Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Uncompare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Borlänge, Rymdgatan’s Residential Portfolio
Amsterdam, Buiksloterham PED
Vidin, Himik and Bononia
Évora, Portugal
Stor-Elvdal, Campus Evenstad
Freiburg, Waldsee
Istanbul, Ozyegin University Campus
Tartu, City centre area
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityBorlänge, Rymdgatan’s Residential PortfolioAmsterdam, Buiksloterham PEDVidin, Himik and BononiaÉvora, PortugalStor-Elvdal, Campus EvenstadFreiburg, WaldseeIstanbul, Ozyegin University CampusTartu, City centre area
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynonoyesyesnonoyesnono
PED relevant case studyyesyesnonoyesyesnoyesyes
PED Lab.nonononoyesnononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesnoyesyesyesyes
Annual energy surplusnoyesyesyesyesyesnonono
Energy communityyesyesyesnoyesnoyesnono
Circularitynonoyesnononononoyes
Air quality and urban comfortyesnonononononoyesno
Electrificationyesyesyesnononoyesyesyes
Net-zero energy costnonononononononono
Net-zero emissionnonoyesnononoyesnoyes
Self-sufficiency (energy autonomous)nonononononononono
Maximise self-sufficiencynoyesnonononononoyes
Othernononononoyesnoyesno
Other (A1P004)Energy-flexibilityalmost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseImplementation PhasePlanning PhaseImplementation PhaseIn operationPlanning PhaseImplementation PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date11/1912/1810/1901/1311/2110/2402/16
A1P007: End Date
A1P007: End date10/2512/3009/2412/2411/2410/2807/22
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards
A1P009: Otherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
          • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
          • renewable energy potential,
          • own calculations based on publicly available data,
          • Some data can be found in https://geoportal.freiburg.de/freigis/
            A1P011: Geographic coordinates
            X Coordinate (longitude):23.81458815.3944954.904122.8826-7.90937711.0787707735317467.88585713584291729.25830026.722737
            Y Coordinate (latitude):38.07734960.48660952.367643.993638.57080461.4260442039911247.98653520708004541.03060058.380713
            A1P012: Country
            A1P012: CountryGreeceSwedenNetherlandsBulgariaPortugalNorwayGermanyTurkeyEstonia
            A1P013: City
            A1P013: CityMunicipality of KifissiaBorlängeAmsterdamVidinÉvoraEvenstad, Stor-Elvdal municipalityFreiburg im BreisgauIstanbulTartu
            A1P014: Climate Zone (Köppen Geiger classification)
            A1P014: Climate Zone (Köppen Geiger classification).CsaDsbCfbCfaCsaDwcCfbCfaDfb
            A1P015: District boundary
            A1P015: District boundaryVirtualGeographicFunctionalGeographicGeographicGeographicVirtualGeographicFunctional
            OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
            A1P016: Ownership of the case study/PED Lab
            A1P016: Ownership of the case study/PED Lab:MixedMixedMixedMixedPublicMixedPrivatePrivate
            A1P017: Ownership of the land / physical infrastructure
            A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple Owners
            A1P018: Number of buildings in PED
            A1P018: Number of buildings in PED1060742229411518
            A1P019: Conditioned space
            A1P019: Conditioned space [m²]37002850098759.531000028407035217
            A1P020: Total ground area
            A1P020: Total ground area [m²]9945195234.804920000285.400793144
            A1P021: Floor area ratio: Conditioned space / total ground area
            A1P021: Floor area ratio: Conditioned space / total ground area000100000
            A1P022: Financial schemes
            A1P022a: Financing - PRIVATE - Real estatenonoyesnonononoyesyes
            A1P022a: Add the value in EUR if available [EUR]6500000
            A1P022b: Financing - PRIVATE - ESCO schemenonononononononono
            A1P022b: Add the value in EUR if available [EUR]
            A1P022c: Financing - PRIVATE - Othernonononononononono
            A1P022c: Add the value in EUR if available [EUR]
            A1P022d: Financing - PUBLIC - EU structural fundingnonononononononoyes
            A1P022d: Add the value in EUR if available [EUR]4000000
            A1P022e: Financing - PUBLIC - National fundingnononoyesnoyesnonoyes
            A1P022e: Add the value in EUR if available [EUR]8000000
            A1P022f: Financing - PUBLIC - Regional fundingnonononononononono
            A1P022f: Add the value in EUR if available [EUR]
            A1P022g: Financing - PUBLIC - Municipal fundingnonononononoyesnono
            A1P022g: Add the value in EUR if available [EUR]
            A1P022h: Financing - PUBLIC - Othernonononononononono
            A1P022h: Add the value in EUR if available [EUR]
            A1P022i: Financing - RESEARCH FUNDING - EUnonoyesnoyesnoyesyesno
            A1P022i: Add the value in EUR if available [EUR]19998275
            A1P022j: Financing - RESEARCH FUNDING - Nationalnononononoyesyesnono
            A1P022j: Add the value in EUR if available [EUR]
            A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
            A1P022k: Add the value in EUR if available [EUR]
            A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
            A1P022l: Add the value in EUR if available [EUR]
            A1P022: Other
            A1P023: Economic Targets
            A1P023: Economic Targets
            • Positive externalities,
            • Boosting local businesses,
            • Boosting consumption of local and sustainable products
            • Boosting local businesses,
            • Boosting local and sustainable production,
            • Boosting consumption of local and sustainable products
            • Boosting local businesses,
            • Boosting local and sustainable production
            • Positive externalities,
            • Boosting local and sustainable production,
            • Boosting consumption of local and sustainable products
            • Positive externalities
            A1P023: Other
            A1P024: More comments:
            A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.
