Filters:
NameProjectTypeCompare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Borlänge, Rymdgatan’s Residential Portfolio
Istanbul, Ozyegin University Campus
Freiburg, Waldsee
Bærum, Eiksveien 116
Barcelona, Santa Coloma de Gramenet
Évora, Portugal
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityBorlänge, Rymdgatan’s Residential PortfolioIstanbul, Ozyegin University CampusFreiburg, WaldseeBærum, Eiksveien 116Barcelona, Santa Coloma de GramenetÉvora, Portugal
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesnoyesno
PED relevant case studyyesyesyesnoyesnoyes
PED Lab.nonononononoyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesno
Annual energy surplusnoyesnononoyesyes
Energy communityyesyesnoyesnonoyes
Circularitynonononononono
Air quality and urban comfortyesnoyesnonoyesno
Electrificationyesyesyesyesyesnono
Net-zero energy costnonononoyesnono
Net-zero emissionnononoyesyesnono
Self-sufficiency (energy autonomous)nonononononono
Maximise self-sufficiencynoyesnonononono
Othernonoyesnononono
Other (A1P004)almost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseImplementation PhasePlanning PhaseCompletedImplementation PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date10/2411/2101/1810/19
A1P007: End Date
A1P007: End date10/2811/2406/2309/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards
  • General statistical datasets
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Meteorological open data
  • Monitoring data available within the districts
  • Open data city platform – different dashboards
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
        • renewable energy potential,
        • own calculations based on publicly available data,
        • Some data can be found in https://geoportal.freiburg.de/freigis/
        A1P011: Geographic coordinates
        X Coordinate (longitude):23.81458815.39449529.2583007.88585713584291710.53332.16-7.909377
        Y Coordinate (latitude):38.07734960.48660941.03060047.98653520708004559.910041.3938.570804
        A1P012: Country
        A1P012: CountryGreeceSwedenTurkeyGermanyNorwaySpainPortugal
        A1P013: City
        A1P013: CityMunicipality of KifissiaBorlängeIstanbulFreiburg im BreisgauBærumBarcelonaÉvora
        A1P014: Climate Zone (Köppen Geiger classification)
        A1P014: Climate Zone (Köppen Geiger classification).CsaDsbCfaCfbDfbCsaCsa
        A1P015: District boundary
        A1P015: District boundaryVirtualGeographicGeographicVirtualOtherGeographicGeographic
        OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodBuilding
        A1P016: Ownership of the case study/PED Lab
        A1P016: Ownership of the case study/PED Lab:MixedPrivateMixedPublicPrivateMixed
        A1P017: Ownership of the land / physical infrastructure
        A1P017: Ownership of the land / physical infrastructure:Single OwnerSingle OwnerMultiple OwnersSingle OwnerSingle OwnerMultiple Owners
        A1P018: Number of buildings in PED
        A1P018: Number of buildings in PED10152941116
        A1P019: Conditioned space
        A1P019: Conditioned space [m²]370028407021542
        A1P020: Total ground area
        A1P020: Total ground area [m²]9945285.4004920000
        A1P021: Floor area ratio: Conditioned space / total ground area
        A1P021: Floor area ratio: Conditioned space / total ground area0000000
        A1P022: Financial schemes
        A1P022a: Financing - PRIVATE - Real estatenonoyesnononono
        A1P022a: Add the value in EUR if available [EUR]
        A1P022b: Financing - PRIVATE - ESCO schemenonononononono
        A1P022b: Add the value in EUR if available [EUR]
        A1P022c: Financing - PRIVATE - Othernonononononono
        A1P022c: Add the value in EUR if available [EUR]
        A1P022d: Financing - PUBLIC - EU structural fundingnonononononono
        A1P022d: Add the value in EUR if available [EUR]
        A1P022e: Financing - PUBLIC - National fundingnonononononono
        A1P022e: Add the value in EUR if available [EUR]
        A1P022f: Financing - PUBLIC - Regional fundingnonononononono
        A1P022f: Add the value in EUR if available [EUR]
        A1P022g: Financing - PUBLIC - Municipal fundingnononoyesyesnono
        A1P022g: Add the value in EUR if available [EUR]
        A1P022h: Financing - PUBLIC - Othernonononononono
        A1P022h: Add the value in EUR if available [EUR]
        A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesnoyesyes
        A1P022i: Add the value in EUR if available [EUR]50390319998275
        A1P022j: Financing - RESEARCH FUNDING - Nationalnononoyesnonono
        A1P022j: Add the value in EUR if available [EUR]
        A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononono
        A1P022k: Add the value in EUR if available [EUR]
        A1P022l: Financing - RESEARCH FUNDING - Othernonononononono
        A1P022l: Add the value in EUR if available [EUR]
        A1P022: Other
        A1P023: Economic Targets
        A1P023: Economic Targets
        • Positive externalities,
        • Boosting local businesses,
        • Boosting consumption of local and sustainable products
        • Positive externalities,
        • Boosting local and sustainable production,
        • Boosting consumption of local and sustainable products
        • Other
        • Positive externalities
        A1P023: OtherSocial housing
        A1P024: More comments:
        A1P024: More comments:In addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.
