Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Uncompare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Uncompare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Riga, Ķīpsala, RTU smart student city
Vantaa, Aviapolis
Vidin, Himik and Bononia
Bologna, Pilastro-Roveri district
Roubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’Oran
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityRiga, Ķīpsala, RTU smart student cityVantaa, AviapolisVidin, Himik and BononiaBologna, Pilastro-Roveri districtRoubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’Oran
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesyesnono
PED relevant case studyyesnoyesnoyesyes
PED Lab.nonoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyes
Annual energy surplusnononoyesnoyes
Energy communityyesyesnonoyesno
Circularitynonoyesnonono
Air quality and urban comfortyesnonononoyes
Electrificationyesnonononono
Net-zero energy costnononononono
Net-zero emissionnononononono
Self-sufficiency (energy autonomous)noyesnononono
Maximise self-sufficiencynoyesnononono
Othernononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhaseCompleted
A1P006: Start Date
A1P006: Start date01/2401/2312/1809/1901/22
A1P007: End Date
A1P007: End date12/2612/2712/3010/2301/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190,
      • Barroco Fontes Cunha F., Carani C., Nucci C.A., Castro C., Santana Silva M., Andrade Torres E. (2021) Transitioning to a low carbon society through energy communities: Lessons learned from Brazil and Italy, ENERGY RESEARCH & SOCIAL SCIENCE, 2021, 75, 1-19.,
      • GRETA Project, Pilastro-Roveri case study. Available at: https://projectgreta.eu/case-study/renewable-energy-district/
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.81458824.0816833924.95882122.882611.3973233.1651
        Y Coordinate (latitude):38.07734956.9524595660.30548843.993644.50710650.6937
        A1P012: Country
        A1P012: CountryGreeceLatviaFinlandBulgariaItalyFrance
        A1P013: City
        A1P013: CityMunicipality of KifissiaRigaVantaaVidinBolognaRoubaix
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaCfbDfbCfaCfaCfb
        A1P015: District boundary
        A1P015: District boundaryVirtualGeographicGeographicGeographicGeographicOther
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodPEB
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:PublicMixedMixedMixedPrivate
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle Owner
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED157419621
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]17000098759.531442
        A1P020: Total ground area
        A1P020: Total ground area [m²]1192643881000195234.8078000002500
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area010101
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonoyesnonoyes
        A1P022a: Add the value in EUR if available [EUR]0
        A1P022b: Financing - PRIVATE - ESCO schemenononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonoyesnonono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnononoyesyesno
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnonononoyesyes
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnonoyesnoyesyes
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesnoyesyes
        A1P022i: Add the value in EUR if available [EUR]7500000
        A1P022j: Financing - RESEARCH FUNDING - Nationalnononononono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononoyesno
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: OtherMultiple different funding schemes depending on the development site within the District and Lab.Retrofitted through various subsidies
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Positive externalities,
        • Boosting local businesses,
        • Boosting local and sustainable production
        • Job creation,
        • Positive externalities,
        • Boosting local businesses
        A1P023: Other
        A1P024: More comments:
        A1P024: More comments:The Pilastro-Roveri area is a large peri-urban district in the northeast of the city of Bologna (about 650 hectares). In particular, the northern area is mainly characterised by the residential sector of Rione Pilastro, a significant complex of social housing built in the 1960s in response to the housing emergency due to migrations from southern Italy and nowadays satisfying more global migrations. The southern area is instead characterised by the presence of the production district called Roveri. The area appears relevant for the research as it has several evolution potentials towards a climate-neutral district. In particular some key factors are interesting: - the presence of one of the largest photovoltaic parks in Europe on the roofs of CAAB, characterised by a production of 11,350,000 Kw/h of primary energy; - the presence of companies attentive to the issues of climate change and energy, able to act as facilitators for the area. This is the case of FIVE, a leader in the production of electric bicycles, whose plant is the first nZEB (nearly Zero Energy Building) productive building in the city; - the high presence of industrial buildings of different sizes needing a reduction in energy consumption; - the presence of obsolete, sometimes in decay, and of general highly energy-intensive buildings in the Pilastro