Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Uncompare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Uncompare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Uncompare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Uncompare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Uncompare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Borlänge, Rymdgatan’s Residential Portfolio
Évora, Portugal
Oslo, Verksbyen
Oulu, Kaukovainio
Espoo, Kera
Roubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’Oran
Amsterdam, Buiksloterham PED
Munich, Harthof district
Riga, Ķīpsala, RTU smart student city
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityBorlänge, Rymdgatan’s Residential PortfolioÉvora, PortugalOslo, VerksbyenOulu, KaukovainioEspoo, KeraRoubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’OranAmsterdam, Buiksloterham PEDMunich, Harthof districtRiga, Ķīpsala, RTU smart student city
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesyesyesnoyesyesyes
PED relevant case studyyesyesyesnonoyesyesnonono
PED Lab.nonoyesnonononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesnoyesyesyesyesyesyesyes
Annual energy surplusnoyesyesyesnonoyesyesyesno
Energy communityyesyesyesnonononoyesyesyes
Circularitynonononoyesyesnoyesnono
Air quality and urban comfortyesnonoyesnonoyesnonono
Electrificationyesyesnonoyesnonoyesnono
Net-zero energy costnononononononononono
Net-zero emissionnononoyesnononoyesnono
Self-sufficiency (energy autonomous)nononononononononoyes
Maximise self-sufficiencynoyesnononononononoyes
Othernononononononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhaseImplementation PhaseImplementation PhaseIn operationPlanning PhaseCompletedImplementation PhaseImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date10/1907/1801/1501/2211/1901/2301/24
A1P007: End Date
A1P007: End date09/2408/2412/3501/2410/2512/2712/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Open data city platform – different dashboards
  • Open data city platform – different dashboards
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
A1P009: Otherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
          A1P011: Geographic coordinates
          X Coordinate (longitude):23.81458815.394495-7.90937710.98617335443299225.51759508409350724.753777783.16514.904111.56962505994760424.08168339
          Y Coordinate (latitude):38.07734960.48660938.57080459.2242971664204664.9928809817313260.2162222250.693752.367648.2043626127515256.95245956
          A1P012: Country
          A1P012: CountryGreeceSwedenPortugalNorwayFinlandFinlandFranceNetherlandsGermanyLatvia
          A1P013: City
          A1P013: CityMunicipality of KifissiaBorlängeÉvoraFredrikstadOuluEspooRoubaixAmsterdamMunichRiga
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CsaDsbCsaCfbDfcDfbCfbCfbCfbCfb
          A1P015: District boundary
          A1P015: District boundaryVirtualGeographicGeographicGeographicGeographicOtherFunctionalGeographicGeographic
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodRegional (close to virtual)PEB
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedMixedPrivateMixedMixedPrivateMixedMixedPublic
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersSingle OwnerSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersMultiple Owners
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED102616012615
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]3700355019700144228500206170000
          A1P020: Total ground area
          A1P020: Total ground area [m²]9945600005800002500560119264
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area0000001001
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenononoyesyesnoyesyesnono
          A1P022a: Add the value in EUR if available [EUR]0
          A1P022b: Financing - PRIVATE - ESCO schemenononononononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernononononononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnononononononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnononononononononono
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnonononononoyesnonono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesnoyesnoyesno
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernononononononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnonoyesnoyesnoyesyesyesyes
          A1P022i: Add the value in EUR if available [EUR]199982757500000
          A1P022j: Financing - RESEARCH FUNDING - Nationalnononononononononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernononononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: OtherMultiple different funding schemes depending on the case.Retrofitted through various subsidies
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Positive externalities,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          • Positive externalities,
          • Boosting local and sustainable production
          • Job creation,
          • Positive externalities,
          • Boosting local businesses,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Boosting local businesses,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          • Boosting local businesses,
          • Boosting local and sustainable production
          A1P023: OtherDeveloping and demonstrating new solutionsCircular economy
          A1P024: More comments:
          A1P024: More comments:The total development consists of more than 1500 dwellings, a kindergarten, a school, and commercial buildings. Two of the residential blocks are included as demonstration projects in syn.ikia. The two blocks have 20 dwellings in each and are 6 stories high.The building comprises 32 homes. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]53.6
          Contact person for general enquiries
          A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaJingchun ShenJoão Bravo DiasTonje Healey TrulsrudSamuli RinneJoni MäkinenJulien HolgardOmar ShafqatStefan SynekJudith Stiekema