            A1P025: Estimated PED case study / PED LAB costs
            A1P025: Estimated PED case study / PED LAB costs [mil. EUR]125
            Contact person for general enquiries
            A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaJingchun ShenOmar ShafqatDaniela KostovaJoão Bravo DiasÅse Lekang SørensenDr. Annette SteingrubeCem KeskinJaanus Tamm
            A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamHögskolan DalarnaAmsterdam University of Applied SciencesGreen Synergy ClusterEDP LabelecSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesFraunhofer Institute for solar energy systemsCenter for Energy, Environment and Economy, Ozyegin UniversityTartu City Government
            A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityOtherSME / IndustryResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityMunicipality / Public Bodies
            A1P028: OtherCluster
            A1P029: Emailgiavasoglou@kifissia.grjih@du.seo.shafqat@hva.nldaniela@greensynergycluster.eujoao.bravodias@edp.ptase.sorensen@sintef.noAnnette.Steingrube@ise.fraunhofer.decem.keskin@ozyegin.edu.trJaanus.tamm@tartu.ee
            Contact person for other special topics
            A1P030: NameStavros Zapantis - vice mayorXingxing ZhangOmar ShafqatM. Pınar MengüçKaspar Alev
            A1P031: Emailstavros.zapantis@gmail.comxza@du.seo.shafqat@hva.nlpinar.menguc@ozyegin.edu.trKaspar.alev@tartu.ee
            Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
            A2P001: Fields of application
            A2P001: Fields of application
            • Energy production
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Construction materials
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies,
            • Water use,
            • Waste management,
            • Construction materials
            • Energy efficiency,
            • Energy production
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies,
            • Waste management,
            • Construction materials
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies,
            • Construction materials
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Waste management
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies,
            • Waste management,
            • Indoor air quality,
            • Construction materials
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Digital technologies,
            • Indoor air quality
            A2P001: Other
            A2P002: Tools/strategies/methods applied for each of the above-selected fields
            A2P002: Tools/strategies/methods applied for each of the above-selected fieldsLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMCity vision, Innovation AteliersCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.Energy system modelingLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentEnergy efficiency: - buildings retrofitting - combined public and private financing - low temperature central heating - LED lighting Energy production: - installation of photovoltaic (PV) systems for renewable on-site energy production; Digital technologies: - smart-meters smart home system. Smart city information platform E-mobility - Installation of new charging stations for electric vehicles; - e-bike/bikesharing services implementation. Urban comfort and air quality - Control units for air pollutants concentration (PM2.5, PM10, NO2) - Sustainable Energy and Climate Action Plan - SECAP)
            A2P003: Application of ISO52000
            A2P003: Application of ISO52000NoYesNoNoNoYesYesNo
            A2P004: Appliances included in the calculation of the energy balance
            A2P004: Appliances included in the calculation of the energy balanceYesNoNoYesYesYesYesYes
            A2P005: Mobility included in the calculation of the energy balance
            A2P005: Mobility included in the calculation of the energy balanceNoNoYesYesYesYesNoNo
            A2P006: Description of how mobility is included (or not included) in the calculation
            A2P006: Description of how mobility is included (or not included) in the calculationAt Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.All energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutralityNot included, the campus is a non car area except emergencies
            A2P007: Annual energy demand in buildings / Thermal demand
            A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.67770.77135.7159.1
            A2P008: Annual energy demand in buildings / Electric Demand
            A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.036560.7631.76
            A2P009: Annual energy demand for e-mobility
            A2P009: Annual energy demand for e-mobility [GWh/annum]0
            A2P010: Annual energy demand for urban infrastructure
            A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
            A2P011: Annual renewable electricity production on-site during target year
            A2P011: PVyesnoyesnonoyesnoyesyes
            A2P011: PV - specify production in GWh/annum [GWh/annum]0.065
            A2P011: Windnonononononononono
            A2P011: Wind - specify production in GWh/annum [GWh/annum]
            A2P011: Hydrononononononononono
            A2P011: Hydro - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_elnonoyesnonoyesnonono
            A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
            A2P011: Biomass_peat_elnonononononononono
            A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
            A2P011: PVT_elnoyesnonononononono
