Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Uncompare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Uncompare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Borlänge, Rymdgatan’s Residential Portfolio
Uden, Loopkantstraat
Freiburg, Waldsee
Vienna, Am Kempelenpark
Lublin
Oulu, Kaukovainio
Trenčín
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityBorlänge, Rymdgatan’s Residential PortfolioUden, LoopkantstraatFreiburg, WaldseeVienna, Am KempelenparkLublinOulu, KaukovainioTrenčín
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesyesyesyesyes
PED relevant case studyyesyesyesnonononono
PED Lab.nononononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyesyes
Annual energy surplusnoyesyesnoyesyesnoyes
Energy communityyesyesnoyesnoyesnoyes
Circularitynononononoyesyesno
Air quality and urban comfortyesnonononoyesnono
Electrificationyesyesyesyesnonoyesno
Net-zero energy costnononononoyesnono
Net-zero emissionnononoyesnoyesnono
Self-sufficiency (energy autonomous)nononononoyesnoyes
Maximise self-sufficiencynoyesnononoyesnono
Othernononononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseIn operationPlanning PhasePlanning PhasePlanning PhaseIn operationPlanning Phase
A1P006: Start Date
A1P006: Start date06/1711/2107/1606/19
A1P007: End Date
A1P007: End date05/2311/2402/2511/23
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • General statistical datasets,
  • GIS open datasets,
  • Vehicle registration datasets
  • GIS open datasets
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
      • Inger Andresen, Tonje Healey Trulsrud, Luca Finocchiaro, Alessandro Nocente, Meril Tamm, Joana Ortiz, Jaume Salom, Abel Magyari, Linda Hoes-van Oeffelen, Wouter Borsboom, Wim Kornaat, Niki Gaitani, Design and performance predictions of plus energy neighbourhoods – Case studies of demonstration projects in four different European climates, Energy and Buildings, Volume 274, 2022, 112447, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112447. (https://www.sciencedirect.com/science/article/pii/S0378778822006181),
      • Deliverable, Report: Integrated Energy Design for Sustainable Plus Energy Neighbourhoods (syn.ikia),
      • Deliverable, Report: DEMONSTRATION CASE OF SUSTAINABLE PLUS ENERGY NEIGHBOURHOODS IN MARINE CLIMATE (syn.ikia),
      • https://www.synikia.eu/no/bibliotek/
      • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
      • renewable energy potential,
      • own calculations based on publicly available data,
      • Some data can be found in https://geoportal.freiburg.de/freigis/
      A1P011: Geographic coordinates
      X Coordinate (longitude):23.81458815.3944955.61917.88585713584291716.39529222.568425.51759508409350718.046870515442922
      Y Coordinate (latitude):38.07734960.48660951.660647.98653520708004548.17359851.246564.9928809817313248.899251380340274
      A1P012: Country
      A1P012: CountryGreeceSwedenNetherlandsGermanyAustriaPolandFinlandSlovakia
      A1P013: City
      A1P013: CityMunicipality of KifissiaBorlängeUdenFreiburg im BreisgauViennaLublinOuluTrencin
      A1P014: Climate Zone (Köppen Geiger classification)
      A1P014: Climate Zone (Köppen Geiger classification).CsaDsbCfbCfbCwbCfbDfcCfb
      A1P015: District boundary
      A1P015: District boundaryVirtualGeographicGeographicVirtualGeographicGeographicFunctional
      OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodRegional (close to virtual)
      A1P016: Ownership of the case study/PED Lab
      A1P016: Ownership of the case study/PED Lab:MixedPrivateMixedPrivatePrivateMixedMixed
      A1P017: Ownership of the land / physical infrastructure
      A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple Owners
      A1P018: Number of buildings in PED
      A1P018: Number of buildings in PED101294165610
      A1P019: Conditioned space
      A1P019: Conditioned space [m²]3700236028407021664.73197002000
      A1P020: Total ground area
      A1P020: Total ground area [m²]99453860492000072833.476000075000
      A1P021: Floor area ratio: Conditioned space / total ground area
      A1P021: Floor area ratio: Conditioned space / total ground area00100000
      A1P022: Financial schemes
      A1P022a: Financing - PRIVATE - Real estatenonoyesnononoyesyes
      A1P022a: Add the value in EUR if available [EUR]7804440
      A1P022b: Financing - PRIVATE - ESCO schemenononononononono
      A1P022b: Add the value in EUR if available [EUR]
      A1P022c: Financing - PRIVATE - Othernononononononono
      A1P022c: Add the value in EUR if available [EUR]
      A1P022d: Financing - PUBLIC - EU structural fundingnononononononoyes
      A1P022d: Add the value in EUR if available [EUR]