          A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamHögskolan DalarnaEDP LabelecNorwegian University of Science and technology (NTNU)City of OuluCity of EspooVilogiaAmsterdam University of Applied SciencesCity of MunichOASC
          A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversitySME / IndustryResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesOtherResearch Center / UniversityMunicipality / Public BodiesOther
          A1P028: OtherSocial Housing CompanyAndreas Bärnreuthernot for profit private organisation
          A1P029: Emailgiavasoglou@kifissia.grjih@du.sejoao.bravodias@edp.pttonje.h.trulsrud@ntnu.nosamuli.rinne@ouka.fijoni.makinen@espoo.fijulien.holgard@vilogia.fro.shafqat@hva.nlstefan.synek@muenchen.dejudith@oascities.org
          Contact person for other special topics
          A1P030: NameStavros Zapantis - vice mayorXingxing ZhangSamuli RinneJulien HolgardOmar ShafqatStefan Synek
          A1P031: Emailstavros.zapantis@gmail.comxza@du.sesamuli.rinne@ouka.fijulien.holgard@vilogia.fro.shafqat@hva.nlstefan.synek@muenchen.de
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Water use,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Construction materials
          • Energy efficiency,
          • Energy production,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Indoor air quality,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Water use,
          • Waste management,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMEnergy efficiency: energy-efficient buildings that comply with the Norwegian Passive House standard. Energy Flexibility: sharing of PV energy between the dwellings Energy production: BIPV on the roof and facades, and a ground source heat pump for thermal energy. E-mobility: EV charging Urban comfort: a large green park in the neighbourhood with a small lake and recreational areas Digital technologies: Smart Home Systems for lighting, heating and ventilation Indoor air quality: balanced ventilationDifferent kinds of waste heat streams are utilized by heat pumps. These are district heating return water (actually this is an indirect way to cool down the flue gas in the scrubber), ventilation exhaust air and sewage water. As a normal case, in ventilation also air-to-air heat exchanges are used. PV power is harvested also, in vertical and more horizontal panels. Buildings are well insulated to decrease the needed amount of heating energy in the first place.- Kera development commitment (https://www.espoo.fi/en/kera-development-commitment). - SPARCS Co-creation model for sustainable and smart urban areas (www.co-creatingsparcs.fi/en). - Kera area carbon neutrality roadmap (https://static.espoo.fi/cdn/ff/MHDdcMNJ9aYn7CjpoD4zNpo5M-M9HIDLXlJdUrUmf-8/1642756766/public/2022-01/Kera%20carbon%20neutrality%20map_EN.pdf)City vision, Innovation AteliersA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoYesNoNoNoYesNo
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceYesYesNoNoNoYesNoYesYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoYesNoNoNoNoNoNoYes
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationNot included. However, there is a charging place for a shared EV in one building.The university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.67770.162.154.58000
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.036560.0530.219.45000
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]0
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesnonoyesyesyesyesyesyesno
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.180.14
          A2P011: Windnononononononononoyes
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydronononononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnononononononoyesnono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnononononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnoyesnononononononoyes
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
          A2P011: Othernononononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnononononononoyesnono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnonononononononoyesno
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnononononononoyesnoyes
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPnonononoyesyesnoyesnono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]2.2
          A2P012: Biomass_peat_heatnononononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnoyesnononononononono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
          A2P012: Biomass_firewood_thnononononononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernononononononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesHeat is produced from DH return, refrigeration and exhaust air. The mentioned 2200 MWh/a includes HP el. consumption (about 1/6 of that)Local energy utility will implement district level thermal solution. First, energy will be produced from waste heat from a local data center. Further thermal solutions are under discussion and development.Conventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]0.3182.378.80.084
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]0.205515.40.11
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]0000
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnononononononoyesyesyes
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnononononononoyesnono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnononononononoyesyesno
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernoyesnononononononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnonononoyesnonoyesyesno
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
          A2P018: Windnonononoyesnonoyesyesno
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononononoyesnonoyesnono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnonononoyesnonoyesyesno
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnonononoyesnonoyesyesno
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnononononononoyesyesno
