Filters:
NameProjectTypeCompare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Uncompare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Izmir, District of Karşıyaka
Salzburg, Gneis district
Findhorn, the Park
Trenčín
Maia, Sobreiro Social Housing
Istanbul, Ozyegin University Campus
Amsterdam, Buiksloterham PED
Graz, Reininghausgründe
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityIzmir, District of KarşıyakaSalzburg, Gneis districtFindhorn, the ParkTrenčínMaia, Sobreiro Social HousingIstanbul, Ozyegin University CampusAmsterdam, Buiksloterham PEDGraz, Reininghausgründe
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesyesyesyesnonoyesyes
PED relevant case studyyesnononononoyesnono
PED Lab.nononononoyesnonono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyesyesyes
Annual energy surplusnoyesyesyesyesnonoyesno
Energy communityyesnoyesyesyesnonoyesno
Circularitynononoyesnononoyesno
Air quality and urban comfortyesyesyesnononoyesnono
Electrificationyesnonoyesnonoyesyesno
Net-zero energy costnoyesnonononononono
Net-zero emissionnononoyesnononoyesno
Self-sufficiency (energy autonomous)nonononoyesnononono
Maximise self-sufficiencynoyesnoyesnoyesnonono
Othernonononononoyesnono
Other (A1P004)almost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseCompletedIn operationPlanning PhasePlanning PhaseImplementation PhaseImplementation PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date10/2201/2001/6206/1910/2110/2411/192019
A1P007: End Date
A1P007: End date10/2501/2411/2310/2410/2810/252025
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Meteorological open data
  • GIS open datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts
  • GIS open datasets
A1P009: OtherOtherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
            • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
            • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
            A1P011: Geographic coordinates
            X Coordinate (longitude):23.81458827.11004913.041216-3.609918.046870515442922-8.37355729.2583004.904115.407440
            Y Coordinate (latitude):38.07734938.49605447.77101957.653048.89925138034027441.13580441.03060052.367647.0607
            A1P012: Country
            A1P012: CountryGreeceTurkeyAustriaUnited KingdomSlovakiaPortugalTurkeyNetherlandsAustria
            A1P013: City
            A1P013: CityMunicipality of KifissiaİzmirSalzburgFindhornTrencinMaiaIstanbulAmsterdamGraz
            A1P014: Climate Zone (Köppen Geiger classification)
            A1P014: Climate Zone (Köppen Geiger classification).CsaCsaDfbDwcCfbCsbCfaCfbDfb
            A1P015: District boundary
            A1P015: District boundaryVirtualGeographicGeographicGeographicFunctionalVirtualGeographicFunctionalGeographic
            OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
            A1P016: Ownership of the case study/PED Lab
            A1P016: Ownership of the case study/PED Lab:PrivateMixedMixedMixedPublicPrivateMixedMixed
            A1P017: Ownership of the land / physical infrastructure
            A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
            A1P018: Number of buildings in PED
            A1P018: Number of buildings in PED211716010221560100
            A1P019: Conditioned space
            A1P019: Conditioned space [m²]102795199762200028500
            A1P020: Total ground area
            A1P020: Total ground area [m²]3260018000075000285.4001000000
            A1P021: Floor area ratio: Conditioned space / total ground area
            A1P021: Floor area ratio: Conditioned space / total ground area030000000
            A1P022: Financial schemes
            A1P022a: Financing - PRIVATE - Real estatenononoyesyesnoyesyesyes
            A1P022a: Add the value in EUR if available [EUR]
            A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
            A1P022b: Add the value in EUR if available [EUR]
            A1P022c: Financing - PRIVATE - Othernononononoyesnonono
            A1P022c: Add the value in EUR if available [EUR]
            A1P022d: Financing - PUBLIC - EU structural fundingnonononoyesnononono