area, accompanied by spread phenomena of energy poverty; - the presence of spaces that could be converted (e.g. unused warehouses, unexploited green areas, etc.); - the presence of an active community, characterised by numerous associations, but also by social challenges linked to multiple vulnerabilities; - the presence of local actors interested in the development of the area (including the Municipality, the University, Confindustria, ENEA, Confartigianato, etc.). Two main research projects are actually ongoing in the area, applying solutions towards energy improvement and transition strategies to guide the area towards climate neutrality: - GECO - Green Energy Community, funded by EIT Climate-KIC and active since 2019, aims to trigger a virtuous path of energy sharing between companies and citizens through the creation of an energy community. - GRETA - Green Energy Transition Actions, funded by the H2020 programme, aims to understand drivers and barriers on the involvement of citizens in the energy transition processes, by formulating Community Transition Pathways and Energy Citizenship Contracts. [from: Boeri, A., Boulanger, S., Turci, G., Pagliula, S. (2021) Strategie e tecnologie abilitanti per PED misti: efficienza tra smart cities e industria 4.0. TECHNE, 22, 180-190]The building comprises 32 homes. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.6
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaJudith StiekemaEira LinkoDaniela KostovaProf. Danila LongoJulien Holgard
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamOASCCity of VantaaGreen Synergy ClusterUniversity of Bologna - Architecture DepartmentVilogia
        A1P028: AffiliationMunicipality / Public BodiesOtherMunicipality / Public BodiesOtherResearch Center / UniversityOther
        A1P028: Othernot for profit private organisationClusterSocial Housing Company
        A1P029: Emailgiavasoglou@kifissia.grjudith@oascities.orgeira.linko@vantaa.fidaniela@greensynergycluster.eujulien.holgard@vilogia.fr
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorJulien Holgard
        A1P031: Emailstavros.zapantis@gmail.comjulien.holgard@vilogia.fr
        Pursuant to the General Data Protection RegulationYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Digital technologies,
        • Construction materials,
        • Other
        • Energy efficiency,
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management
        • Energy efficiency,
        • Energy production,
        • Urban comfort (pollution, heat island, noise level etc.),
        • Indoor air quality,
        • Construction materials
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Pilot collaboration with landowners. Carbon footprint assessment and planning guidelines in zoning planning. Green infrastructure requirements. Examples of considered energy solutions: waste heat recovery and utilization, geothermal, air-water heat pumps, district heating return water, photovoltaics, A-class energy efficiency, smart control and monitoring, energy storages, E-mobility above national requirements, coolingEnergy efficiency: - buildings energy retrofit supported by tax incentives (110%, façade bonus, eco-bonus, sismabonus, renovation bonus, etc.); - several activities - such as Workshops, Webinars, Roundtables, Urban Trekking, etc…- are encouraged in the area to deepen knowledge and raise awareness on energy issues among urban stakeholders (householders, occupants, workers, etc..); - reduction in energy consumption also through every day energy saving actions. The spread of energy poverty phenomena in the area is considered urgent both for the medium-low-income population living in Pilastro and for small and medium-sized enterprises placed in Roveri; - Project for a One-stop-shop to guide residents and enterprises towards more conscious energy behaviours (planned in Bologna SECAP). Energy production: - installation of new photovoltaic (PV) systems for renewable on-site energy production; - presence of a waste to energy plant connected to the district heating system; - presence of a large PV plant in the CAAB area - 11,350,000 Kw/h Energy flexibility: - testing energy community and collective self-consumption feasibility in Pilastro area through an active citizens involvement process; - testing energy community feasibility among SMEs in Roveri industrial area; - testing the potential of complementary energy consumption profiles between residential area (Pilastro) and industrial area (Roveri). Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviors; - Blog Pilastro as a tool to inform about the main activities and events ongoing in the area; E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services recovery (in fact during Covid-19 in the area Mobike service was suspended) and implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2); - Microclimatic simulation
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoNoNoYesNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesNoNoYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceYesYesNoNo
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.The calculation of the energy balance will be further developed and specified under the Neutralpath-project. Mobility related emissions are taken into account in the carbon footprint calculation of each zoning plan in the development area.