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernoyesnononononononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnononononononoyesyesno
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnononononononoyesnono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonononoyesnonoyesyesno
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]0.7
          A2P019: Waste heat+HPnononononononoyesyesno
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnononononononoyesnono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnononononononoyesnono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnononononononoyesnono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernoyesnononononononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary00.53839572192513003.285714285714300000
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93-6.0350450000250
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & SecuritynonePersonal Safety
          A2P022: Healththermal comfort diagramHealthy community + Indoor Evironmental Quality (indoor air quality, thermal comfort, lighting and visual comfort)Encouraging a healthy lifestyle
          A2P022: Educationnone
          A2P022: MobilitynoneSustainable mobilityModal Split, Fuel mix in mobility, Energy use for transportation, Access to public transport, Public infrastructure promoting low-carbon mobility, Number of public EV charging stations, Energy delivered for EV charging
          A2P022: Energynormalized CO2/GHG & Energy intensityEnergy and environmental performance (non-renewable primary energy balance, renewable energy ratio, grid purchase factor, load cover factor/self-generation, supply cover factor/ self-consumption, net energy/net power. peak delivered(peak exported power, connection capacity credit, total greenhouse gas emissionsFinal energy consumption, Primary energy consumption, Energy imported to PED, Energy exported from PED, RES production, PED energy balance, Energy savings in the PED, GHG emissions, Reduction of emissions, Final energy consumption per capita, Primary energy consumption per capita, Primary energy sources (shares), Buildings connected to DH-network or renewable energy grid, GHG emissions per capita, System flexibility for energy players, RES storage usage, Peak load reductionEnergy
          A2P022: Water
          A2P022: Economic developmentcost of excess emissionsEconomic Performance: capital costs, operational costs, overall performanceTotal investments, Payback time, Economic value of savings
          A2P022: Housing and Communitydemopraphic composiiton, diverse community, social cohesion access to amenities, access to services, afordability of energy, affordability of shousing, living conditions, universal design, energy consciousnessDevelopment of housing prices, Housing cost overburden rate, Citizen engagement/empowerment to climate conscious actions, Inhabitants in dense areas, Energy poverty
          A2P022: WasteRecycling rate
          A2P022: OtherSmartness and FlexibilitySmart Cities strategies, Quality of open data
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsnoyesyesyesyesyesyesyesyesno
          A2P023: Solar thermal collectorsnoyesyesnonononononono
          A2P023: Wind Turbinesnononononononononono
          A2P023: Geothermal energy systemnoyesnoyesnononoyesyesno
          A2P023: Waste heat recoverynoyesnonoyesyesnoyesnono
          A2P023: Waste to energynononononononoyesnono
          A2P023: Polygenerationnononononononononono
          A2P023: Co-generationnonononoyesnonononono
          A2P023: Heat Pumpnoyesnoyesyesyesnoyesyesno
          A2P023: Hydrogennononononononononono
          A2P023: Hydropower plantnononononononononono
          A2P023: Biomassnonononoyesnonoyesnono
          A2P023: Biogasnononononononoyesnono
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesyesyesnoyesyesyes
          A2P024: Energy management systemnonoyesyesyesyesnoyesyesyes
          A2P024: Demand-side managementnononoyesnoyesnoyesnoyes
          A2P024: Smart electricity gridnonoyesnonoyesnoyesnoyes
          A2P024: Thermal Storagenoyesyesnoyesnonoyesyesyes
          A2P024: Electric Storagenonoyesnonononoyesyesyes
          A2P024: District Heating and Coolingnoyesnonoyesyesnoyesyesyes
          A2P024: Smart metering and demand-responsive control systemsnonoyesyesnonoyesyesyesyes
          A2P024: P2P – buildingsnonoyesnonononoyesnono
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnoyesnonoyesnoyesyesyesno
          A2P025: Energy efficiency measures in historic buildingsnonoyesnonononoyesnono
          A2P025: High-performance new buildingsnononoyesyesyesnoyesnono
          A2P025: Smart Public infrastructure (e.g. smart lighting)nononononoyesnoyesnono
          A2P025: Urban data platformsnonoyesnoyesyesnoyesyesyes
          A2P025: Mobile applications for citizensnonoyesnonononoyesnoyes
          A2P025: Building services (HVAC & Lighting)noyesyesyesyesyesnoyesnoyes
          A2P025: Smart irrigationnononononononoyesnono
          A2P025: Digital tracking for waste disposalnonoyesnonononoyesnono
          A2P025: Smart surveillancenonoyesnonononononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nonononoyesyesnoyesnono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononoyesyesnoyesnono
          A2P026: e-Mobilitynonoyesnoyesyesnoyesyesno
          A2P026: Soft mobility infrastructures and last mile solutionsnonoyesnoyesyesnoyesyesno
          A2P026: Car-free areanononononononoyesnono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesNoNoYesYesNoNoYesNo
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingNS3700 Norwegian Passive HouseThe obligatory buildijng energy classification
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNoNoNoNoNo
          A2P029: If yes, please specify and/or enter notes
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyThe study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.Carbon neutrality by 2035City wide climate neutrality by 2035, city administration climate neutrality by 2030