            A1P022d: Add the value in EUR if available [EUR]
            A1P022e: Financing - PUBLIC - National fundingnononoyesnoyesnonoyes
            A1P022e: Add the value in EUR if available [EUR]
            A1P022f: Financing - PUBLIC - Regional fundingnononononoyesnonono
            A1P022f: Add the value in EUR if available [EUR]
            A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesnononoyes
            A1P022g: Add the value in EUR if available [EUR]
            A1P022h: Financing - PUBLIC - Othernonononoyesnononono
            A1P022h: Add the value in EUR if available [EUR]
            A1P022i: Financing - RESEARCH FUNDING - EUnoyesyesyesnoyesyesyesno
            A1P022i: Add the value in EUR if available [EUR]1193355
            A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnonononononono
            A1P022j: Add the value in EUR if available [EUR]
            A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
            A1P022k: Add the value in EUR if available [EUR]
            A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
            A1P022l: Add the value in EUR if available [EUR]
            A1P022: Other
            A1P023: Economic Targets
            A1P023: Economic Targets
            • Positive externalities,
            • Boosting local and sustainable production
            • Positive externalities,
            • Other
            • Boosting local businesses,
            • Boosting local and sustainable production
            • Positive externalities,
            • Boosting local and sustainable production
            • Positive externalities,
            • Boosting local and sustainable production,
            • Boosting consumption of local and sustainable products
            • Boosting local businesses,
            • Boosting local and sustainable production,
            • Boosting consumption of local and sustainable products
            • Job creation,
            • Boosting local businesses,
            • Boosting consumption of local and sustainable products
            A1P023: OtherBoosting social cooperation and social aid
            A1P024: More comments:
            A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.
            A1P025: Estimated PED case study / PED LAB costs
            A1P025: Estimated PED case study / PED LAB costs [mil. EUR]01
            Contact person for general enquiries
            A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaOzlem SenyolAbel MagyariStefano NebioloVladimír ŠkolaAdelina RodriguesCem KeskinOmar ShafqatKatharina Schwarz
            A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamKarsiyaka MunicipalityABUDFindhorn Innovation Research and Education CICCity of TrencinMaia Municipality (CM Maia) – Energy and Mobility divisionCenter for Energy, Environment and Economy, Ozyegin UniversityAmsterdam University of Applied SciencesStadtLABOR, Innovationen für urbane Lebensqualität GmbH
            A1P028: AffiliationMunicipality / Public BodiesMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityOtherMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversitySME / Industry
            A1P028: OtherProject Manager
            A1P029: Emailgiavasoglou@kifissia.grozlemkocaer2@gmail.commagyari.abel@abud.hustefanonebiolo@gmail.comvladimir.skola@trencin.skdscm.adelina@cm-maia.ptcem.keskin@ozyegin.edu.tro.shafqat@hva.nlkatharina.schwarz@stadtlaborgraz.at
            Contact person for other special topics
            A1P030: NameStavros Zapantis - vice mayorHasan Burak CavkaStrassl IngeborgVladimír ŠkolaCarolina Gonçalves (AdEPorto)M. Pınar MengüçOmar ShafqatHans Schnitzer
            A1P031: Emailstavros.zapantis@gmail.comhasancavka@iyte.edu.tringe.strassl@salzburg.gv.atvladimir.skola@trencin.skcarolinagoncalves@adeporto.eupinar.menguc@ozyegin.edu.tro.shafqat@hva.nlhans.schnitzer@stadtlaborgraz.at
            Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
            A2P001: Fields of application
            A2P001: Fields of application
            • Energy production
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • Urban comfort (pollution, heat island, noise level etc.)