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]8000
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]5000
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnoyesnoyesyes
        A2P011: PV - specify production in GWh/annum [GWh/annum]
        A2P011: Windnoyesnononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydronononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnoyesnononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
        A2P011: Othernononononono
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonoyesnonono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnonononoyesno
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnoyesnonoyesno
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnonoyesnonono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnononononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_firewood_thnononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notesConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.084
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.11
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnoyesnononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernononononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonoyesnonono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
        A2P018: Windnonoyesnonono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononoyesnonono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonoyesnonono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernononononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonoyesnonono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonoyesnonono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernononononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary000000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Security
        A2P022: Health
        A2P022: Education
        A2P022: Mobility
        A2P022: Energy
        A2P022: Water
        A2P022: Economic development
        A2P022: Housing and Community
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnonoyesyesyesyes
        A2P023: Solar thermal collectorsnonononoyesno
        A2P023: Wind Turbinesnononononono
        A2P023: Geothermal energy systemnonoyesyesyesno
        A2P023: Waste heat recoverynonoyesnonono
        A2P023: Waste to energynonoyesnoyesno
        A2P023: Polygenerationnonoyesnonono
        A2P023: Co-generationnonononoyesno
        A2P023: Heat Pumpnonoyesyesyesno
        A2P023: Hydrogennononononono
        A2P023: Hydropower plantnononononono
        A2P023: Biomassnonoyesnonono
        A2P023: Biogasnononononono
        A2P023: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesnoyesno
        A2P024: Energy management systemnoyesyesnonono
        A2P024: Demand-side managementnoyesyesnonono
        A2P024: Smart electricity gridnoyesyesnonono
        A2P024: Thermal Storagenoyesyesnonono
        A2P024: Electric Storagenoyesyesyesyesno
        A2P024: District Heating and Coolingnoyesyesnoyesno
        A2P024: Smart metering and demand-responsive control systemsnoyesyesnonoyes
        A2P024: P2P – buildingsnononononono
        A2P024: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnononoyesyesyes
        A2P025: Energy efficiency measures in historic buildingsnononononono
        A2P025: High-performance new buildingsnonoyesnoyesno
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonononoyesno
        A2P025: Urban data platformsnoyesnononono
        A2P025: Mobile applications for citizensnoyesnonoyesno
        A2P025: Building services (HVAC & Lighting)noyesyesnoyesno
        A2P025: Smart irrigationnononononono
        A2P025: Digital tracking for waste disposalnonononoyesno
        A2P025: Smart surveillancenonononoyesno
        A2P025: OtherThe technological solutions can vary within the PED Lab area and will be specified case by case.