            A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
            A2P011: Othernonononononononono
            A2P011: Other - specify production in GWh/annum [GWh/annum]
            A2P012: Annual renewable thermal production on-site during target year
            A2P012: Geothermalnonoyesnononononono
            A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Solar Thermalnononononoyesnonoyes
            A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.0450.5
            A2P012: Biomass_heatnonoyesnonoyesnonono
            A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
            A2P012: Waste heat+HPnonoyesnononononono
            A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_peat_heatnonononononononono
            A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: PVT_thnoyesnonononononono
            A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
            A2P012: Biomass_firewood_thnonononononononono
            A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
            A2P012: Othernonononononononono
            A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
            A2P013: Renewable resources on-site - Additional notes
            A2P013: Renewable resources on-site - Additional notesListed values are measurements from 2018. Renewable energy share is increasing.53 MW PV potential in all three quarters; no other internal renewable energy potentials known
            A2P014: Annual energy use
            A2P014: Annual energy use [GWh/annum]0.3181.500132.53.5
            A2P015: Annual energy delivered
            A2P015: Annual energy delivered [GWh/annum]0.20551
            A2P016: Annual non-renewable electricity production on-site during target year
            A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0
            A2P017: Annual non-renewable thermal production on-site during target year
            A2P017: Gasnonoyesnononononono
            A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Coalnonoyesnononononono
            A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Oilnonoyesnononononono
            A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Othernoyesnonononononono
            A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
            A2P018: Annual renewable electricity imports from outside the boundary during target year
            A2P018: PVnonoyesnonononoyesno
            A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
            A2P018: Windnonoyesnononononono
            A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
            A2P018: Hydrononoyesnononononono
            A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_elnonoyesnononononono
            A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_peat_elnonoyesnononononono
            A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: PVT_elnonoyesnononononono
            A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Othernoyesnonononononono
            A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
            A2P019: Annual renewable thermal imports from outside the boundary during target year
            A2P019: Geothermalnonoyesnononononono
            A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Solar Thermalnonoyesnononononono
            A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_heatnonoyesnononononono
            A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Waste heat+HPnonoyesnononononono
            A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_peat_heatnonoyesnononononono
            A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: PVT_thnonoyesnononononono
            A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_firewood_thnonoyesnononononono
            A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Othernoyesnonononononono
            A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
            A2P020: Share of RES on-site / RES outside the boundary
            A2P020: Share of RES on-site / RES outside the boundary00.538395721925130000000
            A2P021: GHG-balance calculated for the PED
            A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93250980
            A2P022: KPIs related to the PED case study / PED Lab
            A2P022: Safety & Securitynone
            A2P022: Healththermal comfort diagram
            A2P022: Educationnone
            A2P022: Mobilitynoneyes
            A2P022: Energynormalized CO2/GHG & Energy intensityyes
            A2P022: Water
            A2P022: Economic developmentcost of excess emissions
            A2P022: Housing and Communityyes
            A2P022: Waste
            A2P022: Other
            A2P023: Technological Solutions / Innovations - Energy Generation
            A2P023: Photovoltaicsnoyesyesyesyesyesyesyesyes
            A2P023: Solar thermal collectorsnoyesnonoyesyesyesnono
            A2P023: Wind Turbinesnononononononoyesno
            A2P023: Geothermal energy systemnoyesyesyesnonoyesnono
            A2P023: Waste heat recoverynoyesyesnononoyesnono
            A2P023: Waste to energynonoyesnononoyesnono
            A2P023: Polygenerationnonononononononono
            A2P023: Co-generationnononononoyesyesyesno
            A2P023: Heat Pumpnoyesyesyesnonoyesyesno
            A2P023: Hydrogennonononononoyesnono
            A2P023: Hydropower plantnonononononoyesnono
            A2P023: Biomassnonoyesnonoyesyesnoyes
            A2P023: Biogasnonoyesnononoyesnoyes
            A2P023: OtherThe Co-generation is biomass based.