      A1P022e: Financing - PUBLIC - National fundingnononononononono
      A1P022e: Add the value in EUR if available [EUR]
      A1P022f: Financing - PUBLIC - Regional fundingnononononononono
      A1P022f: Add the value in EUR if available [EUR]
      A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnonoyesyes
      A1P022g: Add the value in EUR if available [EUR]
      A1P022h: Financing - PUBLIC - Othernononononononoyes
      A1P022h: Add the value in EUR if available [EUR]
      A1P022i: Financing - RESEARCH FUNDING - EUnononoyesnonoyesno
      A1P022i: Add the value in EUR if available [EUR]
      A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnononono
      A1P022j: Add the value in EUR if available [EUR]
      A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
      A1P022k: Add the value in EUR if available [EUR]
      A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
      A1P022l: Add the value in EUR if available [EUR]
      A1P022: Other
      A1P023: Economic Targets
      A1P023: Economic Targets
      • Positive externalities,
      • Boosting local businesses,
      • Boosting consumption of local and sustainable products
      • Job creation,
      • Positive externalities,
      • Boosting local businesses,
      • Boosting local and sustainable production,
      • Boosting consumption of local and sustainable products
      • Positive externalities,
      • Boosting local and sustainable production
      • Boosting local businesses,
      • Boosting local and sustainable production
      A1P023: OtherDeveloping and demonstrating new solutions
      A1P024: More comments:
      A1P024: More comments:The project is a follow-up from the “Social Beautiful” concept which was developed in collaboration between Labyrint (Support in sheltered housing), Area (housing company), the municipality of Uden, and Hendriks Coppelmans (developer). The concept aims to provide an answer to changes in various policy areas and the changing demands of society. The Social Beautiful concept consists of the following elements: 1. Living, working, and community services are brought together in one location. A multifunctional residential and service centre is being realized at the location. 2. Housing is shaped by the realization of financially accessible homes suitable for the target group. The housing design is tailored to the target group. it may also include sheltered / protected living. 3. Work takes place at the location or from the same location. The work has a social function within the neighbourhood. Wage-related work must contribute to providing structure in the daily activities of the residents. 4. Neighbourhood management is organized from the location in the surrounding neighbourhood. A service package is provided from the residential and service centre that contributes to the ability of neighbourhood residents to live independently for longer, to strengthen the social network, and to improve the quality of life and safety in the neighbourhood. 5. The houses are suitable for use at all times for regular rental. Communal facilities must be realized within the contours of a regular apartment. The objective is to offer a suitable living and working situation to a group of vulnerable citizens. In this way they become a fully-fledged part of society. They not only make use of the facilities themselves, but also give substance to the level of facilities in the municipality. Due to the integrated approach, they experience a greater sense of well-being and security.Lublin PED Area is geographically bounded and the ambition is to reach Self-Sufficiency. There is a shopping centre with a large rooftop area for solar generation and there are also an empty lot (just on the east side of the building) and a carpark area (on the north side) next to the commercial centre. These areas can also be evaluated for on-site (on the ground – or canopies for cars) energy generation. There are also new built (mainly in 2012) residential blocks with high efficiency and this district is so-called an “eco-district”. Thanks to the District Heating Grid (DHN), all buildings are connected to each other the network has potential for sharing mechanisms in the PED Area. Another opportunity for renewable energy is that these buildings are connected to more or less the end point of DHN and for this reason, a waste heat potential from the return pipe may also be considered. There are also small size residentials, that are not connected to the DHN, around the PED area and this enlightened the technical team for exporting energy from PED to these areas with a new infrastructure.