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas,
          • Hydrogen
          • Electrification of Heating System based on Heat Pumps
          A3P003: Other
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.Developing and demonstrating solutions for carbon neutrality
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.E. g. visualizing energy and water consumption
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Open data business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Local trading
          • Open data business models,
          • Innovative business models,
          • PPP models,
          • Life Cycle Cost,
          • Circular economy models
          • PPP models,
          • Circular economy models
          • Innovative business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Demand management Living Lab,
          • Local trading,
          • Existing incentives
          • Open data business models
          • Open data business models,
          • Innovative business models,
          • Demand management Living Lab
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Affordability,
          • Digital Inclusion
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Policy Forums,
          • Quality of Life,
          • Strategies towards social mix,
          • Affordability,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Quality of Life
          • Behavioural Change / End-users engagement,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Social incentives,
          • Quality of Life,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • Building / district Certification
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Digital twinning and visual 3D models
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Sustainable Urban drainage systems (SUDS)
          • Energy Neutral,
          • Net zero carbon footprint
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Greening strategies,
          • Nature Based Solutions (NBS)
          • Energy Neutral
          • Energy Neutral,
          • Life Cycle approach
          • Energy Neutral
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsRegulatory sandboxdecision by the Munich City Council in 2019 to become climate neutral by 2030 / 2035
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.The PED main objective is to achieve the energy transition while preserving cultural heritage and improving citizen’s quality of life.The case study follows the concept of syn.ikia with sustainable plus energy neighbourhoods (SPEN) and aims to reach a plus energy balance based on EPB uses on an annual basis.The original idea is that the area produces at least as much it consumes.Implementation of district level heating system to make heating energy positive and expanding local renewable electricity production.Refurbishment of social housing. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.Functional PEDMunich as demonstrator together with Lyon in ASCEND projectExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentBorlänge city has committed to become the carbon-neutral city by 2030.POCITYF brings together eight cities (Lightouse and Fellow cities), all having cultural heritage areas in their territory. All are intrinsically motivated to participate in the necessary energy transition not only for their conventional city districts of mixed-used, but also for districts with individually specificities as those belonging in their cultural heritage, which at the moment may be acting as barriers for their further environmental sustainability, but after POCITYF will be acting as a promising building retrofits roadmap for similar and other EU cities.The developers call their concept for Future Living, where the neighbourhood consist of highly energy-efficient buildings, is supplied with renewable energy onsite and includes green areas for well-being.Developing systems towards carbon neutrality. Also urban renewal.Refurbishment of social housingBrown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.speed and scale of PEDsExpected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaUrban areaUrban areaSuburban areaSuburban areaUrban areaSuburban areaUrban areaUrban areaUrban area
          B1P004: Type of district
          B2P004: Type of district
          • Renovation
          • Renovation
          • New construction
          • New construction,
          • Renovation
          • New construction
          • Renovation
          • New construction
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • Re-use / Transformation Area,
          • Retrofitting Area
          • Preservation Area
          • New Development
          • New Development,
          • Retrofitting Area
          • Re-use / Transformation Area
          • Retrofitting Area
          • New Development
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction19901958
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential10035006
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential1003500140006
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential6
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential610000
          B1P011: Population density before intervention
          B1P011: Population density before intervention0000000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention00.010658622423328000.0583333333333330.041379310344828000.0107142857142860
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnoyesnonoyesyesyesnoyesno
          B1P013 - Residential: Specify the sqm [m²]4360
          B1P013: Officenononononoyesnononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynononoyesnoyesnoyesnono
          B1P013 - Industry and Utility: Specify the sqm [m²]whole site was used for idustry and excavation
          B1P013: Commercialnonononoyesnonononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnononononononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnonononoyesnonononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnonononoyesnonononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnononononoyesnononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernoyesnononononononono
