiency measures
          A3P007: Social models
          A3P007: Social models
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Quality of Life,
          • Prevention of energy poverty
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Social incentives,
          • Quality of Life,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Behavioural Change / End-users engagement
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • City Vision 2050,
          • SECAP Updates
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Pollutants Reduction,
          • Greening strategies
          • Energy Neutral,
          • Life Cycle approach
          • Other
          A3P009: OtherPositive Energy Balance for the demo site
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsRegulatory sandbox
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionFunctional PEDAssessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case study
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentBrown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regard
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaUrban areaUrban areaSuburban area
          B1P004: Type of district
          B2P004: Type of district
          • Renovation
          • New construction
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • Retrofitting Area
          • New Development
          • Preservation Area
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential5898
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential5898
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential
          B1P011: Population density before intervention
          B1P011: Population density before intervention00000
          B1P012: Population density after intervention
          B1P012: Population density after intervention00000.0011987804878049
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnoyesnonoyes
          B1P013 - Residential: Specify the sqm [m²]64 787,57
          B1P013: Officenonononoyes
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynonoyesnoyes
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnoyesnonoyes
          B1P013 - Commercial: Specify the sqm [m²]262,33
          B1P013: Institutionalnonononoyes
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnonononoyes
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnonononoyes
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnonononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernonononono
          B1P013 - Other: Specify the sqm [m²]
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnonoyesnoyes
          B1P014 - Residential: Specify the sqm [m²]
          B1P014: Officenonoyesnoyes
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynonononoyes
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnonoyesnoyes
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnoyesnonoyes
          B1P014 - Institutional: Specify the sqm [m²]35322.21
          B1P014: Natural areasnonononoyes
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnonoyesnoyes
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnonononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernonononono
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life time
          B2P003: Scale of action
          B2P003: Scale
          B2P004: Operator of the installation
          B2P004: Operator of the installation
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED Lab
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Other
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important4 - Important3 - Moderately important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important5 - Very important3 - Moderately important
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important
          C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important4 - Important
          C1P001: Decreasing costs of innovative materials4 - Important2 - Slightly important3 - Moderately important2 - Slightly important
          C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important3 - Moderately important3 - Moderately important2 - Slightly important
          C1P001: The ability to predict Multiple Benefits3 - Moderately important3 - Moderately important3 - Moderately important
          C1P001: The ability to predict the distribution of benefits and impacts2 - Slightly important1 - Unimportant2 - Slightly important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important2 - Slightly important4 - Important
          C1P001: Social acceptance (top-down)5 - Very important4 - Important1 - Unimportant4 - Important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important2 - Slightly important4 - Important
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important3 - Moderately important4 - Important
          C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important4 - Important4 - Important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important4 - Important3 - Moderately important
          C1P001: Availability of RES on site (Local RES)5 - Very important3 - Moderately important4 - Important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important2 - Slightly important2 - Slightly important
          C1P001: Any other UNLOCKING FACTORS5 - Very important1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need4 - Important4 - Important5 - Very important4 - Important
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important4 - Important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
          C1P002: Urban re-development of existing built environment3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important
          C1P002: Economic growth need2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important4 - Important2 - Slightly important
          C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important4 - Important1 - Unimportant
          C1P002: Energy autonomy/independence5 - Very important2 - Slightly important2 - Slightly important3 - Moderately important
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant2 - Slightly important4 - Important
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
          C1P003: Lack of public participation3 - Moderately important5 - Very important2 - Slightly important4 - Important
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
          C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important1 - Unimportant3 - Moderately important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important1 - Unimportant1 - Unimportant
