Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Uncompare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Compare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Compare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Compare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr, Geothermal District Heating Project PED Relevant Case Study Compare
Drammen, Jacobs Borchs Gate PED Relevant Case Study Compare
Freiburg im Breisgau, Dietenbach PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
Trento, STARDUST STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Malmö, Klimatkontrakt Hyllie PED Relevant Case Study Compare
Kaiserslautern, EnStadt:Pfaff PED Relevant Case Study / PED Lab Compare
Helsinki, mySMARTlife PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Bolzano, Sinfonia PED Relevant Case Study Compare
Zürich, Hunziker Areal PED Relevant Case Study Compare
Hammarby Sjöstad, Hammarby Sjöstad 2.0 PED Relevant Case Study Compare
Milano, Sharing Cities PED Relevant Case Study Compare
Mieres, District Heating Pozo Barredo PED Relevant Case Study Compare
Lund, Cityfied (demo Linero) PED Relevant Case Study Compare
Espoo, Smart Otaniemi PED Relevant Case Study / PED Lab Compare
Vienna, Zukunftsquartier PED Case Study Compare
Trento, Santa Chiara Open Lab PED Case Study Compare
Paterna, Barrio La Pinada PED Case Study / PED Lab Compare
Bergen, Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru, +CityxChange PED Case Study Compare
Trondheim, NTNU Campus within the Knowledge Axis ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Oslo, Furuset project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Măgurele, Laser Valley – Land of Lights PED Case Study Compare
Elverum, Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bodø, Airport, NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Bærum, Fornebu ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Carquefou, Fleuraye west PED Case Study Compare
Åland, Smart Energy PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Riga, Ķīpsala, RTU smart student city
Stor-Elvdal, Campus Evenstad
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab
City of Espoo, Espoonlahti district, Lippulaiva block
Schönbühel-Aggsbach, Schönbühel an der Donau
Borlänge, Rymdgatan’s Residential Portfolio
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityRiga, Ķīpsala, RTU smart student cityStor-Elvdal, Campus EvenstadBucharest, The Bucharest University of Economic Studies (ASE) PED LabCity of Espoo, Espoonlahti district, Lippulaiva blockSchönbühel-Aggsbach, Schönbühel an der DonauBorlänge, Rymdgatan’s Residential Portfolio
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnonoyesnono
PED relevant case studyyesnoyesnonoyesyes
PED Lab.nononoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesnoyesyes
Annual energy surplusnonoyesnononoyes
Energy communityyesyesnononoyesyes
Circularitynonononononono
Air quality and urban comfortyesnononononono
Electrificationyesnononononoyes
Net-zero energy costnononononoyesno
Net-zero emissionnonononononono
Self-sufficiency (energy autonomous)noyesnonononono
Maximise self-sufficiencynoyesnonoyesyesyes
Othernonoyesyesnonono
Other (A1P004)Energy-flexibilitySmart Buildings
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseIn operationPlanning PhaseIn operationImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date01/2401/1303/2506/18
A1P007: End Date
A1P007: End date12/2612/2412/2703/22
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data
  • General statistical datasets
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
      • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
      • www.lippulaiva.fi
          A1P011: Geographic coordinates
          X Coordinate (longitude):23.81458824.0816833911.07877077353174626.0973943259149824.654315.396915.394495
          Y Coordinate (latitude):38.07734956.9524595661.4260442039911244.4472496751992960.149148.275260.486609
          A1P012: Country
          A1P012: CountryGreeceLatviaNorwayRomaniaFinlandAustriaSweden
          A1P013: City
          A1P013: CityMunicipality of KifissiaRigaEvenstad, Stor-Elvdal municipalityBucharestEspooSchönbühel an der DonauBorlänge
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CsaCfbDwcCsaDfbDfbDsb
          A1P015: District boundary
          A1P015: District boundaryVirtualGeographicGeographicGeographicGeographicGeographicGeographic
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:PublicPublicPublicPrivatePrivateMixed
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerSingle OwnerSingle OwnerMultiple OwnersSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED15229010
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]170000100001120004773700
          A1P020: Total ground area
          A1P020: Total ground area [m²]11926448516500024509945
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area0100100
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenonononoyesyesno
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenonononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernonononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnonoyesnonoyesno
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnononononoyesno
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnonononononono
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernononoyesnonono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnoyesnonoyesnono
          A1P022i: Add the value in EUR if available [EUR]7500000308875
          A1P022j: Financing - RESEARCH FUNDING - Nationalnonoyesnononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Job creation,
          • Positive externalities,
          • Boosting local businesses
          • Positive externalities,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          A1P023: Other
          A1P024: More comments:
          A1P024: More comments:The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVs
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]
          Contact person for general enquiries
          A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaJudith StiekemaÅse Lekang SørensenAdela BaraElina EkelundGhazal EtminanJingchun Shen
          A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamOASCSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesThe Bucharest University of Economic StudiesCitycon OyjGhazal.Etminan@ait.ac.atHögskolan Dalarna
          A1P028: AffiliationMunicipality / Public BodiesOtherResearch Center / UniversityResearch Center / UniversitySME / IndustryResearch Center / UniversityResearch Center / University
          A1P028: Othernot for profit private organisation
          A1P029: Emailgiavasoglou@kifissia.grjudith@oascities.orgase.sorensen@sintef.noBara.adela@ie.ase.roElina.ekelund@citycon.comGhazal.Etminan@ait.ac.atjih@du.se
          Contact person for other special topics
          A1P030: NameStavros Zapantis - vice mayorElina EkelundXingxing Zhang
          A1P031: Emailstavros.zapantis@gmail.comElina.ekelund@citycon.comxza@du.se
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Digital technologies,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Construction materials