        A1P025: Estimated PED case study / PED LAB costs
        A1P025: Estimated PED case study / PED LAB costs [mil. EUR]1
        Contact person for general enquiries
        A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaJingchun ShenCem KeskinDr. Annette SteingrubeJohn Einar ThommesenJaume SalomJoão Bravo Dias
        A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamHögskolan DalarnaCenter for Energy, Environment and Economy, Ozyegin UniversityFraunhofer Institute for solar energy systemsSINTEF CommunityIRECEDP Labelec
        A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityMunicipality / Public BodiesResearch Center / UniversitySME / Industry
        A1P028: Other
        A1P029: Emailgiavasoglou@kifissia.grjih@du.secem.keskin@ozyegin.edu.trAnnette.Steingrube@ise.fraunhofer.dejohn.thommesen@sintef.nojsalom@irec.catjoao.bravodias@edp.pt
        Contact person for other special topics
        A1P030: NameStavros Zapantis - vice mayorXingxing ZhangM. Pınar MengüçJohn Einar ThommesenJoan Estrada Aliberas
        A1P031: Emailstavros.zapantis@gmail.comxza@du.sepinar.menguc@ozyegin.edu.trjohn.thommesen@sintef.noj_estrada@gencat.cat
        Pursuant to the General Data Protection RegulationYesYesYesYesYesYes
        A2P001: Fields of application
        A2P001: Fields of application
        • Energy production
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Indoor air quality,
        • Construction materials
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Waste management
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • Digital technologies
        • Energy efficiency,
        • Energy flexibility,
        • Energy production,
        • E-mobility,
        • Digital technologies,
        • Waste management,
        • Construction materials
        A2P001: Other
        A2P002: Tools/strategies/methods applied for each of the above-selected fields
        A2P002: Tools/strategies/methods applied for each of the above-selected fieldsLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste documentEnergy system modeling- Integrated energy design process of both active and passive elements - Multicriteria analysis of energy system, environmental variables, indoor comfort and economic parameters - Energy modelling - Predictive control to optimize performance within the neighbourhood
        A2P003: Application of ISO52000
        A2P003: Application of ISO52000NoYesYesNo
        A2P004: Appliances included in the calculation of the energy balance
        A2P004: Appliances included in the calculation of the energy balanceYesYesYesNoYes
        A2P005: Mobility included in the calculation of the energy balance
        A2P005: Mobility included in the calculation of the energy balanceNoNoYesNoYes
        A2P006: Description of how mobility is included (or not included) in the calculation
        A2P006: Description of how mobility is included (or not included) in the calculationNot included, the campus is a non car area except emergenciesAll energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutrality
        A2P007: Annual energy demand in buildings / Thermal demand
        A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.6777135.715
        A2P008: Annual energy demand in buildings / Electric Demand
        A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.0365631.76
        A2P009: Annual energy demand for e-mobility
        A2P009: Annual energy demand for e-mobility [GWh/annum]0
        A2P010: Annual energy demand for urban infrastructure
        A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
        A2P011: Annual renewable electricity production on-site during target year
        A2P011: PVyesnoyesnonoyesno
        A2P011: PV - specify production in GWh/annum [GWh/annum]0.05
        A2P011: Windnonononononono
        A2P011: Wind - specify production in GWh/annum [GWh/annum]
        A2P011: Hydrononononononono
        A2P011: Hydro - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_elnonononononono
        A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
        A2P011: Biomass_peat_elnonononononono
        A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
        A2P011: PVT_elnoyesnonononono
        A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
        A2P011: Othernononononoyesno
        A2P011: Other - specify production in GWh/annum [GWh/annum]
        A2P012: Annual renewable thermal production on-site during target year
        A2P012: Geothermalnonononononono
        A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Solar Thermalnonononononono
        A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_heatnonononononono
        A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: Waste heat+HPnonononononono
        A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
        A2P012: Biomass_peat_heatnonononononono
        A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
        A2P012: PVT_thnoyesnonononono
        A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
        A2P012: Biomass_firewood_thnonononononono
        A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
        A2P012: Othernonononononono