          B1P013 - Other: Specify the sqm [m²]706
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnoyesnoyesyesyesyesyesyesno
          B1P014 - Residential: Specify the sqm [m²]4360
          B1P014: Officenononononoyesnoyesnono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynononononononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnonononoyesyesnoyesnono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnononononononononono
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnonononoyesnonononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnonononoyesyesnoyesnono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnononononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernoyesnononononononono
          B1P014 - Other: Specify the sqm [m²]706
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life time
          B2P003: Scale of action
          B2P003: ScaleDistrict
          B2P004: Operator of the installation
          B2P004: Operator of the installation
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED Lab
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Other
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Energy networks,
          • Waste management,
          • E-mobility,
          • Social interactions,
          • Circular economy models
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Monitoring and evaluation infrastructure,
          • Tools for prototyping and modelling,
          • Tools, spaces, events for testing and validation
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important4 - Important4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important3 - Moderately important4 - Important2 - Slightly important4 - Important1 - Unimportant5 - Very important5 - Very important5 - Very important
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important5 - Very important
          C1P001: Storage systems and E-mobility market penetration3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important
          C1P001: Decreasing costs of innovative materials4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important
          C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important5 - Very important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
          C1P001: The ability to predict Multiple Benefits4 - Important2 - Slightly important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important
          C1P001: The ability to predict the distribution of benefits and impacts4 - Important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important4 - Important5 - Very important
          C1P001: Social acceptance (top-down)5 - Very important5 - Very important4 - Important1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important5 - Very important
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important
          C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important5 - Very important5 - Very important1 - Unimportant4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important5 - Very important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important5 - Very important
          C1P001: Availability of RES on site (Local RES)5 - Very important3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant3 - Moderately important4 - Important4 - Important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important2 - Slightly important4 - Important1 - Unimportant4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important4 - Important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant5 - Very important4 - Important5 - Very important
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important4 - Important5 - Very important5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important1 - Unimportant4 - Important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
          C1P002: Urban re-development of existing built environment3 - Moderately important4 - Important3 - Moderately important1 - Unimportant5 - Very important5 - Very important1 - Unimportant5 - Very important4 - Important4 - Important
          C1P002: Economic growth need2 - Slightly important4 - Important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant4 - Important4 - Important4 - Important
          C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant3 - Moderately important5 - Very important5 - Very important3 - Moderately important1 - Unimportant4 - Important3 - Moderately important4 - Important
          C1P002: Energy autonomy/independence5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P003: Lack of public participation3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant2 - Slightly important4 - Important4 - Important
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
          C1P003:Long and complex procedures for authorization of project activities5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P003: Complicated and non-comprehensive public procurement4 - Important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
          C1P003: Fragmented and or complex ownership structure3 - Moderately important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important5 - Very important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
          C1P003: Lack of internal capacities to support energy transition3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important4 - Important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important4 - Important5 - Very important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
          C1P005: Regulatory instability3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
          C1P005: Non-effective regulations4 - Important2 - Slightly important1 - Unimportant5 - Very important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important2 - Slightly important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