            • Energy efficiency,
            • Energy flexibility,
            • Energy production
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Waste management
            • Energy efficiency,
            • Energy flexibility
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Digital technologies
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies,
            • Waste management,
            • Indoor air quality,
            • Construction materials
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies,
            • Water use,
            • Waste management,
            • Construction materials
            • Energy efficiency,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Water use,
            • Indoor air quality,
            • Other
            A2P001: OtherUrban Management; Air Quality
            A2P002: Tools/strategies/methods applied for each of the above-selected fields
            A2P002: Tools/strategies/methods applied for each of the above-selected fieldsMethods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.- Dynamic district, and building scale energy modelling - Microclimate modelling - Klimaaktiv certification system - Energy community - Flexibility with shared heating and electricity systemsEnergy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:LEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentCity vision, Innovation AteliersEnergy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the district
            A2P003: Application of ISO52000
            A2P003: Application of ISO52000YesYesNoYesYesNo
            A2P004: Appliances included in the calculation of the energy balance
            A2P004: Appliances included in the calculation of the energy balanceYesNoYesYesNoYes
            A2P005: Mobility included in the calculation of the energy balance
            A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoNoYes
            A2P006: Description of how mobility is included (or not included) in the calculation
            A2P006: Description of how mobility is included (or not included) in the calculationMobility is not included in the calculations.Not included, the campus is a non car area except emergencies- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)
            A2P007: Annual energy demand in buildings / Thermal demand
            A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]3.862
            A2P008: Annual energy demand in buildings / Electric Demand
            A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]1.2261.2
            A2P009: Annual energy demand for e-mobility
            A2P009: Annual energy demand for e-mobility [GWh/annum]
            A2P010: Annual energy demand for urban infrastructure
            A2P010: Annual energy demand for urban infrastructure [GWh/annum]
            A2P011: Annual renewable electricity production on-site during target year
            A2P011: PVyesyesyesyesnoyesyesyesyes
            A2P011: PV - specify production in GWh/annum [GWh/annum]1.0280.7770664
            A2P011: Windnononoyesnonononono
            A2P011: Wind - specify production in GWh/annum [GWh/annum]
            A2P011: Hydrononononononononono
            A2P011: Hydro - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_elnononononononoyesno
            A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_peat_elnonononononononono
            A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
            A2P011: PVT_elnonononononononono
            A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
            A2P011: Othernonononononononono
            A2P011: Other - specify production in GWh/annum [GWh/annum]
            A2P012: Annual renewable thermal production on-site during target year
            A2P012: Geothermalnonoyesnonononoyesyes
            A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Solar Thermalnononoyesnoyesnonoyes
            A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_heatnononoyesnononoyesno
            A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: Waste heat+HPnononoyesnononoyesyes
            A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_peat_heatnonononononononono
            A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: PVT_thnonononononononono
            A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_firewood_thnononoyesnonononono
            A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
            A2P012: Othernonononononononono
            A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
            A2P013: Renewable resources on-site - Additional notes
            A2P013: Renewable resources on-site - Additional notes3x225 kW wind turbines + 100 kW PVGroundwater (used for heat pumps)
            A2P014: Annual energy use
            A2P014: Annual energy use [GWh/annum]5.0880.8190161.23.5
            A2P015: Annual energy delivered
            A2P015: Annual energy delivered [GWh/annum]1.2
            A2P016: Annual non-renewable electricity production on-site during target year
            A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]-100
            A2P017: Annual non-renewable thermal production on-site during target year
            A2P017: Gasnoyesnononononoyesno
            A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Coalnononononononoyesno
            A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Oilnononononononoyesno
            A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Othernonononononononono
            A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P018: Annual renewable electricity imports from outside the boundary during target year
            A2P018: PVnoyesnonononoyesyesyes
            A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.7070.00045547
            A2P018: Windnononononononoyesyes
            A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
            A2P018: Hydronononononononoyesyes
            A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_elnononononononoyesno
