Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Uncompare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Uncompare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Uncompare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Uncompare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Uncompare
Innsbruck, Campagne-Areal PED Relevant Case Study Compare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Freiburg, Waldsee
Borlänge, Rymdgatan’s Residential Portfolio
Riga, Ķīpsala, RTU smart student city
Umeå, Ålidhem district
Amsterdam, Buiksloterham PED
Zaragoza, Actur
Roubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’Oran
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityFreiburg, WaldseeBorlänge, Rymdgatan’s Residential PortfolioRiga, Ķīpsala, RTU smart student cityUmeå, Ålidhem districtAmsterdam, Buiksloterham PEDZaragoza, ActurRoubaix, MustBe0 - Résidence Philippe le Hardi – 125 Rue d’Oran
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynoyesnoyesyesyesnono
PED relevant case studyyesnoyesnononoyesyes
PED Lab.nononononononono
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyesyes
Annual energy surplusnonoyesnonoyesyesyes
Energy communityyesyesyesyesnoyesnono
Circularitynononononoyesnono
Air quality and urban comfortyesnonononononoyes
Electrificationyesyesyesnonoyesyesno
Net-zero energy costnononononononono
Net-zero emissionnoyesnononoyesyesno
Self-sufficiency (energy autonomous)nononoyesnononono
Maximise self-sufficiencynonoyesyesnononono
Othernononononononono
Other (A1P004)
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhasePlanning PhasePlanning PhasePlanning PhasePlanning PhaseImplementation PhasePlanning PhaseCompleted
A1P006: Start Date
A1P006: Start date11/2101/2410/2211/1901/2301/22
A1P007: End Date
A1P007: End date11/2412/2609/2510/2501/24
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • General statistical datasets,
  • GIS open datasets
  • Open data city platform – different dashboards
  • Monitoring data available within the districts,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Monitoring data available within the districts
A1P009: Otherhttps://smartcity-atelier.eu/about/lighthouse-cities/amsterdam/
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • Data from the local energy provider available (restricted usage for some data points because of data security reasons,
    • renewable energy potential,
    • own calculations based on publicly available data,
    • Some data can be found in https://geoportal.freiburg.de/freigis/
      • Umeå Energi
          A1P011: Geographic coordinates
          X Coordinate (longitude):23.8145887.88585713584291715.39449524.0816833920.26304.9041-0.88913.1651
          Y Coordinate (latitude):38.07734947.98653520708004560.48660956.9524595663.825852.367641.648850.6937
          A1P012: Country
          A1P012: CountryGreeceGermanySwedenLatviaSwedenNetherlandsSpainFrance
          A1P013: City
          A1P013: CityMunicipality of KifissiaFreiburg im BreisgauBorlängeRigaUmeåAmsterdamZaragozaRoubaix
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CsaCfbDsbCfbDfbCfbBSkCfb
          A1P015: District boundary
          A1P015: District boundaryVirtualVirtualGeographicGeographicGeographicFunctionalGeographicOther
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodPEB
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedMixedPublicPublicMixedPublicPrivate
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersSingle OwnerMultiple OwnersSingle OwnerMultiple OwnersMultiple OwnersSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED294110156061
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]284070370017000042000285001442
          A1P020: Total ground area
          A1P020: Total ground area [m²]49200009945119264520002500
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area00011001
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenononononoyesnoyes
          A1P022a: Add the value in EUR if available [EUR]0
          A1P022b: Financing - PRIVATE - ESCO schemenononononononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernononononononono
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnononononononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnononononononono
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnononononononoyes
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnoyesnononononoyes
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernononononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnoyesnoyesnoyesnoyes
          A1P022i: Add the value in EUR if available [EUR]7500000
          A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnononononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: OtherRetrofitted through various subsidies
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Positive externalities,
          • Boosting local businesses,
          • Boosting consumption of local and sustainable products
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Boosting local businesses,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          A1P023: Other
          A1P024: More comments:
          A1P024: More comments:The building comprises 32 homes. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]3.6
          Contact person for general enquiries
          A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaDr. Annette SteingrubeJingchun ShenJudith StiekemaGireesh NairOmar ShafqatClara LorenteJulien Holgard
          A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamFraunhofer Institute for solar energy systemsHögskolan DalarnaOASCUmea MunicipalityAmsterdam University of Applied SciencesCIRCEVilogia
          A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityOtherMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversityOther
          A1P028: Othernot for profit private organisationSocial Housing Company
          A1P029: Emailgiavasoglou@kifissia.grAnnette.Steingrube@ise.fraunhofer.dejih@du.sejudith@oascities.orggireesh.nair@umu.seo.shafqat@hva.nlCLORENTEM@FCIRCE.COMjulien.holgard@vilogia.fr
          Contact person for other special topics
          A1P030: NameStavros Zapantis - vice mayorXingxing ZhangOmar ShafqatJulien Holgard
          A1P031: Emailstavros.zapantis@gmail.comxza@du.seo.shafqat@hva.nljulien.holgard@vilogia.fr
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Waste management
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Water use,
          • Waste management,
          • Construction materials
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Construction materials
          • Energy efficiency,
          • Energy production,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Indoor air quality,
          • Construction materials
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsEnergy system modelingLoad calculation and system optimisation: City Energy Analyst Identification of stranded assets for asset owners and investors to understand the carbon risks: CRREMA suite of replicable modeling tools will enable stakeholders to analyze planning actions towards positive energy in a cost-effective fashion, aiding their evidence based decision-making process. The tools will be able to model the district’s energy production and demand, optimize for flexibility and simulate mobility and transport. By employing gamification and co-creation approaches, the project will enhance public awareness and engagement in energy efficiency. The project will culminate in the publication of practical guidelines, reusable models, algorithms, and training materials to aid other cities to replicate the digital twin for their districts, fostering widespread adoption of sustainable energy practices.Simulation tools: City Energy Analyst and PolysunCity vision, Innovation Ateliers
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000YesNoNoNoYesNo
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceYesYesYesYesNoYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceYesNoYesNoNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationAll energy demands are included in energy balance, either fuel demands or electrical demand of transport sector; Projection is made of future share of electric mobilty, rest is covered with synthetic fuels to achieve climate neutralityThe university operates a fleet of 13 electric vehicles (EV) (61kW power each). There are 5 EV charging stations on campus.