          C1P003: Complicated and non-comprehensive public procurement4 - Important5 - Very important1 - Unimportant2 - Slightly important
          C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important2 - Slightly important4 - Important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important
          C1P003: Lack of internal capacities to support energy transition3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important2 - Slightly important2 - Slightly important
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important1 - Unimportant3 - Moderately important
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important5 - Very important3 - Moderately important4 - Important
          C1P005: Regulatory instability3 - Moderately important5 - Very important3 - Moderately important2 - Slightly important
          C1P005: Non-effective regulations4 - Important4 - Important2 - Slightly important1 - Unimportant
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important5 - Very important2 - Slightly important5 - Very important
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important1 - Unimportant3 - Moderately important
          C1P005: Insufficient or insecure financial incentives4 - Important5 - Very important3 - Moderately important3 - Moderately important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important2 - Slightly important2 - Slightly important2 - Slightly important
          C1P005: Shortage of proven and tested solutions and examples1 - Unimportant2 - Slightly important3 - Moderately important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important5 - Very important1 - Unimportant4 - Important
          C1P007: Deficient planning3 - Moderately important5 - Very important2 - Slightly important4 - Important
          C1P007: Retrofitting work in dwellings in occupied state4 - Important5 - Very important3 - Moderately important4 - Important
          C1P007: Lack of well-defined process4 - Important5 - Very important3 - Moderately important3 - Moderately important
          C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important1 - Unimportant2 - Slightly important
          C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant2 - Slightly important1 - Unimportant
          C1P007: Grid congestion, grid instability4 - Important2 - Slightly important5 - Very important3 - Moderately important
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
          C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important2 - Slightly important1 - Unimportant4 - Important
          C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia4 - Important3 - Moderately important1 - Unimportant4 - Important
          C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important1 - Unimportant3 - Moderately important
          C1P008: Low acceptance of new projects and technologies5 - Very important4 - Important3 - Moderately important2 - Slightly important
          C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important1 - Unimportant4 - Important
          C1P008: Lack of trust beyond social network4 - Important4 - Important1 - Unimportant3 - Moderately important
          C1P008: Rebound effect4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P008: Hostile or passive attitude towards environmentalism5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant
          C1P008: Exclusion of socially disadvantaged groups2 - Slightly important4 - Important1 - Unimportant1 - Unimportant
          C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important5 - Very important1 - Unimportant4 - Important
          C1P008: Hostile or passive attitude towards energy collaboration4 - Important1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers5 - Very important4 - Important4 - Important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important2 - Slightly important2 - Slightly important
          C1P009: Lack of awareness among authorities5 - Very important1 - Unimportant2 - Slightly important
          C1P009: Information asymmetry causing power asymmetry of established actors2 - Slightly important4 - Important3 - Moderately important
          C1P009: High costs of design, material, construction, and installation5 - Very important3 - Moderately important4 - Important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs3 - Moderately important3 - Moderately important2 - Slightly important
          C1P010: Insufficient external financial support and funding for project activities5 - Very important1 - Unimportant3 - Moderately important
          C1P010: Economic crisis5 - Very important4 - Important3 - Moderately important
          C1P010: Risk and uncertainty5 - Very important4 - Important4 - Important
          C1P010: Lack of consolidated and tested business models5 - Very important3 - Moderately important3 - Moderately important
          C1P010: Limited access to capital and cost disincentives5 - Very important1 - Unimportant2 - Slightly important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives5 - Very important3 - Moderately important2 - Slightly important
          C1P011: Energy price distortion5 - Very important2 - Slightly important3 - Moderately important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important3 - Moderately important3 - Moderately important
          C1P011: Any other Market BARRIER1 - Unimportant4 - Important1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Planning/leading
          C1P012: Research & Innovation
          • None
          • Monitoring/operation/management
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          C1P012: Analyst, ICT and Big Data
          • None
          • Construction/implementation
          • None
          C1P012: Business process management
          • None
          • None
          C1P012: Urban Services providers
          • None
          C1P012: Real Estate developers
          • None
          C1P012: Design/Construction companies
          • Design/demand aggregation,
          • Construction/implementation
          • Construction/implementation
          C1P012: End‐users/Occupants/Energy Citizens
          • Construction/implementation
          • Design/demand aggregation
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Design/demand aggregation
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Industry/SME/eCommerce
          • Design/demand aggregation,
          • Construction/implementation
          • Construction/implementation
          • None
          C1P012: Other
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)