            A2P024: Technological Solutions / Innovations - Energy Flexibility
            A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesnoyesyesyesyesyes
            A2P024: Energy management systemnonoyesnoyesyesyesyesyes
            A2P024: Demand-side managementnonoyesnonoyesyesyesno
            A2P024: Smart electricity gridnonoyesnoyesnoyesnono
            A2P024: Thermal Storagenoyesyesnoyesyesyesnono
            A2P024: Electric Storagenonoyesyesyesyesyesyesno
            A2P024: District Heating and Coolingnoyesyesnonoyesyesyesyes
            A2P024: Smart metering and demand-responsive control systemsnonoyesnoyesyesyesyesno
            A2P024: P2P – buildingsnonoyesnoyesnoyesnono
            A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
            A2P025: Technological Solutions / Innovations - Energy Efficiency
            A2P025: Deep Retrofittingnoyesyesyesnonoyesnoyes
            A2P025: Energy efficiency measures in historic buildingsnonoyesnoyesnoyesnono
            A2P025: High-performance new buildingsnonoyesnonoyesnoyesno
            A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesnononononoyes
            A2P025: Urban data platformsnonoyesnoyesnoyesnoyes
            A2P025: Mobile applications for citizensnonoyesnoyesnononoyes
            A2P025: Building services (HVAC & Lighting)noyesyesnoyesnonoyesno
            A2P025: Smart irrigationnonoyesnonononoyesno
            A2P025: Digital tracking for waste disposalnonoyesnoyesnononono
            A2P025: Smart surveillancenonononoyesnonoyesyes
            A2P025: Other
            A2P026: Technological Solutions / Innovations - Mobility
            A2P026: Efficiency of vehicles (public and/or private)nonoyesnononoyesnoyes
            A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonoyesnononoyesnoyes
            A2P026: e-Mobilitynonoyesnoyesyesyesyesyes
            A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnoyesnoyesyesno
            A2P026: Car-free areanonoyesnonononoyesno
            A2P026: Other
            A2P027: Mobility strategies - Additional notes
            A2P027: Mobility strategies - Additional notes
            A2P028: Energy efficiency certificates
            A2P028: Energy efficiency certificatesNoNoYesNoYesYes
            A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingPassive house (2 buildings, 4 200 m2, from 2015)
            A2P029: Any other building / district certificates
            A2P029: Any other building / district certificatesNoNoYesNoYes
            A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)LEED BD+C, LEED NC CAMPUS
            A3P001: Relevant city /national strategy
            A3P001: Relevant city /national strategy
            • Energy master planning (SECAP, etc.),
            • Promotion of energy communities (REC/CEC)
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract)
            • Smart cities strategies,
            • Energy master planning (SECAP, etc.),
            • New development strategies,
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Energy master planning (SECAP, etc.),
            • New development strategies
            • Energy master planning (SECAP, etc.),
            • Promotion of energy communities (REC/CEC),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Promotion of energy communities (REC/CEC),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Smart cities strategies
            • Smart cities strategies,
            • Energy master planning (SECAP, etc.),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Energy master planning (SECAP, etc.)
            A3P002: Quantitative targets included in the city / national strategy
            A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Climate neutrality by 2035
            A3P003: Strategies towards decarbonization of the gas grid
            A3P003: Strategies towards decarbonization of the gas grid
            • Electrification of Heating System based on Heat Pumps,
            • Electrification of Cooking Methods,
            • Biogas,
            • Hydrogen
            • Electrification of Heating System based on Heat Pumps,
            • Biogas,
            • Hydrogen
            • Electrification of Heating System based on Heat Pumps,
            • Electrification of Cooking Methods
            • Biogas,
            • Hydrogen
            A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
            A3P004: Identification of needs and priorities
            A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district levelCarbon and Energy Neutrality
            A3P005: Sustainable behaviour
            A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economyUnder LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.