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Campus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.Energy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricEnergy modelingLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREM
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoYesNoNo
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceYesYesYesYesYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceYesYesNoNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.At Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.Mobility is not included in the energy model.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]80000.775.50.0660.6777
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]50000.765.80.0120.03656
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]0
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesnoyesnoyesyesno
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.0650.54
          A2P011: Windnoyesnonononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnonoyesnononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
          A2P011: Biomass_peat_elnonononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnoyesnonononoyes
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
          A2P011: Othernonononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnonononoyesnono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
          A2P012: Solar Thermalnonoyesnononono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
          A2P012: Biomass_heatnoyesyesnononono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
          A2P012: Waste heat+HPnonononononono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnonononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnonononononoyes
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
          A2P012: Biomass_firewood_thnonononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.Listed values are measurements from 2018. Renewable energy share is increasing.
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]1.50011.30.0790.318
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]15.760.00110.2055
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnoyesnonononono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P017: Coalnonononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P017: Oilnonononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P017: Othernonononononoyes
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnononononoyesno
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
          A2P018: Windnononononoyesno
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydronononononoyesno
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnononononoyesno
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnonononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnonononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernonononoyesnoyes
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.260.187
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnonononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnonononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnonononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnonononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnononononoyesno
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernonononononoyes
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary00001.053231939163500.53839572192513
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]046.93
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Securitynone
          A2P022: Healththermal comfort diagram
          A2P022: Educationnone
          A2P022: Mobilitynone
          A2P022: EnergyYesOn-site energy rationormalized CO2/GHG & Energy intensity
          A2P022: Water
          A2P022: Economic developmentcost of excess emissions
          A2P022: Housing and CommunitySpecify the associated KPIs
          A2P022: Waste
          A2P022: Other
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsnonoyesnoyesyesyes
          A2P023: Solar thermal collectorsnonoyesnononoyes
          A2P023: Wind Turbinesnonononononono
          A2P023: Geothermal energy systemnonononoyesnoyes
          A2P023: Waste heat recoverynonononoyesnoyes
          A2P023: Waste to energynonononononono
          A2P023: Polygenerationnonononononono
          A2P023: Co-generationnonoyesnononono
          A2P023: Heat Pumpnononononoyesyes
          A2P023: Hydrogennonononononono
          A2P023: Hydropower plantnonononononono
          A2P023: Biomassnonoyesnononono
          A2P023: Biogasnonononononono
          A2P023: OtherThe Co-generation is biomass based.Photovoltaics are considered for the next years
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesyesnoyes
          A2P024: Energy management systemnoyesyesyesyesyesno
          A2P024: Demand-side managementnoyesyesyesnonono
          A2P024: Smart electricity gridnoyesnonoyesnono
          A2P024: Thermal Storagenoyesyesnoyesnoyes
          A2P024: Electric Storagenoyesyesnoyesnono
          A2P024: District Heating and Coolingnoyesyesnononoyes
          A2P024: Smart metering and demand-responsive control systemsnoyesyesnononono
          A2P024: P2P – buildingsnononononoyesno
          A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnononoyesnoyesyes
          A2P025: Energy efficiency measures in historic buildingsnononoyesnoyesno
          A2P025: High-performance new buildingsnonoyesnoyesnono
          A2P025: Smart Public infrastructure (e.g. smart lighting)nonononoyesnono
          A2P025: Urban data platformsnoyesnonononono
          A2P025: Mobile applications for citizensnoyesnonononono
          A2P025: Building services (HVAC & Lighting)noyesnoyesyesnoyes
          A2P025: Smart irrigationnonononononono
          A2P025: Digital tracking for waste disposalnonononononono
          A2P025: Smart surveillancenononoyesnonono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nonononononono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononoyesnono
          A2P026: e-Mobilitynonoyesnoyesnono
          A2P026: Soft mobility infrastructures and last mile solutionsnonononononono
          A2P026: Car-free areanonononononono
          A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesNoYesYesYesNo
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingPassive house (2 buildings, 4 200 m2, from 2015)Energy Performance Certificate => Energy efficiency class B (2018 version)
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoYesYesNoNo
          A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)LEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Promotion of energy communities (REC/CEC),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Promotion of energy communities (REC/CEC)
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyRelevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Other
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and priorities- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.In our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourFor Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.While our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Open data business models,