        A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
        A2P013: Renewable resources on-site - Additional notes
        A2P013: Renewable resources on-site - Additional notes53 MW PV potential in all three quarters; no other internal renewable energy potentials known-Rooftop PV 39.1 kWp -4 pipe air-to-water heat pump to cover heating and cooling
        A2P014: Annual energy use
        A2P014: Annual energy use [GWh/annum]0.3183.5132.50.033
        A2P015: Annual energy delivered
        A2P015: Annual energy delivered [GWh/annum]0.20550.030
        A2P016: Annual non-renewable electricity production on-site during target year
        A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
        A2P017: Annual non-renewable thermal production on-site during target year
        A2P017: Gasnonononononono
        A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Coalnonononononono
        A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Oilnonononononono
        A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
        A2P017: Othernoyesnonononono
        A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
        A2P018: Annual renewable electricity imports from outside the boundary during target year
        A2P018: PVnonoyesnononono
        A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.00045547
        A2P018: Windnonononononono
        A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
        A2P018: Hydrononononononono
        A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_elnonononononono
        A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Biomass_peat_elnonononononono
        A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: PVT_elnonononononono
        A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
        A2P018: Othernoyesnonononono
        A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
        A2P019: Annual renewable thermal imports from outside the boundary during target year
        A2P019: Geothermalnonononononono
        A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Solar Thermalnonononononono
        A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_heatnonononononono
        A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Waste heat+HPnonononononono
        A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_peat_heatnonononononono
        A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
        A2P019: PVT_thnonononononono
        A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Biomass_firewood_thnonononononono
        A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
        A2P019: Othernoyesnonononono
        A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
        A2P020: Share of RES on-site / RES outside the boundary
        A2P020: Share of RES on-site / RES outside the boundary00.5383957219251300000
        A2P021: GHG-balance calculated for the PED
        A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93
        A2P022: KPIs related to the PED case study / PED Lab
        A2P022: Safety & Securitynone
        A2P022: Healththermal comfort diagramCarbon Dioxide (CO2) levels, Predicted Mean Vote,Predicted Percentage of Dissatisfied, Temperature, Relative Humidity, Illuminance, Daylight factor, Sound pressure levels
        A2P022: Educationnone
        A2P022: Mobilitynoneyes
        A2P022: Energynormalized CO2/GHG & Energy intensityyesNon-renewable primary energy balance, Renewable energy ratio, Grid Purchase factor, Load cover factor/Self-generation, Supply cover factor/Self-consumption, Net energy/Net power, Peak delivered/exported power, Connection capacity credit, Total greenhouse gas emissions
        A2P022: Water
        A2P022: Economic developmentcost of excess emissions: Investment costs, Share of investments covered by grants, Maintenance-related costs, Requirement-related costs, Operation-related costs, Other costs, Net Present Value, Internal Rate of Return, Economic Value Added, Payback Period, nZEB Cost Comparison
        A2P022: Housing and Communityyes: Access to services, Affordability of energy, Affordability of housing, Democratic legitimacy, Living conditions, Social cohesion, Personal safety, Energy consciousness
        A2P022: Waste
        A2P022: Other
        A2P023: Technological Solutions / Innovations - Energy Generation
        A2P023: Photovoltaicsnoyesyesyesnoyesyes
        A2P023: Solar thermal collectorsnoyesnoyesnonoyes
        A2P023: Wind Turbinesnonoyesnononono
        A2P023: Geothermal energy systemnoyesnoyesnonono
        A2P023: Waste heat recoverynoyesnoyesnonono
        A2P023: Waste to energynononoyesnonono
        A2P023: Polygenerationnonononononono
        A2P023: Co-generationnonoyesyesnonono
        A2P023: Heat Pumpnoyesyesyesnoyesno
        A2P023: Hydrogennononoyesnonono
        A2P023: Hydropower plantnononoyesnonono
        A2P023: Biomassnononoyesnonono
        A2P023: Biogasnononoyesnonono
        A2P023: Other
        A2P024: Technological Solutions / Innovations - Energy Flexibility
        A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesnonoyes
        A2P024: Energy management systemnonoyesyesnoyesyes