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nonoyesnoyesno
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnoyesno
        A2P026: e-Mobilitynonoyesnoyesno
        A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnoyesno
        A2P026: Car-free areanononononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesNoYesYesNo
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance Certificate for each dwelling
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoNoNo
        A2P029: If yes, please specify and/or enter notes
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Smart cities strategies,
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Energy master planning (SECAP, etc.),
        • New development strategies,
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Energy master planning (SECAP, etc.),
        • New development strategies
        • Urban Renewal Strategies,
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyCarbon-Neutral Vantaa by 2030 (min. 80 % reduction of yearly emissions, capture or compensation os the residual 20 %),City level targets Sustainable Urban Mobility Plan (PUMS) - 2019 | Targets: - by 2030 440,000 daily trips will no longer be made by car but on foot, by bike or by public transport; - by 2030 12% of vehicles will be electric; Sustainable Energy and Climate Action Plan (SECAP) - 2021 | Targets: - by 2025 deep renovation of 3% per year of residential homes (insulation of building envelopes and adoption of heat pump heating system); - by 2030 reduction of electricity consumption at least of 20% compared to 2018; - by 2030 100% coverage of electricity consumption for municipal buildings; - by 2030 increase public green areas by at least 10% Urban General Plan (PUG) - 2021 | Targets: - by 2030 net zero land consumption; National level targets Integrated National Energy and Climate Plan - 2020 | Targets: - by 2030 reduction of 43% for primary energy consumption, with respect to the reference 2007 scenario. - by 2030 increase of 30% of energy production from renewable sources; - by 2025 energy generation for electricity independent from the use of coal;
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods
        • Electrification of Heating System based on Heat Pumps
        A3P003: Other
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesBologna needs to reach the climate neutrality proceeding by ‘part’ of the city. Pilastro-Roveri is a promising district due to the following reasons: - some buildings need to be renovated both to increase the energy performance, the seismic behaviour, spaces liveability and comfort; - Pilastro is a residential area with the presence of a high percentage of vulnerable inhabitants affected by energy poverty phenomenon. This situation needs to be prioritized; - Pilastro is characterized by the presence of large underused green spaces that can represent a valuable resource for social cohesion and for heat island phenomenon mitigation; - Roveri is an industrial area where some small-medium enterprises are investing in order to improve their facilities and to efficiency their production cycle; - Roveri and Pilastro areas present complementary energy consumption curves throughout the day/week with a high potential for energy sharing and flexibility.
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourBologna SECAP, as well as the participation to the 100 Climate-Neutral Cities, promotes the PED model as an enabling tool to foster city energy transition process. In Pilastro-Roveri district two main sustainable behaviours approaches can be identified: - bottom-up approach - some citizens are joining forces to create groups of energy self-consumption, in view of energy communities’ implementation and, at the same time, some companies have already undertaken some efficiency intervention on the production system by leveraging highly energy-efficient technologies; - top-down approach - GECO and GRETA are international ongoing projects on the area that promote innovation and energy transition with important fundings from the European Union, but with a particular focus on citizen engagement and participatory approach. Simultaneously, new and updated planning tools such as PUG, SECAP and SUMP identify in this part of Bologna city a key area to enable an ecological transition process holding together all relevant stakeholders - citizens, small-medium enterprises and Institutions. These two thrusts (bottom-up and top-down) need to be optimized in view of a participatory pathway towards the grounding of a Positive Energy District in Pilastro-Roveri.
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Open data business models,
        • Innovative business models,
        • Demand management Living Lab
        • Innovative business models,
        • PPP models,
        • Life Cycle Cost,
        • Circular economy models
        • Innovative business models,
        • PPP models,
        • Circular economy models,
        • Demand management Living Lab,
        • Existing incentives
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Quality of Life,
        • Strategies towards social mix,
        • Affordability,
        • Prevention of energy poverty,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Quality of Life,
        • Prevention of energy poverty
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen Social Research,
        • Policy Forums,
        • Affordability,
        • Prevention of energy poverty,
        • Digital Inclusion,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Behavioural Change / End-users engagement,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Digital twinning and visual 3D models
        • Strategic urban planning,
        • SECAP Updates
        • Strategic urban planning,
        • City Vision 2050,
        • SECAP Updates
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Energy Neutral
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Greening strategies,
        • Nature Based Solutions (NBS)
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Pollutants Reduction,
        • Greening strategies
        • Energy Neutral
        A3P009: Other
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsPEDs in Italy are meant as strategies towards climate-neutrality: at national/regional/local level a specific legislation on PEDs development is not yet available. However, the European Commission has legislated on Energy Community (‘Renewable energy’ directive - 2018/2001/EU and ‘Common rules for the internal electricity market’ directive- 2019/944/EU). Italy, starting from 2020, has transposed the Directives at national level (‘Milleproroghe’ decree then made effective by ‘Promotion of Renewable sources’ decree 199/2021). At regional level Emilia Romagna in May 2022 developed a law encouraging EC model diffusion (LR 5/2022 ‘Promotion and support of renewable energy communities and renewable energy self-consumers acting collectively’). Energy Community, according to Lindholm et al. 2021, can be considered as ‘a first implementation step towards PEDs.’