            A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_peat_elnononononononoyesno
            A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: PVT_elnononononononoyesno
            A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Othernonononononononono
            A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
            A2P019: Annual renewable thermal imports from outside the boundary during target year
            A2P019: Geothermalnononononononoyesno
            A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Solar Thermalnononononononoyesyes
            A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_heatnononononononoyesyes
            A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Waste heat+HPnononononononoyesyes
            A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_peat_heatnononononononoyesno
            A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: PVT_thnononononononoyesno
            A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_firewood_thnononononononoyesno
            A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Othernonononononononono
            A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
            A2P020: Share of RES on-site / RES outside the boundary
            A2P020: Share of RES on-site / RES outside the boundary01.45403111739750000000
            A2P021: GHG-balance calculated for the PED
            A2P021: GHG-balance calculated for the PED [tCO2/annum]2500.036
            A2P022: KPIs related to the PED case study / PED Lab
            A2P022: Safety & Security
            A2P022: HealthCO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
            A2P022: Education
            A2P022: Mobilityx
            A2P022: EnergyNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissionsx
            A2P022: Waterx
            A2P022: Economic developmentInvestment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparisonx
            A2P022: Housing and CommunityAccess to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousnessx
            A2P022: Waste
            A2P022: Other
            A2P023: Technological Solutions / Innovations - Energy Generation
            A2P023: Photovoltaicsnoyesyesyesnoyesyesyesyes
            A2P023: Solar thermal collectorsnononoyesnoyesnonono
            A2P023: Wind Turbinesnononoyesnonoyesnono
            A2P023: Geothermal energy systemnonoyesnonononoyesno
            A2P023: Waste heat recoverynononoyesnononoyesyes
            A2P023: Waste to energynononononononoyesno
            A2P023: Polygenerationnonononononononono
            A2P023: Co-generationnonononononoyesnono
            A2P023: Heat Pumpnoyesnoyesnoyesyesyesyes
            A2P023: Hydrogennonononononononono
            A2P023: Hydropower plantnonononononononono
            A2P023: Biomassnononoyesnononoyesno
            A2P023: Biogasnononononononoyesno
            A2P023: Other
            A2P024: Technological Solutions / Innovations - Energy Flexibility
            A2P024: A2P024: Information and Communication Technologies (ICT)nononononoyesyesyesyes
            A2P024: Energy management systemnonoyesyesyesyesyesyesno
            A2P024: Demand-side managementnonoyesnononoyesyesno
            A2P024: Smart electricity gridnonoyesnonononoyesno
            A2P024: Thermal Storagenononoyesyesnonoyesyes
            A2P024: Electric Storagenononoyesyesyesyesyesno
            A2P024: District Heating and Coolingnononoyesyesnoyesyesyes
            A2P024: Smart metering and demand-responsive control systemsnononononoyesyesyesno
            A2P024: P2P – buildingsnonoyesnonononoyesno
            A2P024: Other
            A2P025: Technological Solutions / Innovations - Energy Efficiency
            A2P025: Deep Retrofittingnoyesnonoyesyesnoyesno
            A2P025: Energy efficiency measures in historic buildingsnonononoyesnonoyesno
            A2P025: High-performance new buildingsnonoyesyesnonoyesyesyes
            A2P025: Smart Public infrastructure (e.g. smart lighting)nononononoyesnoyesyes
            A2P025: Urban data platformsnononononononoyesno
            A2P025: Mobile applications for citizensnononononononoyesyes
            A2P025: Building services (HVAC & Lighting)noyesyesnoyesyesyesyesno
            A2P025: Smart irrigationnonononononoyesyesyes
            A2P025: Digital tracking for waste disposalnononononoyesnoyesno
            A2P025: Smart surveillancenonononononoyesnono
            A2P025: Other
            A2P026: Technological Solutions / Innovations - Mobility
            A2P026: Efficiency of vehicles (public and/or private)nononononoyesnoyesyes
            A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnonononoyesyes
            A2P026: e-Mobilitynonoyesyesnoyesyesyesyes
            A2P026: Soft mobility infrastructures and last mile solutionsnonononononoyesyesyes
            A2P026: Car-free areanonononononoyesyesyes
            A2P026: Other
            A2P027: Mobility strategies - Additional notes
            A2P027: Mobility strategies - Additional notesShared mobility: a mobility point will be implemented and ensure the flexible use of different mobility services.SUMP AVAILABLE- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
            A2P028: Energy efficiency certificates
            A2P028: Energy efficiency certificatesNoYesYesYesYes
            A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance CertificateThe Municipal Buildings have an energy certificate, according to the Portuguese legislation.Energieausweis mandatory if buildings/ flats/ apartments are sold
            A2P029: Any other building / district certificates
            A2P029: Any other building / district certificatesNoYesNoYesYes
            A2P029: If yes, please specify and/or enter notesKlimaaktiv certificate, Greenpass certificateLEED BD+C, LEED NC CAMPUSKlimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
            A3P001: Relevant city /national strategy
            A3P001: Relevant city /national strategy
            • Energy master planning (SECAP, etc.),