            A3P006: Economic strategies
            A3P006: Economic strategies
            • Open data business models,
            • Life Cycle Cost,
            • Circular economy models,
            • Local trading
            • Innovative business models,
            • Life Cycle Cost,
            • Circular economy models,
            • Demand management Living Lab,
            • Local trading,
            • Existing incentives
            • Demand management Living Lab,
            • Local trading,
            • Existing incentives
            • Innovative business models,
            • PPP models,
            • Life Cycle Cost,
            • Existing incentives
            A3P006: Other
            A3P007: Social models
            A3P007: Social models
            • Strategies towards (local) community-building,
            • Behavioural Change / End-users engagement,
            • Social incentives,
            • Affordability,
            • Digital Inclusion
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Citizen Social Research,
            • Social incentives,
            • Quality of Life,
            • Digital Inclusion,
            • Citizen/owner involvement in planning and maintenance,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Quality of Life,
            • Prevention of energy poverty
            • Behavioural Change / End-users engagement,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
            • Other
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Citizen/owner involvement in planning and maintenance,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Citizen Social Research,
            • Policy Forums,
            • Social incentives,
            • Quality of Life,
            • Prevention of energy poverty,
            • Digital Inclusion,
            • Citizen/owner involvement in planning and maintenance,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
            A3P008: Integrated urban strategies
            A3P008: Integrated urban strategies
            • Strategic urban planning,
            • Digital twinning and visual 3D models,
            • District Energy plans,
            • Building / district Certification
            • Strategic urban planning,
            • Digital twinning and visual 3D models,
            • District Energy plans,
            • City Vision 2050,
            • SECAP Updates,
            • Building / district Certification
            • Strategic urban planning,
            • City Vision 2050,
            • SECAP Updates
            • Strategic urban planning,
            • Digital twinning and visual 3D models,
            • District Energy plans
            • City Vision 2050,
            • SECAP Updates,
            • Building / district Certification
            • Strategic urban planning,
            • City Vision 2050,
            • SECAP Updates
            A3P008: Other
            A3P009: Environmental strategies
            A3P009: Environmental strategies
            • Low Emission Zone,
            • Net zero carbon footprint,
            • Life Cycle approach,
            • Sustainable Urban drainage systems (SUDS)
            • Energy Neutral,
            • Life Cycle approach
            • Pollutants Reduction,
            • Greening strategies
            • Low Emission Zone
            • Energy Neutral,
            • Low Emission Zone,
            • Net zero carbon footprint,
            • Greening strategies,
            • Cool Materials
            • Net zero carbon footprint,
            • Carbon-free,
            • Pollutants Reduction,
            • Greening strategies,
            • Sustainable Urban drainage systems (SUDS),
            • Nature Based Solutions (NBS)
            A3P009: Other
            A3P010: Legal / Regulatory aspects
            A3P010: Legal / Regulatory aspectsRegulatory sandboxCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.ISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
            B1P001: PED/PED relevant concept definition
            B1P001: PED/PED relevant concept definitionThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.Functional PEDThe PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.The biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyThe campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.
            B1P002: Motivation behind PED/PED relevant project development
            B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.Brown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.POCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.In line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardThe purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.
            B1P003: Environment of the case study area
            B2P003: Environment of the case study areaUrban areaUrban areaUrban areaUrban areaRuralSuburban areaSuburban areaUrban area
            B1P004: Type of district
            B2P004: Type of district
            • Renovation
            • New construction
            • Renovation
            • Renovation
            • New construction,
            • Renovation
            • Renovation
            • Renovation
            • Renovation
            B1P005: Case Study Context
            B1P005: Case Study Context
            • Re-use / Transformation Area,
            • Retrofitting Area
            • New Development
            • Retrofitting Area
            • Preservation Area
            • Retrofitting Area
            • Retrofitting Area
            • Retrofitting Area
            • Retrofitting Area
            B1P006: Year of construction
            B1P006: Year of construction19902024
            B1P007: District population before intervention - Residential
            B1P007: District population before intervention - Residential10058984500
            B1P008: District population after intervention - Residential
            B1P008: District population after intervention - Residential1005898
            B1P009: District population before intervention - Non-residential
            B1P009: District population before intervention - Non-residential69800
            B1P010: District population after intervention - Non-residential
            B1P010: District population after intervention - Non-residential69800
            B1P011: Population density before intervention
            B1P011: Population density before intervention0000000340
            B1P012: Population density after intervention
            B1P012: Population density after intervention00.01065862242332800000.001198780487804934.3377715487040
            B1P013: Building and Land Use before intervention
            B1P013: Residentialnoyesnoyesnonoyesnoyes
            B1P013 - Residential: Specify the sqm [m²]436064 787,57
            B1P013: Officenonononononoyesnono
            B1P013 - Office: Specify the sqm [m²]
            B1P013: Industry and Utilitynonoyesnononoyesnono
            B1P013 - Industry and Utility: Specify the sqm [m²]
            B1P013: Commercialnononoyesnonoyesnoyes
            B1P013 - Commercial: Specify the sqm [m²]262,33