          C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
          C1P005: Shortage of proven and tested solutions and examples4 - Important5 - Very important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers2 - Slightly important
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important4 - Important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
          C1P007: Deficient planning3 - Moderately important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
          C1P007: Retrofitting work in dwellings in occupied state4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
          C1P007: Lack of well-defined process4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important
          C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P007: Lack/cost of computational scalability4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important
          C1P007: Grid congestion, grid instability4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important4 - Important
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
          C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
          C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia4 - Important2 - Slightly important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P008: Lack of values and interest in energy optimization measurements5 - Very important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
          C1P008: Low acceptance of new projects and technologies5 - Very important5 - Very important2 - Slightly important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important
          C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant5 - Very important3 - Moderately important
          C1P008: Lack of trust beyond social network4 - Important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
          C1P008: Rebound effect4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
          C1P008: Hostile or passive attitude towards environmentalism5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
          C1P008: Exclusion of socially disadvantaged groups2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
          C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P008: Hostile or passive attitude towards energy collaboration3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers3 - Moderately important4 - Important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant4 - Important4 - Important3 - Moderately important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important
          C1P009: Lack of awareness among authorities5 - Very important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P009: Information asymmetry causing power asymmetry of established actors5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
          C1P009: High costs of design, material, construction, and installation5 - Very important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important4 - Important
          C1P010: Insufficient external financial support and funding for project activities5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P010: Economic crisis5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important
          C1P010: Risk and uncertainty5 - Very important2 - Slightly important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important
          C1P010: Lack of consolidated and tested business models5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
          C1P010: Limited access to capital and cost disincentives5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important
          C1P011: Energy price distortion4 - Important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important5 - Very important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant3 - Moderately important
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation
          • Monitoring/operation/management
          • None
          • Planning/leading
          C1P012: Research & Innovation
          • Planning/leading
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation
          • Monitoring/operation/management
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Analyst, ICT and Big Data
          • None
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          • Construction/implementation
          • Monitoring/operation/management
          • Planning/leading,
          • Monitoring/operation/management
          C1P012: Business process management
          • None
          • Planning/leading,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation
          • Design/demand aggregation
          • Monitoring/operation/management
          C1P012: Urban Services providers
          • None
          • Planning/leading
          • Planning/leading,
          • Construction/implementation
          • Planning/leading
          • Planning/leading,
          • Monitoring/operation/management
          C1P012: Real Estate developers
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading
          • Construction/implementation
          C1P012: Design/Construction companies
          • None
          • Design/demand aggregation,
          • Construction/implementation
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Design/demand aggregation
          • Construction/implementation
          C1P012: End‐users/Occupants/Energy Citizens
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Design/demand aggregation
          • None
          • Design/demand aggregation
          C1P012: Social/Civil Society/NGOs
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Planning/leading
          • Monitoring/operation/management
          • Design/demand aggregation
          C1P012: Industry/SME/eCommerce
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Construction/implementation
          • Planning/leading
          • Construction/implementation
          C1P012: Other
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)