      A1P025: Estimated PED case study / PED LAB costs
      A1P025: Estimated PED case study / PED LAB costs [mil. EUR]780444050
      Contact person for general enquiries
      A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaJingchun ShenTonje Healey TrulsrudDr. Annette SteingrubeGerhard HoferDorota Wolińska-PietrzakSamuli RinneVladimír Škola
      A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamHögskolan DalarnaNorwegian University of Science and Technology (NTNU)Fraunhofer Institute for solar energy systemse7 energy innovation & engineeringLublin MunicipalityCity of OuluCity of Trencin
      A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversitySME / IndustryMunicipality / Public BodiesMunicipality / Public BodiesOther
      A1P028: OtherProject Manager
      A1P029: Emailgiavasoglou@kifissia.grjih@du.setonje.h.trulsrud@ntnu.noAnnette.Steingrube@ise.fraunhofer.degerhard.hofer@e-sieben.atdwolinska@lublin.eusamuli.rinne@ouka.fivladimir.skola@trencin.sk
      Contact person for other special topics
      A1P030: NameStavros Zapantis - vice mayorXingxing ZhangSamuli RinneVladimír Škola
      A1P031: Emailstavros.zapantis@gmail.comxza@du.sesamuli.rinne@ouka.fivladimir.skola@trencin.sk
      Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
      A2P001: Fields of application
      A2P001: Fields of application
      • Energy production
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • Waste management,
      • Indoor air quality,
      • Construction materials
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Waste management
      • Energy efficiency,
      • Energy production,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Waste management
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Urban comfort (pollution, heat island, noise level etc.),
      • Digital technologies,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility,
      • Energy production,
      • E-mobility,
      • Digital technologies,
      • Water use,
      • Indoor air quality
      • Energy efficiency,
      • Energy flexibility
      A2P001: Other
      A2P002: Tools/strategies/methods applied for each of the above-selected fields
      A2P002: Tools/strategies/methods applied for each of the above-selected fieldsLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy efficiency: Energy efficient envelope, with good insulation, triple glazing windows and airtight envelope. (EPC = 0) Energy Flexibility: MCP controls for the heat pump in the apartments. Energy production: PV panels on the roof, Ground source heat pumps Waste management: construction waste was kept to a minimum and sorted and collected separately as much as possible. Indoor air quality: Exhaust ventilation and opening of windows Construction materials: low carbon emission building materialsEnergy system modelingSEE: D4.1 - Methodology and Guidelines for PED design https://makingcity.eu/results/#1551708358627-aefa76ef-66b2Different kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.
      A2P003: Application of ISO52000
      A2P003: Application of ISO52000NoYesYesNoNo
      A2P004: Appliances included in the calculation of the energy balance
      A2P004: Appliances included in the calculation of the energy balanceYesNoYesYesNo
      A2P005: Mobility included in the calculation of the energy balance
      A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoNoNo
      A2P006: Description of how mobility is included (or not included) in the calculation
      A2P006: Description of how mobility is included (or not included) in the calculationnot includedAll energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutralityNot included. However, there is a charging place for a shared EV in one building.
      A2P007: Annual energy demand in buildings / Thermal demand
      A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.67770.148135.7152.1
      A2P008: Annual energy demand in buildings / Electric Demand
      A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.036560.10931.760.2
      A2P009: Annual energy demand for e-mobility
      A2P009: Annual energy demand for e-mobility [GWh/annum]0
      A2P010: Annual energy demand for urban infrastructure
      A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
      A2P011: Annual renewable electricity production on-site during target year
      A2P011: PVyesnoyesnononoyesno
      A2P011: PV - specify production in GWh/annum [GWh/annum]0.0580.1
      A2P011: Windnononononononono
      A2P011: Wind - specify production in GWh/annum [GWh/annum]
      A2P011: Hydronononononononono
      A2P011: Hydro - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_elnononononononono
      A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
      A2P011: Biomass_peat_elnononononononono
      A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
      A2P011: PVT_elnoyesnononononono
      A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
      A2P011: Othernononononononono
      A2P011: Other - specify production in GWh/annum [GWh/annum]
      A2P012: Annual renewable thermal production on-site during target year
      A2P012: Geothermalnonoyesnonononono
      A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Solar Thermalnononononononono
      A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
      A2P012: Biomass_heatnononononononono
      A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: Waste heat+HPnonononononoyesno
      A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
      A2P012: Biomass_peat_heatnononononononono