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Neutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.Pilastro-Roveri district can be considered as a PED-relevant area. Even though at the moment the area doesn’t meet annual energy positive balance, it addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.Refurbishment of social housing. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.According to Vantaa city strategy 2021-2025 Aviapolis area aims to become the greenest airport city in Europe. The district is transforming from a logistics and business focused area to a lively urban district which gives an opportunity to rethink the areas energy solutions. With Neutralpath-project Vantaa aims to support the development of the district's energy system and explore innovative, energy efficient and fossil free district energy solutions.Pilastro-Roveri district is not actually meant to become a PEDs. However, it can be considered as a PED-relevant case-study since a participatory transition pathway towards a more sustainable, efficient and resilient district is gaining ground, involving the main urban stakeholders. At the same time, the most recent city plan and policies (such as the city SECAPs - updated in 2021) are promoting PED model as a key strategy to guide Bologna towards climate neutrality by 2030.Refurbishment of social housing
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban areaSuburban area
        B1P004: Type of district
        B2P004: Type of district
        • New construction,
        • Renovation
        • Renovation
        • Renovation
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Re-use / Transformation Area,
        • New Development
        • Retrofitting Area
        • Retrofitting Area
        • Retrofitting Area
        B1P006: Year of construction
        B1P006: Year of construction1958
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential
        B1P011: Population density before intervention
        B1P011: Population density before intervention000000
        B1P012: Population density after intervention
        B1P012: Population density after intervention000000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnonoyesyesyesyes
        B1P013 - Residential: Specify the sqm [m²]64 787,57
        B1P013: Officenonoyesnoyesno
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynonoyesnoyesno
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnonoyesyesyesno
        B1P013 - Commercial: Specify the sqm [m²]262,33
        B1P013: Institutionalnonoyesnoyesno
        B1P013 - Institutional: Specify the sqm [m²]
        B1P013: Natural areasnonononoyesno
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnonoyesnoyesno
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonoyesnoyesno
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernononononono
        B1P013 - Other: Specify the sqm [m²]
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnonoyesnoyesyes
        B1P014 - Residential: Specify the sqm [m²]
        B1P014: Officenonoyesnoyesno
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynonoyesnoyesno
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnonoyesnoyesno
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonoyesyesyesno
        B1P014 - Institutional: Specify the sqm [m²]35322.21
        B1P014: Natural areasnonononoyesno
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnonoyesnoyesno
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononoyesno
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernononononono
        B1P014 - Other: Specify the sqm [m²]
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definitionNeutralpath-project is working with the cocept of PCEDs = Positive and Clean Energy Districts (energy-efficient and energy-flexible districts with net zero greenhouse gas emissions and a surplus of renewable energy). Aviapolis Climate-Neutral Lab will work with both PCED and PCED relevant cases within the district.
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installationThe City of Vantaa manages the lab, working closely with landowners and other stakeholders such as energy companies, solution providers, universities and citizens.