            B1P013: Institutionalnonononononoyesyesno
            B1P013 - Institutional: Specify the sqm [m²]285.400
            B1P013: Natural areasnonononononoyesnoyes
            B1P013 - Natural areas: Specify the sqm [m²]
            B1P013: Recreationalnonononononoyesnoyes
            B1P013 - Recreational: Specify the sqm [m²]
            B1P013: Dismissed areasnonononononononono
            B1P013 - Dismissed areas: Specify the sqm [m²]
            B1P013: Othernoyesnonononononono
            B1P013 - Other: Specify the sqm [m²]706
            B1P014: Building and Land Use after intervention
            B1P014: Residentialnoyesyesnononoyesnoyes
            B1P014 - Residential: Specify the sqm [m²]4360
            B1P014: Officenonoyesnononoyesnono
            B1P014 - Office: Specify the sqm [m²]
            B1P014: Industry and Utilitynonononononoyesnono
            B1P014 - Industry and Utility: Specify the sqm [m²]
            B1P014: Commercialnonoyesnononoyesnoyes
            B1P014 - Commercial: Specify the sqm [m²]
            B1P014: Institutionalnononoyesnonoyesyesno
            B1P014 - Institutional: Specify the sqm [m²]35322.21280000
            B1P014: Natural areasnonononononoyesnoyes
            B1P014 - Natural areas: Specify the sqm [m²]
            B1P014: Recreationalnonoyesnononoyesnoyes
            B1P014 - Recreational: Specify the sqm [m²]
            B1P014: Dismissed areasnonononononononono
            B1P014 - Dismissed areas: Specify the sqm [m²]
            B1P014: Othernoyesnonononononono
            B1P014 - Other: Specify the sqm [m²]706
            B2P001: PED Lab concept definition
            B2P001: PED Lab concept definition
            B2P002: Installation life time
            B2P002: Installation life time
            B2P003: Scale of action
            B2P003: ScaleDistrictDistrict
            B2P004: Operator of the installation
            B2P004: Operator of the installation
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P006: Circular Economy Approach
            B2P006: Do you apply any strategy to reuse and recycling the materials?No
            B2P006: Other
            B2P007: Motivation for developing the PED Lab
            B2P007: Motivation for developing the PED Lab
            • Strategic
            B2P007: Other
            B2P008: Lead partner that manages the PED Lab
            B2P008: Lead partner that manages the PED LabMunicipality
            B2P008: Other
            B2P009: Collaborative partners that participate in the PED Lab
            B2P009: Collaborative partners that participate in the PED Lab
            • Academia,
            • Private,
            • Industrial,
            • Citizens, public, NGO
            B2P009: Other
            B2P010: Synergies between the fields of activities
            B2P010: Synergies between the fields of activities
            B2P011: Available facilities to test urban configurations in PED Lab
            B2P011: Available facilities to test urban configurations in PED Lab
            • Buildings,
            • Demand-side management,
            • Prosumers,
            • Renewable generation,
            • Energy storage,
            • Energy networks,
            • Waste management,
            • E-mobility,
            • Social interactions,
            • Circular economy models
            • Buildings,
            • Prosumers,
            • Renewable generation,
            • Energy networks,
            • Lighting,
            • E-mobility,
            • Green areas,
            • User interaction/participation,
            • Information and Communication Technologies (ICT)
            B2P011: Other
            B2P012: Incubation capacities of PED Lab
            B2P012: Incubation capacities of PED Lab
            • Monitoring and evaluation infrastructure,
            • Tools for prototyping and modelling,
            • Tools, spaces, events for testing and validation
            • Monitoring and evaluation infrastructure,
            • Pivoting and risk-mitigating measures
            B2P013: Availability of the facilities for external people
            B2P013: Availability of the facilities for external people
            B2P014: Monitoring measures
            B2P014: Monitoring measures
            • Available data,
            • Life Cycle Analysis
            B2P015: Key Performance indicators
            B2P015: Key Performance indicators
            • Energy
            • Energy,
            • Sustainability,
            • Social,
            • Economical / Financial
            B2P016: Execution of operations
            B2P016: Execution of operations
            B2P017: Capacities
            B2P017: Capacities
            B2P018: Relations with stakeholders
            B2P018: Relations with stakeholders
            B2P019: Available tools
            B2P019: Available tools
            • Social models
            B2P019: Available tools
            B2P020: External accessibility
            B2P020: External accessibility
            C1P001: Unlocking Factors
            C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important4 - Important4 - Important4 - Important5 - Very important3 - Moderately important5 - Very important3 - Moderately important
            C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important5 - Very important5 - Very important3 - Moderately important5 - Very important3 - Moderately important5 - Very important4 - Important
            C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important5 - Very important3 - Moderately important4 - Important3 - Moderately important
            C1P001: Storage systems and E-mobility market penetration3 - Moderately important3 - Moderately important4 - Important4 - Important5 - Very important4 - Important4 - Important2 - Slightly important
            C1P001: Decreasing costs of innovative materials4 - Important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important2 - Slightly important4 - Important3 - Moderately important
            C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important5 - Very important4 - Important
            C1P001: The ability to predict Multiple Benefits4 - Important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
            C1P001: The ability to predict the distribution of benefits and impacts4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important4 - Important
            C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important2 - Slightly important5 - Very important3 - Moderately important4 - Important4 - Important5 - Very important4 - Important
            C1P001: Social acceptance (top-down)5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important4 - Important4 - Important4 - Important4 - Important
            C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important2 - Slightly important5 - Very important4 - Important4 - Important4 - Important5 - Very important3 - Moderately important
            C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important5 - Very important