        A2P024: Demand-side managementnonoyesyesnoyesno
        A2P024: Smart electricity gridnononoyesnonoyes
        A2P024: Thermal Storagenoyesnoyesnonoyes
        A2P024: Electric Storagenonoyesyesnonoyes
        A2P024: District Heating and Coolingnoyesyesyesnonono
        A2P024: Smart metering and demand-responsive control systemsnonoyesyesnonoyes
        A2P024: P2P – buildingsnononoyesnonoyes
        A2P024: Other
        A2P025: Technological Solutions / Innovations - Energy Efficiency
        A2P025: Deep Retrofittingnoyesnoyesnonono
        A2P025: Energy efficiency measures in historic buildingsnononoyesnonoyes
        A2P025: High-performance new buildingsnonoyesnonoyesno
        A2P025: Smart Public infrastructure (e.g. smart lighting)nonononononono
        A2P025: Urban data platformsnononoyesnonoyes
        A2P025: Mobile applications for citizensnonononononoyes
        A2P025: Building services (HVAC & Lighting)noyesyesnonoyesyes
        A2P025: Smart irrigationnonoyesnononono
        A2P025: Digital tracking for waste disposalnonononononoyes
        A2P025: Smart surveillancenonoyesnononoyes
        A2P025: Other
        A2P026: Technological Solutions / Innovations - Mobility
        A2P026: Efficiency of vehicles (public and/or private)nononoyesnonono
        A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnonono
        A2P026: e-Mobilitynonoyesyesnonoyes
        A2P026: Soft mobility infrastructures and last mile solutionsnonoyesyesnonoyes
        A2P026: Car-free areanonoyesnononono
        A2P026: Other
        A2P027: Mobility strategies - Additional notes
        A2P027: Mobility strategies - Additional notes
        A2P028: Energy efficiency certificates
        A2P028: Energy efficiency certificatesNoYesNoYesNo
        A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingEnergy Performance Certificate
        A2P029: Any other building / district certificates
        A2P029: Any other building / district certificatesNoYesNoNoNo
        A2P029: If yes, please specify and/or enter notesLEED BD+C, LEED NC CAMPUS
        A3P001: Relevant city /national strategy
        A3P001: Relevant city /national strategy
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC)
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract)
        • Smart cities strategies,
        • Energy master planning (SECAP, etc.),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        • Smart cities strategies
        • Energy master planning (SECAP, etc.),
        • Promotion of energy communities (REC/CEC),
        • Climate change adaption plan/strategy (e.g. Climate City contract),
        • National / international city networks addressing sustainable urban development and climate neutrality
        A3P002: Quantitative targets included in the city / national strategy
        A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Climate neutrality by 2035
        A3P003: Strategies towards decarbonization of the gas grid
        A3P003: Strategies towards decarbonization of the gas grid
        • Electrification of Heating System based on Heat Pumps,
        • Electrification of Cooking Methods
        • Electrification of Heating System based on Heat Pumps,
        • Biogas,
        • Hydrogen
        A3P003: OtherBoiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
        A3P004: Identification of needs and priorities
        A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.Carbon and Energy NeutralityFreiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district levelNursing home for people with special needs
        A3P005: Sustainable behaviour
        A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.Energy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economy
        A3P006: Economic strategies
        A3P006: Economic strategies
        • Open data business models,
        • Life Cycle Cost,
        • Circular economy models,
        • Local trading
        • Demand management Living Lab,
        • Local trading,
        • Existing incentives
        A3P006: Other
        A3P007: Social models
        A3P007: Social models
        • Strategies towards (local) community-building,
        • Behavioural Change / End-users engagement,
        • Social incentives,
        • Affordability,
        • Digital Inclusion
        • Strategies towards (local) community-building,
        • Co-creation / Citizen engagement strategies,
        • Behavioural Change / End-users engagement,
        • Citizen/owner involvement in planning and maintenance,
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
        A3P007: Other
        A3P008: Integrated urban strategies
        A3P008: Integrated urban strategies
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans,
        • Building / district Certification
        • City Vision 2050,
        • SECAP Updates,
        • Building / district Certification
        • Strategic urban planning,
        • Digital twinning and visual 3D models,
        • District Energy plans
        A3P008: Other
        A3P009: Environmental strategies
        A3P009: Environmental strategies
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Life Cycle approach,
        • Sustainable Urban drainage systems (SUDS)