      A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
      A2P012: PVT_thnoyesnononononono
      A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
      A2P012: Biomass_firewood_thnononononononono
      A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
      A2P012: Othernononononononono
      A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
      A2P013: Renewable resources on-site - Additional notes
      A2P013: Renewable resources on-site - Additional notes*Annual energy use below is presentedin primary energy consumption53 MW PV potential in all three quarters; no other internal renewable energy potentials knownHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)
      A2P014: Annual energy use
      A2P014: Annual energy use [GWh/annum]0.3180.194132.52.3
      A2P015: Annual energy delivered
      A2P015: Annual energy delivered [GWh/annum]0.20550.0368
      A2P016: Annual non-renewable electricity production on-site during target year
      A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
      A2P017: Annual non-renewable thermal production on-site during target year
      A2P017: Gasnononononononono
      A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Coalnononononononono
      A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Oilnononononononono
      A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
      A2P017: Othernoyesnononononono
      A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
      A2P018: Annual renewable electricity imports from outside the boundary during target year
      A2P018: PVnonononononoyesno
      A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
      A2P018: Windnonononononoyesno
      A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
      A2P018: Hydrononononononoyesno
      A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_elnonononononoyesno
      A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Biomass_peat_elnonononononoyesno
      A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: PVT_elnononononononono
      A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
      A2P018: Othernoyesnononononono
      A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
      A2P019: Annual renewable thermal imports from outside the boundary during target year
      A2P019: Geothermalnononononononono
      A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Solar Thermalnononononononono
      A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_heatnonononononoyesno
      A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
      A2P019: Waste heat+HPnononononononono
      A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_peat_heatnononononononono
      A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
      A2P019: PVT_thnononononononono
      A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Biomass_firewood_thnononononononono
      A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
      A2P019: Othernoyesnononononono
      A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
      A2P020: Share of RES on-site / RES outside the boundary
      A2P020: Share of RES on-site / RES outside the boundary00.5383957219251300003.28571428571430
      A2P021: GHG-balance calculated for the PED
      A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93-0.000430
      A2P022: KPIs related to the PED case study / PED Lab
      A2P022: Safety & SecuritynonePersonal Safety
      A2P022: Healththermal comfort diagramHealthy communityEncouraging a healthy lifestyle
      A2P022: Educationnone
      A2P022: MobilitynoneSustainable mobilityyesModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging
      A2P022: Energynormalized CO2/GHG & Energy intensityNOn-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/self-consumption, net energy/net power, peak delivered/peak expoted, total greenhouse gas emissionyesFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reduction
      A2P022: Water
      A2P022: Economic developmentcost of excess emissionscapital costs, operational cots, overall economic performance (5 KPIs)Total investments, Payback time, Economic value of savings
      A2P022: Housing and Communitydemographic composition, diverse community, social cohesionyesDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty
      A2P022: WasteRecycling rate
      A2P022: OtherSmartness and flecibility, Indoor Environmental Quality, Social performance - Equity (affordable housing, access to servicees and amenitioes, afforability of energy, living conditions, sustinable mobility, universal design)Smart Cities strategies, Quality of open data
      A2P023: Technological Solutions / Innovations - Energy Generation
      A2P023: Photovoltaicsnoyesyesyesnoyesyesno
      A2P023: Solar thermal collectorsnoyesnoyesnononono
      A2P023: Wind Turbinesnononononononono
      A2P023: Geothermal energy systemnoyesyesyesnononono
      A2P023: Waste heat recoverynoyesnoyesnonoyesno
      A2P023: Waste to energynononoyesnononono
      A2P023: Polygenerationnononononononono
      A2P023: Co-generationnononoyesnonoyesno
      A2P023: Heat Pumpnoyesyesyesnoyesyesno
      A2P023: Hydrogennononoyesnoyesnono
      A2P023: Hydropower plantnononoyesnononono
      A2P023: Biomassnononoyesnonoyesno
      A2P023: Biogasnononoyesnononono
      A2P023: Other
      A2P024: Technological Solutions / Innovations - Energy Flexibility
      A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesnoyesyesno
      A2P024: Energy management systemnonoyesyesnoyesyesyes
      A2P024: Demand-side managementnonoyesyesnoyesnono