            • Promotion of energy communities (REC/CEC)
            • Energy master planning (SECAP, etc.),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Urban Renewal Strategies,
            • Energy master planning (SECAP, etc.),
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract)
            • Smart cities strategies,
            • Energy master planning (SECAP, etc.),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Smart cities strategies,
            • Energy master planning (SECAP, etc.),
            • New development strategies,
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Smart cities strategies,
            • Energy master planning (SECAP, etc.),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            A3P002: Quantitative targets included in the city / national strategy
            A3P002: Quantitative targets included in the city / national strategyKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.City level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
            A3P003: Strategies towards decarbonization of the gas grid
            A3P003: Strategies towards decarbonization of the gas grid
            • Electrification of Heating System based on Heat Pumps
            • Electrification of Heating System based on Heat Pumps
            • Electrification of Heating System based on Heat Pumps
            • Other
            • Electrification of Heating System based on Heat Pumps,
            • Electrification of Cooking Methods
            • Electrification of Heating System based on Heat Pumps,
            • Electrification of Cooking Methods,
            • Biogas,
            • Hydrogen
            • Electrification of Heating System based on Heat Pumps,
            • Electrification of Cooking Methods,
            • Biogas
            A3P003: OtherSECAP developed in 2023At a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.Boiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
            A3P004: Identification of needs and priorities
            A3P004: Identification of needs and prioritiesAccording to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.SELF SUSTAINABILITY, SELF EFFICIENCYCarbon and Energy NeutralityReininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices
            A3P005: Sustainable behaviour
            A3P005: Sustainable behaviourBASED ON SECAP DEVELOPED IN 2023Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.
            A3P006: Economic strategies
            A3P006: Economic strategies
            • Innovative business models,
            • Local trading
            • Innovative business models,
            • PPP models,
            • Existing incentives
            • Innovative business models,
            • Life Cycle Cost,
            • Circular economy models,
            • Demand management Living Lab,
            • Local trading,
            • Existing incentives
            • PPP models,
            • Local trading
            A3P006: Other
            A3P007: Social models
            A3P007: Social models
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Affordability
            • Strategies towards (local) community-building,
            • Behavioural Change / End-users engagement,
            • Social incentives,
            • Quality of Life,
            • Strategies towards social mix,
            • Affordability,
            • Citizen/owner involvement in planning and maintenance
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Quality of Life
            • Co-creation / Citizen engagement strategies,
            • Prevention of energy poverty,
            • Digital Inclusion,
            • Citizen/owner involvement in planning and maintenance,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Citizen Social Research,
            • Social incentives,
            • Quality of Life,
            • Digital Inclusion,
            • Citizen/owner involvement in planning and maintenance,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Social incentives,
            • Quality of Life,
            • Affordability,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            A3P007: Other
            A3P008: Integrated urban strategies
            A3P008: Integrated urban strategies
            • Digital twinning and visual 3D models,
            • District Energy plans,
            • SECAP Updates
            • Building / district Certification
            • City Vision 2050,
            • SECAP Updates,
            • Building / district Certification
            • City Vision 2050,
            • SECAP Updates,
            • Building / district Certification
            • Strategic urban planning,
            • Digital twinning and visual 3D models,
            • District Energy plans,
            • City Vision 2050,
            • SECAP Updates,
            • Building / district Certification
            • Strategic urban planning,
            • City Vision 2050,
            • Building / district Certification
            A3P008: Other
            A3P009: Environmental strategies
            A3P009: Environmental strategies
            • Energy Neutral,
            • Low Emission Zone,
            • Pollutants Reduction
            • Energy Neutral,
            • Low Emission Zone
            • Energy Neutral,
            • Net zero carbon footprint
            • Energy Neutral,
            • Net zero carbon footprint,
            • Pollutants Reduction
            • Energy Neutral,
            • Low Emission Zone,
            • Net zero carbon footprint,
            • Greening strategies,
            • Cool Materials
            • Energy Neutral,
            • Life Cycle approach
            • Pollutants Reduction,
            • Greening strategies,
            • Sustainable Urban drainage systems (SUDS),
            • Nature Based Solutions (NBS)
            A3P009: Other
            A3P010: Legal / Regulatory aspects
            A3P010: Legal / Regulatory aspectsISO 45001, ISO 14001, ISO 50001, Zero Waste PolicyRegulatory sandboxMobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.