        • Energy Neutral,
        • Low Emission Zone,
        • Net zero carbon footprint,
        • Greening strategies,
        • Cool Materials
        • Other
        A3P009: OtherPEB
        A3P010: Legal / Regulatory aspects
        A3P010: Legal / Regulatory aspectsISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
        B1P001: PED/PED relevant concept definition
        B1P001: PED/PED relevant concept definitionThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.Assessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyPEBThe PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.
        B1P002: Motivation behind PED/PED relevant project development
        B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.The purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.City is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardPOCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.
        B1P003: Environment of the case study area
        B2P003: Environment of the case study areaUrban areaSuburban areaSuburban areaUrban areaUrban areaUrban area
        B1P004: Type of district
        B2P004: Type of district
        • Renovation
        • Renovation
        • Renovation
        • New construction
        • New construction
        • Renovation
        B1P005: Case Study Context
        B1P005: Case Study Context
        • Re-use / Transformation Area,
        • Retrofitting Area
        • Retrofitting Area
        • Retrofitting Area
        • New Development
        • New Development
        • Preservation Area
        B1P006: Year of construction
        B1P006: Year of construction19902024
        B1P007: District population before intervention - Residential
        B1P007: District population before intervention - Residential1005898
        B1P008: District population after intervention - Residential
        B1P008: District population after intervention - Residential1005898
        B1P009: District population before intervention - Non-residential
        B1P009: District population before intervention - Non-residential69800
        B1P010: District population after intervention - Non-residential
        B1P010: District population after intervention - Non-residential69800
        B1P011: Population density before intervention
        B1P011: Population density before intervention00340000
        B1P012: Population density after intervention
        B1P012: Population density after intervention00.01065862242332834.3377715487040.0011987804878049000
        B1P013: Building and Land Use before intervention
        B1P013: Residentialnoyesnoyesnoyesno
        B1P013 - Residential: Specify the sqm [m²]4360
        B1P013: Officenononoyesnonono
        B1P013 - Office: Specify the sqm [m²]
        B1P013: Industry and Utilitynononoyesnonono
        B1P013 - Industry and Utility: Specify the sqm [m²]
        B1P013: Commercialnononoyesnonono
        B1P013 - Commercial: Specify the sqm [m²]
        B1P013: Institutionalnonoyesyesnonono
        B1P013 - Institutional: Specify the sqm [m²]285.400
        B1P013: Natural areasnononoyesnonono
        B1P013 - Natural areas: Specify the sqm [m²]
        B1P013: Recreationalnononoyesnonono
        B1P013 - Recreational: Specify the sqm [m²]
        B1P013: Dismissed areasnonononononono
        B1P013 - Dismissed areas: Specify the sqm [m²]
        B1P013: Othernoyesnonononono
        B1P013 - Other: Specify the sqm [m²]706
        B1P014: Building and Land Use after intervention
        B1P014: Residentialnoyesnoyesnoyesno
        B1P014 - Residential: Specify the sqm [m²]4360
        B1P014: Officenononoyesnonono
        B1P014 - Office: Specify the sqm [m²]
        B1P014: Industry and Utilitynononoyesnonono
        B1P014 - Industry and Utility: Specify the sqm [m²]
        B1P014: Commercialnononoyesnonono
        B1P014 - Commercial: Specify the sqm [m²]
        B1P014: Institutionalnonoyesyesnonono
        B1P014 - Institutional: Specify the sqm [m²]280000
        B1P014: Natural areasnononoyesnonono
        B1P014 - Natural areas: Specify the sqm [m²]
        B1P014: Recreationalnononoyesnonono
        B1P014 - Recreational: Specify the sqm [m²]
        B1P014: Dismissed areasnonononononono
        B1P014 - Dismissed areas: Specify the sqm [m²]
        B1P014: Othernoyesnonononono
        B1P014 - Other: Specify the sqm [m²]706
        B2P001: PED Lab concept definition
        B2P001: PED Lab concept definition
        B2P002: Installation life time
        B2P002: Installation life time
        B2P003: Scale of action
        B2P003: ScaleDistrict
        B2P004: Operator of the installation
        B2P004: Operator of the installation
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P005: Replication framework: Applied strategy to reuse and recycling the materials
        B2P006: Circular Economy Approach
        B2P006: Do you apply any strategy to reuse and recycling the materials?
        B2P006: Other
        B2P007: Motivation for developing the PED Lab
        B2P007: Motivation for developing the PED Lab
        B2P007: Other
        B2P008: Lead partner that manages the PED Lab
        B2P008: Lead partner that manages the PED Lab