      A2P024: Smart electricity gridnononoyesnoyesnono
      A2P024: Thermal Storagenoyesnoyesnoyesyesyes
      A2P024: Electric Storagenononoyesnoyesnoyes
      A2P024: District Heating and Coolingnoyesnoyesnoyesyesyes
      A2P024: Smart metering and demand-responsive control systemsnonoyesyesnoyesnono
      A2P024: P2P – buildingsnononoyesnononono
      A2P024: Other
      A2P025: Technological Solutions / Innovations - Energy Efficiency
      A2P025: Deep Retrofittingnoyesnoyesnoyesyesyes
      A2P025: Energy efficiency measures in historic buildingsnononoyesnoyesnoyes
      A2P025: High-performance new buildingsnonoyesnonoyesyesno
      A2P025: Smart Public infrastructure (e.g. smart lighting)nononononoyesnono
      A2P025: Urban data platformsnononoyesnoyesyesno
      A2P025: Mobile applications for citizensnononononoyesnono
      A2P025: Building services (HVAC & Lighting)noyesyesnonoyesyesyes
      A2P025: Smart irrigationnononononononono
      A2P025: Digital tracking for waste disposalnononononononono
      A2P025: Smart surveillancenononononononono
      A2P025: Other
      A2P026: Technological Solutions / Innovations - Mobility
      A2P026: Efficiency of vehicles (public and/or private)nononoyesnoyesyesno
      A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnoyesyesno
      A2P026: e-Mobilitynononoyesnoyesyesno
      A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnonoyesno
      A2P026: Car-free areanononononononono
      A2P026: Other
      A2P027: Mobility strategies - Additional notes
      A2P027: Mobility strategies - Additional notesSUMP AVAILABLE
      A2P028: Energy efficiency certificates
      A2P028: Energy efficiency certificatesNoYesNoNoYes
      A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEPC = 0, energy neutral buildingThe obligatory buildijng energy classification
      A2P029: Any other building / district certificates
      A2P029: Any other building / district certificatesNoNoNoNoNo
      A2P029: If yes, please specify and/or enter notes
      A3P001: Relevant city /national strategy
      A3P001: Relevant city /national strategy
      • Energy master planning (SECAP, etc.),
      • Promotion of energy communities (REC/CEC)
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract)
      • Smart cities strategies
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Promotion of energy communities (REC/CEC),
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      • Smart cities strategies,
      • Urban Renewal Strategies,
      • Energy master planning (SECAP, etc.),
      • New development strategies,
      • Climate change adaption plan/strategy (e.g. Climate City contract),
      • National / international city networks addressing sustainable urban development and climate neutrality
      A3P002: Quantitative targets included in the city / national strategy
      A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Climate neutrality by 2035Carbon neutrality by 2035
      A3P003: Strategies towards decarbonization of the gas grid
      A3P003: Strategies towards decarbonization of the gas grid
      • Electrification of Heating System based on Heat Pumps,
      • Biogas,
      • Hydrogen
      • Electrification of Heating System based on Heat Pumps,
      • Other
      A3P003: OtherHeating GridSECAP developed in 2023
      A3P004: Identification of needs and priorities
      A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.Freiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district levelDeveloping and demonstrating solutions for carbon neutralitySELF SUSTAINABILITY, SELF EFFICIENCY
      A3P005: Sustainable behaviour
      A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economyE. g. visualizing energy and water consumptionBASED ON SECAP DEVELOPED IN 2023
      A3P006: Economic strategies
      A3P006: Economic strategies
      • Open data business models,
      • Life Cycle Cost,
      • Circular economy models,
      • Local trading
      • Demand management Living Lab,
      • Local trading,
      • Existing incentives
      • Open data business models,
      • Innovative business models,
      • PPP models,
      • Life Cycle Cost,
      • Circular economy models
      A3P006: Other
      A3P007: Social models
      A3P007: Social models
      • Strategies towards (local) community-building,
      • Behavioural Change / End-users engagement,
      • Social incentives,
      • Affordability,
      • Digital Inclusion
      • Co-creation / Citizen engagement strategies,
      • Social incentives,
      • Quality of Life
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      • Strategies towards (local) community-building,
      • Co-creation / Citizen engagement strategies
      • Co-creation / Citizen engagement strategies,
      • Behavioural Change / End-users engagement,
      • Citizen Social Research,
      • Policy Forums,
      • Quality of Life,
      • Strategies towards social mix,
      • Affordability,
      • Prevention of energy poverty,
      • Citizen/owner involvement in planning and maintenance,
      • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
      A3P007: Other
      A3P008: Integrated urban strategies
      A3P008: Integrated urban strategies
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans,
      • Building / district Certification
      • Strategic urban planning,
      • Digital twinning and visual 3D models,
      • District Energy plans
      • City Vision 2050,
      • SECAP Updates
      • Strategic urban planning,
      • District Energy plans,