            B1P001: PED/PED relevant concept definition
            B1P001: PED/PED relevant concept definitionThe pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).GOOD MIX OF PUBLIC PRIVATE BUILDINGSThe campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.Functional PEDReininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.
            B1P002: Motivation behind PED/PED relevant project development
            B1P002: Motivation behind PED/PED relevant project developmentReplication of unique PED know howThe purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.Brown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.
            B1P003: Environment of the case study area
            B2P003: Environment of the case study areaUrban areaSuburban areaRuralUrban areaSuburban areaUrban areaUrban area
            B1P004: Type of district
            B2P004: Type of district
            • Renovation
            • New construction
            • New construction
            • New construction,
            • Renovation
            • Renovation
            • New construction
            • New construction
            B1P005: Case Study Context
            B1P005: Case Study Context
            • Retrofitting Area
            • New Development
            • New Development
            • Retrofitting Area
            • Retrofitting Area
            • New Development
            • New Development
            B1P006: Year of construction
            B1P006: Year of construction2005202420242025
            B1P007: District population before intervention - Residential
            B1P007: District population before intervention - Residential0
            B1P008: District population after intervention - Residential
            B1P008: District population after intervention - Residential10000
            B1P009: District population before intervention - Non-residential
            B1P009: District population before intervention - Non-residential98000
            B1P010: District population after intervention - Non-residential
            B1P010: District population after intervention - Non-residential9800
            B1P011: Population density before intervention
            B1P011: Population density before intervention0000003400
            B1P012: Population density after intervention
            B1P012: Population density after intervention00000034.33777154870400.01
            B1P013: Building and Land Use before intervention
            B1P013: Residentialnoyesnonononononono
            B1P013 - Residential: Specify the sqm [m²]102795
            B1P013: Officenonononononononono
            B1P013 - Office: Specify the sqm [m²]
            B1P013: Industry and Utilitynononononononoyesyes
            B1P013 - Industry and Utility: Specify the sqm [m²]
            B1P013: Commercialnonononononononono
            B1P013 - Commercial: Specify the sqm [m²]
            B1P013: Institutionalnonononononoyesnono
            B1P013 - Institutional: Specify the sqm [m²]285.400
            B1P013: Natural areasnonoyesyesnonononoyes
            B1P013 - Natural areas: Specify the sqm [m²]
            B1P013: Recreationalnonononononononono
            B1P013 - Recreational: Specify the sqm [m²]
            B1P013: Dismissed areasnonononononononono
            B1P013 - Dismissed areas: Specify the sqm [m²]
            B1P013: Othernonononononononono
            B1P013 - Other: Specify the sqm [m²]
            B1P014: Building and Land Use after intervention
            B1P014: Residentialnoyesyesyesnononoyesyes
            B1P014 - Residential: Specify the sqm [m²]102795
            B1P014: Officenononoyesnononoyesyes
            B1P014 - Office: Specify the sqm [m²]
            B1P014: Industry and Utilitynonononononononono
            B1P014 - Industry and Utility: Specify the sqm [m²]
            B1P014: Commercialnononononononoyesyes
            B1P014 - Commercial: Specify the sqm [m²]
            B1P014: Institutionalnonononononoyesnoyes
            B1P014 - Institutional: Specify the sqm [m²]280000
            B1P014: Natural areasnonoyesyesnonononoyes
            B1P014 - Natural areas: Specify the sqm [m²]
            B1P014: Recreationalnononononononoyesyes
            B1P014 - Recreational: Specify the sqm [m²]
            B1P014: Dismissed areasnonononononononono
            B1P014 - Dismissed areas: Specify the sqm [m²]
            B1P014: Othernonononononononono
            B1P014 - Other: Specify the sqm [m²]
            B2P001: PED Lab concept definition
            B2P001: PED Lab concept definition
            B2P002: Installation life time
            B2P002: Installation life timePermanent installation
            B2P003: Scale of action
            B2P003: ScaleVirtual
            B2P004: Operator of the installation
            B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P006: Circular Economy Approach
            B2P006: Do you apply any strategy to reuse and recycling the materials?No
            B2P006: Other
            B2P007: Motivation for developing the PED Lab
            B2P007: Motivation for developing the PED Lab
            • Strategic
            B2P007: Other
            B2P008: Lead partner that manages the PED Lab
            B2P008: Lead partner that manages the PED LabMunicipality
            B2P008: Other
            B2P009: Collaborative partners that participate in the PED Lab
            B2P009: Collaborative partners that participate in the PED Lab
            • Academia,
            • Private,
            • Industrial,
            • Citizens, public, NGO,
            • Other
            B2P009: OtherEnergy Agency
            B2P010: Synergies between the fields of activities
            B2P010: Synergies between the fields of activities
            B2P011: Available facilities to test urban configurations in PED Lab
            B2P011: Available facilities to test urban configurations in PED Lab
            • Buildings,
            • Demand-side management,
            • Prosumers,
            • Renewable generation,
            • Energy storage,
            • Efficiency measures,
            • Lighting,
            • E-mobility,
            • Information and Communication Technologies (ICT),
            • Ambient measures,
            • Social interactions
            B2P011: Other
            B2P012: Incubation capacities of PED Lab
            B2P012: Incubation capacities of PED Lab
            • Monitoring and evaluation infrastructure,
            • Tools, spaces, events for testing and validation
            B2P013: Availability of the facilities for external people
            B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
            B2P014: Monitoring measures
            B2P014: Monitoring measures
            • Execution plan,
            • Available data,
            • Type of measured data