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        • Strategic
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED LabMunicipality
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        • Academia,
        • Private,
        • Industrial,
        • Citizens, public, NGO
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy,
        • Environmental,
        • Social,
        • Economical / Financial
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        • Energy modelling
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibilityTo follow the lab and Vantaa's activities in Neutralpath, fill in the following form: https://neutralpath.eu/fi/tayta-lomake-liittyaksesi-cn-labiin/
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important5 - Very important4 - Important4 - Important1 - Unimportant
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
        C1P001: Storage systems and E-mobility market penetration4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant
        C1P001: Decreasing costs of innovative materials4 - Important4 - Important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant
        C1P001: The ability to predict Multiple Benefits5 - Very important4 - Important3 - Moderately important4 - Important1 - Unimportant
        C1P001: The ability to predict the distribution of benefits and impacts5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant
        C1P001: Social acceptance (top-down)5 - Very important4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important3 - Moderately important5 - Very important4 - Important1 - Unimportant
        C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)Real-estate market situation
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important5 - Very important4 - Important4 - Important4 - Important1 - Unimportant
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important5 - Very important3 - Moderately important5 - Very important1 - Unimportant
        C1P002: Economic growth need2 - Slightly important4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important4 - Important4 - Important4 - Important1 - Unimportant
        C1P002: Territorial and market attractiveness2 - Slightly important4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant
        C1P002: Energy autonomy/independence5 - Very important4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant
        C1P002: Any other DRIVING FACTOR3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important5 - Very important5 - Very important2 - Slightly important1 - Unimportant
        C1P003: Lack of public participation3 - Moderately important4 - Important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
        C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important2 - Slightly important5 - Very important4 - Important1 - Unimportant
        C1P003: Fragmented and or complex ownership structure3 - Moderately important3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important4 - Important1 - Unimportant
        C1P003: Any other Administrative BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
        C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant
        C1P005: Regulatory instability3 - Moderately important3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant
        C1P005: Non-effective regulations4 - Important3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
        C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important3 - Moderately important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant
        C1P007: Deficient planning3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
        C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant
        C1P007: Lack of well-defined process4 - Important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
        C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant
        C1P007: Lack/cost of computational scalability4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant
        C1P007: Grid congestion, grid instability4 - Important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
        C1P007: Difficult definition of system boundaries3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant
        C1P007: Any other Thecnical BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important3 - Moderately important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
        C1P008: Low acceptance of new projects and technologies5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
        C1P008: Lack of trust beyond social network4 - Important3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant
        C1P008: Rebound effect4 - Important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important4 - Important1 - Unimportant
        C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
        C1P009: Lack of awareness among authorities3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant
        C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant
        C1P009: High costs of design, material, construction, and installation3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs4 - Important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant
        C1P010: Insufficient external financial support and funding for project activities3 - Moderately important2 - Slightly important5 - Very important4 - Important1 - Unimportant
        C1P010: Economic crisis3 - Moderately important2 - Slightly important5 - Very important4 - Important1 - Unimportant
        C1P010: Risk and uncertainty3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant
        C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important5 - Very important5 - Very important1 - Unimportant
        C1P010: Limited access to capital and cost disincentives3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant
        C1P010: Any other Financial BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives3 - Moderately important2 - Slightly important5 - Very important5 - Very important1 - Unimportant
        C1P011: Energy price distortion5 - Very important2 - Slightly important5 - Very important5 - Very important1 - Unimportant
        C1P011: Energy market concentration, gatekeeper actors (DSOs)5 - Very important2 - Slightly important3 - Moderately important4 - Important1 - Unimportant
        C1P011: Any other Market BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Planning/leading
        • Planning/leading
        • Planning/leading,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Research & Innovation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation
        • None
        • Planning/leading,
        • Design/demand aggregation
        C1P012: Financial/Funding
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        • Construction/implementation,
        • Monitoring/operation/management
        • Design/demand aggregation,
        • Construction/implementation
        C1P012: Analyst, ICT and Big Data
        • Planning/leading,
        • Monitoring/operation/management
        • Design/demand aggregation
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Monitoring/operation/management
        C1P012: Business process management
        • Monitoring/operation/management
        • None
        • None
        C1P012: Urban Services providers
        • Planning/leading,
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation
        C1P012: Real Estate developers
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Design/Construction companies
        • Construction/implementation
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Design/demand aggregation
        • Monitoring/operation/management
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Design/demand aggregation
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation
        C1P012: Industry/SME/eCommerce
        • Construction/implementation
        • Construction/implementation
        • Design/demand aggregation,
        • Construction/implementation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)