            C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important4 - Important
            C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important4 - Important4 - Important5 - Very important4 - Important1 - Unimportant3 - Moderately important4 - Important5 - Very important
            C1P001: Availability of RES on site (Local RES)5 - Very important3 - Moderately important5 - Very important3 - Moderately important5 - Very important4 - Important5 - Very important4 - Important
            C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important2 - Slightly important2 - Slightly important4 - Important4 - Important3 - Moderately important2 - Slightly important4 - Important4 - Important
            C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
            C1P001: Any other UNLOCKING FACTORS (if any)
            C1P002: Driving Factors
            C1P002: Climate Change adaptation need4 - Important5 - Very important5 - Very important4 - Important5 - Very important3 - Moderately important4 - Important5 - Very important5 - Very important
            C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important5 - Very important4 - Important5 - Very important4 - Important5 - Very important5 - Very important
            C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
            C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important
            C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important
            C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important4 - Important
            C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
            C1P002: Energy autonomy/independence5 - Very important2 - Slightly important2 - Slightly important2 - Slightly important3 - Moderately important4 - Important3 - Moderately important5 - Very important4 - Important
            C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
            C1P002: Any other DRIVING FACTOR (if any)
            C1P003: Administrative barriers
            C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important
            C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important2 - Slightly important
            C1P003: Lack of public participation3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant
            C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
            C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important5 - Very important
            C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important4 - Important
            C1P003: Complicated and non-comprehensive public procurement4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important2 - Slightly important4 - Important4 - Important
            C1P003: Fragmented and or complex ownership structure3 - Moderately important4 - Important2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important4 - Important4 - Important5 - Very important
            C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important5 - Very important5 - Very important
            C1P003: Lack of internal capacities to support energy transition3 - Moderately important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important4 - Important
            C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
            C1P003: Any other Administrative BARRIER (if any)
            C1P004: Policy barriers
            C1P004: Lack of long-term and consistent energy plans and policies4 - Important5 - Very important2 - Slightly important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant
            C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important
            C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important4 - Important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important
            C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
            C1P004: Any other Political BARRIER (if any)
            C1P005: Legal and Regulatory barriers
            C1P005: Inadequate regulations for new technologies4 - Important4 - Important3 - Moderately important5 - Very important5 - Very important5 - Very important4 - Important5 - Very important4 - Important
            C1P005: Regulatory instability3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important
            C1P005: Non-effective regulations4 - Important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important4 - Important
            C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important2 - Slightly important5 - Very important5 - Very important3 - Moderately important5 - Very important4 - Important2 - Slightly important
            C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
            C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important4 - Important3 - Moderately important5 - Very important3 - Moderately important
            C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
            C1P005: Shortage of proven and tested solutions and examples4 - Important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important4 - Important2 - Slightly important
            C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
            C1P005: Any other Legal and Regulatory BARRIER (if any)
            C1P006: Environmental barriers
            C1P006: Environmental barriers2 - Slightly importantAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
            C1P007: Technical barriers
            C1P007: Lack of skilled and trained personnel4 - Important4 - Important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important4 - Important5 - Very important3 - Moderately important
            C1P007: Deficient planning3 - Moderately important4 - Important2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant4 - Important5 - Very important1 - Unimportant
            C1P007: Retrofitting work in dwellings in occupied state4 - Important4 - Important3 - Moderately important5 - Very important5 - Very important3 - Moderately important4 - Important3 - Moderately important5 - Very important
            C1P007: Lack of well-defined process4 - Important2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important3 - Moderately important
            C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important
            C1P007: Lack/cost of computational scalability4 - Important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important
            C1P007: Grid congestion, grid instability4 - Important5 - Very important5 - Very important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important5 - Very important2 - Slightly important
            C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
            C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant
            C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important4 - Important5 - Very important
            C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
            C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
            C1P008: Social and Cultural barriers
            C1P008: Inertia4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important4 - Important