      • City Vision 2050,
      • SECAP Updates
      A3P008: Other
      A3P009: Environmental strategies
      A3P009: Environmental strategies
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Life Cycle approach,
      • Sustainable Urban drainage systems (SUDS)
      • Energy Neutral,
      • Low Emission Zone,
      • Net zero carbon footprint,
      • Carbon-free,
      • Life Cycle approach,
      • Greening strategies,
      • Nature Based Solutions (NBS)
      • Energy Neutral,
      • Net zero carbon footprint
      A3P009: Other
      A3P010: Legal / Regulatory aspects
      A3P010: Legal / Regulatory aspects
      B1P001: PED/PED relevant concept definition
      B1P001: PED/PED relevant concept definitionThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.The demonstration projects is a new residential development, which consists of an apartment complex which includes 39 apartments spread over 3 floors. It is a sustainble plus energy neighbouhood, and has reached a plus energy balance on its first year in operation. It has MPC controls on the individual heat pumps to improve the energy flexibility of the apartments. It includes the "social beatiful" concepts with a strong emphasis on the social sustainability of the project.Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyThe original idea is that the area produces at least as much it consumes.GOOD MIX OF PUBLIC PRIVATE BUILDINGS
      B1P002: Motivation behind PED/PED relevant project development
      B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.The need for social housing and the ambition to create a great living environment with a high-performance apartment complex, supplied with renewable energy. It results in lower energy bills for the tenants and high-quality homes.City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardDeveloping systems towards carbon neutrality. Also urban renewal.Replication of unique PED know how
      B1P003: Environment of the case study area
      B2P003: Environment of the case study areaUrban areaSuburban areaSuburban areaUrban areaSuburban areaUrban area
      B1P004: Type of district
      B2P004: Type of district
      • Renovation
      • New construction
      • Renovation
      • Renovation
      • New construction,
      • Renovation
      • New construction,
      • Renovation
      B1P005: Case Study Context
      B1P005: Case Study Context
      • Re-use / Transformation Area,
      • Retrofitting Area
      • New Development
      • Retrofitting Area
      • Re-use / Transformation Area,
      • New Development
      • New Development,
      • Retrofitting Area
      • Retrofitting Area
      B1P006: Year of construction
      B1P006: Year of construction1990
      B1P007: District population before intervention - Residential
      B1P007: District population before intervention - Residential10058983500
      B1P008: District population after intervention - Residential
      B1P008: District population after intervention - Residential10058983500
      B1P009: District population before intervention - Non-residential
      B1P009: District population before intervention - Non-residential6
      B1P010: District population after intervention - Non-residential
      B1P010: District population after intervention - Non-residential6
      B1P011: Population density before intervention
      B1P011: Population density before intervention00000000
      B1P012: Population density after intervention
      B1P012: Population density after intervention00.01065862242332800.0011987804878049000.0583333333333330
      B1P013: Building and Land Use before intervention
      B1P013: Residentialnoyesnoyesnonoyesno
      B1P013 - Residential: Specify the sqm [m²]4360
      B1P013: Officenononoyesyesnonono
      B1P013 - Office: Specify the sqm [m²]
      B1P013: Industry and Utilitynononoyesnononono
      B1P013 - Industry and Utility: Specify the sqm [m²]
      B1P013: Commercialnononoyesyesnoyesno
      B1P013 - Commercial: Specify the sqm [m²]
      B1P013: Institutionalnononoyesnononono
      B1P013 - Institutional: Specify the sqm [m²]
      B1P013: Natural areasnononoyesnonoyesno
      B1P013 - Natural areas: Specify the sqm [m²]
      B1P013: Recreationalnononoyesnonoyesno
      B1P013 - Recreational: Specify the sqm [m²]
      B1P013: Dismissed areasnononononononono
      B1P013 - Dismissed areas: Specify the sqm [m²]
      B1P013: Othernoyesnononononono
      B1P013 - Other: Specify the sqm [m²]706
      B1P014: Building and Land Use after intervention
      B1P014: Residentialnoyesyesyesyesnoyesno
      B1P014 - Residential: Specify the sqm [m²]43602394
      B1P014: Officenononoyesyesnonono
      B1P014 - Office: Specify the sqm [m²]
      B1P014: Industry and Utilitynononoyesnononono
      B1P014 - Industry and Utility: Specify the sqm [m²]
      B1P014: Commercialnononoyesyesnoyesno
      B1P014 - Commercial: Specify the sqm [m²]
      B1P014: Institutionalnononoyesnononono
      B1P014 - Institutional: Specify the sqm [m²]
      B1P014: Natural areasnononoyesnonoyesno
      B1P014 - Natural areas: Specify the sqm [m²]
      B1P014: Recreationalnononoyesnonoyesno
      B1P014 - Recreational: Specify the sqm [m²]
      B1P014: Dismissed areasnononononononono
      B1P014 - Dismissed areas: Specify the sqm [m²]
      B1P014: Othernoyesnononononono
      B1P014 - Other: Specify the sqm [m²]706
      B2P001: PED Lab concept definition
      B2P001: PED Lab concept definition
      B2P002: Installation life time
      B2P002: Installation life time
      B2P003: Scale of action