          • Innovative business models,
          • Demand management Living Lab
          • Innovative business models,
          • Demand management Living Lab
          • Innovative business models
          • Local trading,
          • Existing incentives
          • Open data business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Local trading
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies
          • Behavioural Change / End-users engagement,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
          • Other
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Co-creation / Citizen engagement strategies
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Quality of Life,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Affordability,
          • Digital Inclusion
          A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Digital twinning and visual 3D models
          • Digital twinning and visual 3D models
          • Building / district Certification
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • Building / district Certification
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral
          • Low Emission Zone
          • Other
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Carbon-free
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Sustainable Urban drainage systems (SUDS)
          A3P009: OtherCarbon free in terms of energy
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.The Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersBorlänge city has committed to become the carbon-neutral city by 2030.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaUrban areaRuralUrban areaRurbanUrban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction,
          • Renovation
          • New construction
          • Renovation
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • Retrofitting Area
          • Re-use / Transformation Area,
          • New Development
          • Retrofitting Area,
          • Preservation Area
          • Re-use / Transformation Area,
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction20221990
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential100
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential100
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential6
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential6
          B1P011: Population density before intervention
          B1P011: Population density before intervention000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention000000.010658622423328
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnononononoyesyes
          B1P013 - Residential: Specify the sqm [m²]4360
          B1P013: Officenononononoyesno
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynonononononono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnonononoyesnono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnonononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnonononoyesnono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnonononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnonononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernonononononoyes
          B1P013 - Other: Specify the sqm [m²]706
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnonononoyesyesyes
          B1P014 - Residential: Specify the sqm [m²]4360
          B1P014: Officenononononoyesno
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynonononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnonononoyesnono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnonononononono
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnonononononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnonononononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnonononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernonononononoyes
          B1P014 - Other: Specify the sqm [m²]706
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life time
          B2P003: Scale of action
          B2P003: Scale
          B2P004: Operator of the installation
          B2P004: Operator of the installation
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED Lab
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Other
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important5 - Very important4 - Important4 - Important4 - Important4 - Important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important5 - Very important4 - Important4 - Important5 - Very important3 - Moderately important
          C1P001: Storage systems and E-mobility market penetration4 - Important5 - Very important3 - Moderately important4 - Important4 - Important3 - Moderately important
          C1P001: Decreasing costs of innovative materials4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important5 - Very important
          C1P001: The ability to predict Multiple Benefits5 - Very important1 - Unimportant2 - Slightly important4 - Important2 - Slightly important4 - Important
          C1P001: The ability to predict the distribution of benefits and impacts5 - Very important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important
          C1P001: Social acceptance (top-down)5 - Very important4 - Important4 - Important4 - Important2 - Slightly important3 - Moderately important5 - Very important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important4 - Important4 - Important2 - Slightly important5 - Very important4 - Important
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
          C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant4 - Important
          C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important2 - Slightly important
          C1P001: Any other UNLOCKING FACTORS3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need4 - Important5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important5 - Very important
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important4 - Important4 - Important5 - Very important5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important4 - Important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant
          C1P002: Territorial and market attractiveness2 - Slightly important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant
          C1P002: Energy autonomy/independence5 - Very important4 - Important4 - Important5 - Very important4 - Important1 - Unimportant2 - Slightly important
          C1P002: Any other DRIVING FACTOR3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important4 - Important
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important4 - Important
          C1P003: Lack of public participation3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important
          C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important
          C1P003: Complicated and non-comprehensive public procurement4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant5 - Very important
          C1P003: Fragmented and or complex ownership structure3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important4 - Important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important
          C1P003: Lack of internal capacities to support energy transition3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important