        B2P008: Other
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Collaborative partners that participate in the PED Lab
        B2P009: Other
        B2P010: Synergies between the fields of activities
        B2P010: Synergies between the fields of activities
        B2P011: Available facilities to test urban configurations in PED Lab
        B2P011: Available facilities to test urban configurations in PED Lab
        • Buildings,
        • Demand-side management,
        • Prosumers,
        • Renewable generation,
        • Energy storage,
        • Energy networks,
        • Waste management,
        • E-mobility,
        • Social interactions,
        • Circular economy models
        B2P011: Other
        B2P012: Incubation capacities of PED Lab
        B2P012: Incubation capacities of PED Lab
        • Monitoring and evaluation infrastructure,
        • Tools for prototyping and modelling,
        • Tools, spaces, events for testing and validation
        B2P013: Availability of the facilities for external people
        B2P013: Availability of the facilities for external people
        B2P014: Monitoring measures
        B2P014: Monitoring measures
        B2P015: Key Performance indicators
        B2P015: Key Performance indicators
        • Energy
        B2P016: Execution of operations
        B2P016: Execution of operations
        B2P017: Capacities
        B2P017: Capacities
        B2P018: Relations with stakeholders
        B2P018: Relations with stakeholders
        B2P019: Available tools
        B2P019: Available tools
        B2P019: Available tools
        B2P020: External accessibility
        B2P020: External accessibility
        C1P001: Unlocking Factors
        C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
        C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important
        C1P001: Storage systems and E-mobility market penetration3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant4 - Important
        C1P001: Decreasing costs of innovative materials4 - Important4 - Important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important5 - Very important2 - Slightly important2 - Slightly important1 - Unimportant4 - Important
        C1P001: The ability to predict Multiple Benefits4 - Important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important
        C1P001: The ability to predict the distribution of benefits and impacts4 - Important4 - Important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important
        C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
        C1P001: Social acceptance (top-down)5 - Very important5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important
        C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important5 - Very important4 - Important5 - Very important1 - Unimportant4 - Important
        C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important4 - Important4 - Important5 - Very important1 - Unimportant5 - Very important
        C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important4 - Important4 - Important2 - Slightly important1 - Unimportant5 - Very important
        C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important4 - Important4 - Important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
        C1P001: Availability of RES on site (Local RES)5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important
        C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important2 - Slightly important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
        C1P001: Any other UNLOCKING FACTORS1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P001: Any other UNLOCKING FACTORS (if any)
        C1P002: Driving Factors
        C1P002: Climate Change adaptation need4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Economic growth need2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
        C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Energy autonomy/independence5 - Very important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P002: Any other DRIVING FACTOR1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P002: Any other DRIVING FACTOR (if any)
        C1P003: Administrative barriers
        C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Lack of public participation3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Complicated and non-comprehensive public procurement4 - Important5 - Very important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P003: Fragmented and or complex ownership structure3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
        C1P003: Lack of internal capacities to support energy transition3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P003: Any other Administrative BARRIER (if any)
        C1P004: Policy barriers
        C1P004: Lack of long-term and consistent energy plans and policies4 - Important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P004: Any other Political BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P004: Any other Political BARRIER (if any)
        C1P005: Legal and Regulatory barriers