            B2P015: Key Performance indicators
            B2P015: Key Performance indicators
            • Energy,
            • Environmental,
            • Social,
            • Economical / Financial
            B2P016: Execution of operations
            B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
            B2P017: Capacities
            B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
            B2P018: Relations with stakeholders
            B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
            B2P019: Available tools
            B2P019: Available tools
            • Energy modelling,
            • Social models,
            • Business and financial models,
            • Fundraising and accessing resources,
            • Matching actors
            B2P019: Available tools
            B2P020: External accessibility
            B2P020: External accessibility
            C1P001: Unlocking Factors
            C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important3 - Moderately important
            C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important2 - Slightly important
            C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important
            C1P001: Storage systems and E-mobility market penetration1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important2 - Slightly important
            C1P001: Decreasing costs of innovative materials4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important2 - Slightly important
            C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important2 - Slightly important
            C1P001: The ability to predict Multiple Benefits4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important
            C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important
            C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important2 - Slightly important5 - Very important
            C1P001: Social acceptance (top-down)5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important
            C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important2 - Slightly important5 - Very important
            C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important3 - Moderately important5 - Very important
            C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important5 - Very important
            C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important4 - Important
            C1P001: Availability of RES on site (Local RES)5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important3 - Moderately important
            C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important5 - Very important
            C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P001: Any other UNLOCKING FACTORS (if any)
            C1P002: Driving Factors
            C1P002: Climate Change adaptation need4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important5 - Very important5 - Very important
            C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important5 - Very important
            C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important4 - Important
            C1P002: Urban re-development of existing built environment3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important5 - Very important
            C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
            C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important5 - Very important
            C1P002: Territorial and market attractiveness2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important5 - Very important
            C1P002: Energy autonomy/independence5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important2 - Slightly important3 - Moderately important
            C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P002: Any other DRIVING FACTOR (if any)
            C1P003: Administrative barriers
            C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important2 - Slightly important5 - Very important
            C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important
            C1P003: Lack of public participation3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important4 - Important
            C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
            C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important
            C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
            C1P003: Complicated and non-comprehensive public procurement4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important
            C1P003: Fragmented and or complex ownership structure3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important4 - Important2 - Slightly important5 - Very important
            C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important4 - Important
            C1P003: Lack of internal capacities to support energy transition3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant3 - Moderately important
            C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P003: Any other Administrative BARRIER (if any)
            C1P004: Policy barriers
            C1P004: Lack of long-term and consistent energy plans and policies4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important2 - Slightly important
            C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
            C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important
            C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P004: Any other Political BARRIER (if any)
            C1P005: Legal and Regulatory barriers
            C1P005: Inadequate regulations for new technologies4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant
            C1P005: Regulatory instability3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant
            C1P005: Non-effective regulations4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important3 - Moderately important
            C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important4 - Important
            C1P005: Building code and land-use planning hindering innovative technologies4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant2 - Slightly important
            C1P005: Insufficient or insecure financial incentives4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important3 - Moderately important4 - Important
            C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important2 - Slightly important
            C1P005: Shortage of proven and tested solutions and examples3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important2 - Slightly important
            C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P005: Any other Legal and Regulatory BARRIER (if any)
            C1P006: Environmental barriers
            C1P006: Environmental barriers- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1Air Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