      B2P003: ScaleDistrict
      B2P004: Operator of the installation
      B2P004: Operator of the installation
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P005: Replication framework: Applied strategy to reuse and recycling the materials
      B2P006: Circular Economy Approach
      B2P006: Do you apply any strategy to reuse and recycling the materials?Yes
      B2P006: Other
      B2P007: Motivation for developing the PED Lab
      B2P007: Motivation for developing the PED Lab
      • Strategic
      B2P007: Other
      B2P008: Lead partner that manages the PED Lab
      B2P008: Lead partner that manages the PED LabMunicipality
      B2P008: Other
      B2P009: Collaborative partners that participate in the PED Lab
      B2P009: Collaborative partners that participate in the PED Lab
      • Academia,
      • Private,
      • Industrial,
      • Citizens, public, NGO
      B2P009: Other
      B2P010: Synergies between the fields of activities
      B2P010: Synergies between the fields of activities
      B2P011: Available facilities to test urban configurations in PED Lab
      B2P011: Available facilities to test urban configurations in PED Lab
      • Buildings,
      • Demand-side management,
      • Prosumers,
      • Renewable generation,
      • Efficiency measures,
      • Waste management,
      • Water treatment,
      • Lighting,
      • E-mobility,
      • Green areas,
      • Circular economy models
      B2P011: Other
      B2P012: Incubation capacities of PED Lab
      B2P012: Incubation capacities of PED Lab
      • Monitoring and evaluation infrastructure
      B2P013: Availability of the facilities for external people
      B2P013: Availability of the facilities for external people
      B2P014: Monitoring measures
      B2P014: Monitoring measures
      • Available data
      B2P015: Key Performance indicators
      B2P015: Key Performance indicators
      • Energy
      B2P016: Execution of operations
      B2P016: Execution of operations
      B2P017: Capacities
      B2P017: Capacities
      B2P018: Relations with stakeholders
      B2P018: Relations with stakeholders
      B2P019: Available tools
      B2P019: Available tools
      B2P019: Available tools
      B2P020: External accessibility
      B2P020: External accessibility
      C1P001: Unlocking Factors
      C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
      C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
      C1P001: Storage systems and E-mobility market penetration3 - Moderately important4 - Important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P001: Decreasing costs of innovative materials4 - Important4 - Important4 - Important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P001: The ability to predict Multiple Benefits4 - Important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important4 - Important1 - Unimportant
      C1P001: The ability to predict the distribution of benefits and impacts4 - Important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important3 - Moderately important4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P001: Social acceptance (top-down)5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
      C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important3 - Moderately important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant
      C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant
      C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant
      C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant5 - Very important4 - Important1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P001: Any other UNLOCKING FACTORS (if any)
      C1P002: Driving Factors
      C1P002: Climate Change adaptation need4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
      C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important4 - Important2 - Slightly important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
      C1P002: Economic growth need2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant
      C1P002: Energy autonomy/independence5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P002: Any other DRIVING FACTOR (if any)
      C1P003: Administrative barriers
      C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P003: Lack of public participation3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important5 - Very important1 - Unimportant
      C1P003: Complicated and non-comprehensive public procurement4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P003: Fragmented and or complex ownership structure3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P003: Lack of internal capacities to support energy transition3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P003: Any other Administrative BARRIER1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P003: Any other Administrative BARRIER (if any)Delay in the Environmental Dialogue processing in the municipality
      C1P004: Policy barriers
      C1P004: Lack of long-term and consistent energy plans and policies4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P004: Any other Political BARRIER (if any)
      C1P005: Legal and Regulatory barriers
      C1P005: Inadequate regulations for new technologies4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P005: Regulatory instability3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P005: Non-effective regulations4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important1 - Unimportant5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important4 - Important1 - Unimportant