        C1P005: Inadequate regulations for new technologies4 - Important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Regulatory instability3 - Moderately important2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Non-effective regulations4 - Important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Shortage of proven and tested solutions and examples4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important
        C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P005: Any other Legal and Regulatory BARRIER (if any)
        C1P006: Environmental barriers
        C1P006: Environmental barriers2 - Slightly importantAir Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
        C1P007: Technical barriers
        C1P007: Lack of skilled and trained personnel4 - Important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P007: Deficient planning3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P007: Retrofitting work in dwellings in occupied state4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Lack of well-defined process4 - Important2 - Slightly important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Lack/cost of computational scalability4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Grid congestion, grid instability4 - Important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important
        C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P007: Any other Thecnical BARRIER (if any)
        C1P008: Social and Cultural barriers
        C1P008: Inertia4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Lack of trust beyond social network4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Rebound effect4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P008: Any other Social BARRIER (if any)
        C1P009: Information and Awareness barriers
        C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Lack of awareness among authorities5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P009: Information asymmetry causing power asymmetry of established actors5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: High costs of design, material, construction, and installation5 - Very important4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important
        C1P009: Any other Information and Awareness BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P009: Any other Information and Awareness BARRIER (if any)
        C1P010: Financial barriers
        C1P010: Hidden costs5 - Very important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Insufficient external financial support and funding for project activities5 - Very important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Economic crisis5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
        C1P010: Risk and uncertainty5 - Very important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P010: Lack of consolidated and tested business models5 - Very important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Limited access to capital and cost disincentives5 - Very important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P010: Any other Financial BARRIER (if any)
        C1P011: Market barriers
        C1P011: Split incentives4 - Important5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Energy price distortion4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
        C1P011: Any other Market BARRIER1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
        C1P011: Any other Market BARRIER (if any)
        C1P012: Stakeholders involved
        C1P012: Government/Public Authorities
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Planning/leading
        C1P012: Research & Innovation
        • Planning/leading
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Financial/Funding
        • None
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Analyst, ICT and Big Data
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Business process management
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Urban Services providers
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Real Estate developers
        • Design/demand aggregation
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Design/Construction companies
        • None
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation
        C1P012: End‐users/Occupants/Energy Citizens
        • Monitoring/operation/management
        • Monitoring/operation/management
        • Planning/leading,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Social/Civil Society/NGOs
        • Monitoring/operation/management
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Industry/SME/eCommerce
        • None
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        • None
        C1P012: Other
        • Planning/leading,
        • Design/demand aggregation,
        • Construction/implementation,
        • Monitoring/operation/management
        C1P012: Other (if any)
        Summary

        Authors (framework concept)

        Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

        Contributors (to the content)

        Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

        Implemented by

        Boutik.pt: Filipe Martins, Jamal Khan
        Marek Suchánek (Czech Technical University in Prague)