            C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important
            C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important3 - Moderately important4 - Important2 - Slightly important3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important
            C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important
            C1P008: Lack of trust beyond social network4 - Important5 - Very important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important
            C1P008: Rebound effect4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
            C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
            C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important
            C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important
            C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
            C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
            C1P008: Any other Social BARRIER (if any)
            C1P009: Information and Awareness barriers
            C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important
            C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important
            C1P009: Lack of awareness among authorities5 - Very important1 - Unimportant5 - Very important2 - Slightly important4 - Important2 - Slightly important5 - Very important2 - Slightly important
            C1P009: Information asymmetry causing power asymmetry of established actors5 - Very important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
            C1P009: High costs of design, material, construction, and installation5 - Very important3 - Moderately important5 - Very important4 - Important5 - Very important4 - Important4 - Important5 - Very important
            C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant
            C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
            C1P010: Financial barriers
            C1P010: Hidden costs5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important4 - Important5 - Very important
            C1P010: Insufficient external financial support and funding for project activities5 - Very important1 - Unimportant5 - Very important1 - Unimportant5 - Very important3 - Moderately important5 - Very important5 - Very important
            C1P010: Economic crisis5 - Very important4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important
            C1P010: Risk and uncertainty5 - Very important4 - Important5 - Very important2 - Slightly important5 - Very important4 - Important5 - Very important4 - Important
            C1P010: Lack of consolidated and tested business models5 - Very important3 - Moderately important5 - Very important1 - Unimportant5 - Very important3 - Moderately important4 - Important3 - Moderately important
            C1P010: Limited access to capital and cost disincentives5 - Very important1 - Unimportant5 - Very important1 - Unimportant4 - Important2 - Slightly important5 - Very important4 - Important
            C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
            C1P010: Any other Financial BARRIER (if any)
            C1P011: Market barriers
            C1P011: Split incentives4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important
            C1P011: Energy price distortion4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
            C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important4 - Important4 - Important
            C1P011: Any other Market BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
            C1P011: Any other Market BARRIER (if any)
            C1P012: Stakeholders involved
            C1P012: Government/Public Authorities
            • Monitoring/operation/management
            • Monitoring/operation/management
            • Planning/leading,
            • Monitoring/operation/management
            • Planning/leading
            • Planning/leading
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Research & Innovation
            • Planning/leading
            • Monitoring/operation/management
            • None
            • Monitoring/operation/management
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Financial/Funding
            • None
            • Construction/implementation,
            • Monitoring/operation/management
            • Construction/implementation
            • None
            • Planning/leading,
            • Construction/implementation,
            • Monitoring/operation/management
            • Design/demand aggregation,
            • Construction/implementation
            C1P012: Analyst, ICT and Big Data
            • None
            • Construction/implementation
            • None
            • Monitoring/operation/management
            • None
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Monitoring/operation/management
            C1P012: Business process management
            • None
            • None
            • Planning/leading
            • None
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading
            C1P012: Urban Services providers
            • None
            • None
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Construction/implementation
            C1P012: Real Estate developers
            • Design/demand aggregation
            • Planning/leading,
            • Monitoring/operation/management
            • None
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • None
            C1P012: Design/Construction companies
            • None
            • Design/demand aggregation,
            • Construction/implementation
            • Construction/implementation
            • Construction/implementation
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation
            C1P012: End‐users/Occupants/Energy Citizens
            • Monitoring/operation/management
            • Design/demand aggregation
            • Construction/implementation
            • Monitoring/operation/management
            • Planning/leading,
            • Construction/implementation,
            • Monitoring/operation/management
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Social/Civil Society/NGOs
            • Monitoring/operation/management
            • Design/demand aggregation
            • None
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Industry/SME/eCommerce
            • None
            • Construction/implementation
            • Design/demand aggregation,
            • Construction/implementation
            • Construction/implementation
            • None
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Other
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Other (if any)
            Summary

            Authors (framework concept)

            Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

            Contributors (to the content)

            Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

            Implemented by

            Boutik.pt: Filipe Martins, Jamal Khan
            Marek Suchánek (Czech Technical University in Prague)