            C1P007: Technical barriers
            C1P007: Lack of skilled and trained personnel4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important
            C1P007: Deficient planning3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important2 - Slightly important
            C1P007: Retrofitting work in dwellings in occupied state4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant
            C1P007: Lack of well-defined process4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important
            C1P007: Inaccuracy in energy modelling and simulation4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important
            C1P007: Lack/cost of computational scalability4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important2 - Slightly important2 - Slightly important
            C1P007: Grid congestion, grid instability4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant
            C1P007: Negative effects of project intervention on the natural environment3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important
            C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant
            C1P007: Difficult definition of system boundaries3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant
            C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P007: Any other Thecnical BARRIER (if any)
            C1P008: Social and Cultural barriers
            C1P008: Inertia4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important
            C1P008: Lack of values and interest in energy optimization measurements5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant4 - Important
            C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important
            C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant4 - Important
            C1P008: Lack of trust beyond social network4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important
            C1P008: Rebound effect4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important3 - Moderately important1 - Unimportant2 - Slightly important
            C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
            C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
            C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important1 - Unimportant4 - Important
            C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant
            C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P008: Any other Social BARRIER (if any)
            C1P009: Information and Awareness barriers
            C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important2 - Slightly important
            C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important2 - Slightly important4 - Important
            C1P009: Lack of awareness among authorities4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important
            C1P009: Information asymmetry causing power asymmetry of established actors4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important4 - Important
            C1P009: High costs of design, material, construction, and installation5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important
            C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P009: Any other Information and Awareness BARRIER (if any)
            C1P010: Financial barriers
            C1P010: Hidden costs4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important3 - Moderately important
            C1P010: Insufficient external financial support and funding for project activities3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important
            C1P010: Economic crisis5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important4 - Important
            C1P010: Risk and uncertainty4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important4 - Important2 - Slightly important
            C1P010: Lack of consolidated and tested business models4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important2 - Slightly important
            C1P010: Limited access to capital and cost disincentives5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important
            C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
            C1P010: Any other Financial BARRIER (if any)
            C1P011: Market barriers
            C1P011: Split incentives5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important3 - Moderately important2 - Slightly important
            C1P011: Energy price distortion5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important5 - Very important2 - Slightly important4 - Important
            C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important4 - Important
            C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
            C1P011: Any other Market BARRIER (if any)
            C1P012: Stakeholders involved
            C1P012: Government/Public Authorities
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Research & Innovation
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Monitoring/operation/management
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Financial/Funding
            • Planning/leading,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Analyst, ICT and Big Data
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Construction/implementation
            • Planning/leading,
            • Monitoring/operation/management
            C1P012: Business process management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • None
            C1P012: Urban Services providers
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Real Estate developers
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Design/Construction companies
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation
            C1P012: End‐users/Occupants/Energy Citizens
            • Monitoring/operation/management
            • Design/demand aggregation
            • Design/demand aggregation
            C1P012: Social/Civil Society/NGOs
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Design/demand aggregation,
            • Monitoring/operation/management
            C1P012: Industry/SME/eCommerce
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Construction/implementation
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Other
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • None
            C1P012: Other (if any)
            Summary

            Authors (framework concept)

            Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

            Contributors (to the content)

            Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

            Implemented by

            Boutik.pt: Filipe Martins, Jamal Khan
            Marek Suchánek (Czech Technical University in Prague)