          C1P003: Any other Administrative BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important5 - Very important
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important4 - Important5 - Very important2 - Slightly important2 - Slightly important2 - Slightly important4 - Important
          C1P005: Regulatory instability3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important
          C1P005: Non-effective regulations4 - Important3 - Moderately important3 - Moderately important2 - Slightly important4 - Important3 - Moderately important2 - Slightly important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important4 - Important
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important
          C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important4 - Important2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
          C1P005: Shortage of proven and tested solutions and examples3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important
          C1P005: Any other Legal and Regulatory BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers2 - Slightly important
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important4 - Important3 - Moderately important2 - Slightly important4 - Important3 - Moderately important4 - Important
          C1P007: Deficient planning3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important4 - Important
          C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important3 - Moderately important4 - Important
          C1P007: Lack of well-defined process4 - Important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
          C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant3 - Moderately important2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important
          C1P007: Lack/cost of computational scalability4 - Important3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P007: Grid congestion, grid instability4 - Important4 - Important5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important2 - Slightly important
          C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant
          C1P007: Difficult definition of system boundaries3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important1 - Unimportant
          C1P007: Any other Thecnical BARRIER3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
          C1P008: Social and Cultural barriers
          C1P008: Inertia4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important
          C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important5 - Very important
          C1P008: Low acceptance of new projects and technologies5 - Very important4 - Important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important
          C1P008: Difficulty of finding and engaging relevant actors5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important
          C1P008: Lack of trust beyond social network4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important5 - Very important
          C1P008: Rebound effect4 - Important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important4 - Important
          C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important3 - Moderately important
          C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important
          C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important4 - Important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important
          C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important3 - Moderately important
          C1P008: Any other Social BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important
          C1P009: Lack of awareness among authorities3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important5 - Very important
          C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important5 - Very important
          C1P009: High costs of design, material, construction, and installation3 - Moderately important5 - Very important2 - Slightly important4 - Important4 - Important5 - Very important
          C1P009: Any other Information and Awareness BARRIER3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
          C1P010: Financial barriers
          C1P010: Hidden costs4 - Important5 - Very important2 - Slightly important2 - Slightly important3 - Moderately important5 - Very important
          C1P010: Insufficient external financial support and funding for project activities3 - Moderately important5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important
          C1P010: Economic crisis3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important5 - Very important
          C1P010: Risk and uncertainty3 - Moderately important5 - Very important4 - Important3 - Moderately important3 - Moderately important5 - Very important
          C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important4 - Important4 - Important4 - Important5 - Very important
          C1P010: Limited access to capital and cost disincentives3 - Moderately important4 - Important3 - Moderately important3 - Moderately important4 - Important5 - Very important
          C1P010: Any other Financial BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important4 - Important
          C1P011: Energy price distortion5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important4 - Important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important3 - Moderately important
          C1P011: Any other Market BARRIER3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Monitoring/operation/management
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation
          • Design/demand aggregation
          • Planning/leading
          C1P012: Financial/Funding
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading
          • None
          C1P012: Analyst, ICT and Big Data
          • Planning/leading,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading
          • None
          C1P012: Business process management
          • Monitoring/operation/management
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading
          • None
          C1P012: Urban Services providers
          • Planning/leading,
          • Monitoring/operation/management
          • None
          • Planning/leading
          • None
          C1P012: Real Estate developers
          • Construction/implementation
          • Planning/leading,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading
          • Design/demand aggregation
          C1P012: Design/Construction companies
          • Construction/implementation
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading
          • None
          C1P012: End‐users/Occupants/Energy Citizens
          • Design/demand aggregation
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Design/demand aggregation
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Construction/implementation
          • Monitoring/operation/management
          C1P012: Industry/SME/eCommerce
          • Construction/implementation
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • None
          C1P012: Other
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)