      C1P005: Shortage of proven and tested solutions and examples4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P005: Any other Legal and Regulatory BARRIER (if any)
      C1P006: Environmental barriers
      C1P006: Environmental barriers2 - Slightly important
      C1P007: Technical barriers
      C1P007: Lack of skilled and trained personnel4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P007: Deficient planning3 - Moderately important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P007: Retrofitting work in dwellings in occupied state4 - Important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P007: Lack of well-defined process4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P007: Lack/cost of computational scalability4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
      C1P007: Grid congestion, grid instability4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
      C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P007: Any other Thecnical BARRIER (if any)
      C1P008: Social and Cultural barriers
      C1P008: Inertia4 - Important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important1 - Unimportant4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Lack of trust beyond social network4 - Important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Rebound effect4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P008: Any other Social BARRIER (if any)
      C1P009: Information and Awareness barriers
      C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important1 - Unimportant4 - Important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P009: Lack of awareness among authorities5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P009: Information asymmetry causing power asymmetry of established actors5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P009: High costs of design, material, construction, and installation5 - Very important1 - Unimportant4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P009: Any other Information and Awareness BARRIER (if any)
      C1P010: Financial barriers
      C1P010: Hidden costs5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Insufficient external financial support and funding for project activities5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P010: Economic crisis5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Risk and uncertainty5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P010: Lack of consolidated and tested business models5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant
      C1P010: Limited access to capital and cost disincentives5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P010: Any other Financial BARRIER (if any)
      C1P011: Market barriers
      C1P011: Split incentives4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P011: Energy price distortion4 - Important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant
      C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
      C1P011: Any other Market BARRIER (if any)
      C1P012: Stakeholders involved
      C1P012: Government/Public Authorities
      • Monitoring/operation/management
      • Planning/leading,
      • Design/demand aggregation
      • Planning/leading
      • Planning/leading
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Research & Innovation
      • Planning/leading
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Construction/implementation,
      • Monitoring/operation/management
      • Design/demand aggregation
      • Planning/leading,
      • Design/demand aggregation,
      • Monitoring/operation/management
      C1P012: Financial/Funding
      • None
      • None
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Analyst, ICT and Big Data
      • None
      • None
      • None
      • Monitoring/operation/management
      C1P012: Business process management
      • None
      • None
      • None
      • Planning/leading,
      • Monitoring/operation/management
      C1P012: Urban Services providers
      • None
      • None
      • None
      • Planning/leading
      C1P012: Real Estate developers
      • Design/demand aggregation
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • None
      • Design/demand aggregation,
      • Construction/implementation
      C1P012: Design/Construction companies
      • None
      • Planning/leading,
      • Design/demand aggregation
      • Construction/implementation
      • None
      • Design/demand aggregation
      C1P012: End‐users/Occupants/Energy Citizens
      • Monitoring/operation/management
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      • Planning/leading,
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • Monitoring/operation/management
      C1P012: Social/Civil Society/NGOs
      • Monitoring/operation/management
      • Construction/implementation,
      • Monitoring/operation/management
      • None
      • Monitoring/operation/management
      C1P012: Industry/SME/eCommerce
      • None
      • None
      • None
      • Planning/leading,
      • Design/demand aggregation,
      • Construction/implementation,
      • Monitoring/operation/management
      C1P012: Other
      • None
      C1P012: Other (if any)
      Summary

      Authors (framework concept)

      Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

      Contributors (to the content)

      Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

      Implemented by

      Boutik.pt: Filipe Martins, Jamal Khan
      Marek Suchánek (Czech Technical University in Prague)