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]135.7150.67778000
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]31.760.0365650000
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]0
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]0
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesnononoyesyesnoyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.249
          A2P011: Windnononoyesnononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydronononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnononononoyesnono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnonoyesyesnononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]0.01818
          A2P011: Othernononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnononononoyesnono
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Solar Thermalnononononononono
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnononoyesnoyesnono
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: Waste heat+HPnononononoyesnono
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_peat_heatnononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnonoyesnonononono
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]0.0825
          A2P012: Biomass_firewood_thnononononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernononononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notes53 MW PV potential in all three quarters; no other internal renewable energy potentials knownConventional power generation: The university’s heat supply is designed as a local centralized heat supply system. Electrical power, generated in combined heat and power (CHP) units, is delivered to the distribution network and sold to energy traders as regulated by local legislation and norms. There are two natural gas burners acting as heat sources (3MW and 6MW capacity), and two CHP units (1.6MW and 0.45MW thermal capacity). All heating is supplied from the CHP plants. Renewable Energy Sources (RES): a wind turbine (3.6 kW) and PV panels (11.7 kW) are connected to the faculty microgrid. In the future it is planned to power the campus entirely from local RES.
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]132.50.3186.10.084
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]0.20550.11
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnononoyesnoyesnono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Coalnononononoyesnono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Oilnononononoyesnono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P017: Othernonoyesnonononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnononononoyesnono
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
          A2P018: Windnononononoyesnono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydronononononoyesnono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnononononoyesnono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnononononoyesnono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnononononoyesnono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernonoyesnonononono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]0.187
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnononononoyesnono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnononononoyesnono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonononoyesyesnono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnonononoyesyesnono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnononononoyesnono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnononononoyesnono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnononononoyesnono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernonoyesnonononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]0
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary000.5383957219251300000
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]6.93250
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Securitynone
          A2P022: Healththermal comfort diagram
          A2P022: Educationnone
          A2P022: Mobilityyesnone
          A2P022: Energyyesnormalized CO2/GHG & Energy intensityEnergy
          A2P022: Water
          A2P022: Economic developmentcost of excess emissions
          A2P022: Housing and Communityyes
          A2P022: Waste
          A2P022: Other
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsnoyesyesnoyesyesyesyes
          A2P023: Solar thermal collectorsnoyesyesnonononono
          A2P023: Wind Turbinesnononononononono
          A2P023: Geothermal energy systemnoyesyesnonoyesyesno
          A2P023: Waste heat recoverynoyesyesnonoyesnono
          A2P023: Waste to energynoyesnononoyesnono
          A2P023: Polygenerationnononononononono
          A2P023: Co-generationnoyesnononononono
          A2P023: Heat Pumpnoyesyesnonoyesyesno
          A2P023: Hydrogennoyesnononononono
          A2P023: Hydropower plantnoyesnononononono
          A2P023: Biomassnoyesnononoyesnono
          A2P023: Biogasnoyesnononoyesnono
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)noyesyesyesyesyesnono
          A2P024: Energy management systemnoyesnoyesnoyesyesno
          A2P024: Demand-side managementnoyesnoyesyesyesnono
          A2P024: Smart electricity gridnoyesnoyesnoyesnono
          A2P024: Thermal Storagenoyesyesyesnoyesnono
          A2P024: Electric Storagenoyesnoyesnoyesnono
          A2P024: District Heating and Coolingnoyesyesyesnoyesnono
          A2P024: Smart metering and demand-responsive control systemsnoyesnoyesnoyesnoyes
          A2P024: P2P – buildingsnoyesnononoyesnono
          A2P024: OtherDistrict Heating
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnoyesyesnoyesyesnoyes
          A2P025: Energy efficiency measures in historic buildingsnoyesnononoyesnono
          A2P025: High-performance new buildingsnononononoyesnono
          A2P025: Smart Public infrastructure (e.g. smart lighting)nononononoyesnono
          A2P025: Urban data platformsnoyesnoyesnoyesnono
          A2P025: Mobile applications for citizensnononoyesnoyesnono
          A2P025: Building services (HVAC & Lighting)nonoyesyesnoyesnono
          A2P025: Smart irrigationnononononoyesnono
          A2P025: Digital tracking for waste disposalnononononoyesnono
          A2P025: Smart surveillancenononononononono
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)noyesnononoyesnono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)noyesnononoyesnono
          A2P026: e-Mobilitynoyesnononoyesyesno
          A2P026: Soft mobility infrastructures and last mile solutionsnoyesnononoyesnono
          A2P026: Car-free areanononononoyesnono
          A2P026: Other
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesNoNoNoYesYesNo
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwelling
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNoNoNo
          A2P029: If yes, please specify and/or enter notes
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Smart cities strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyClimate neutrality by 2035The study aligns closely with the decarbonisation and energy reduction pathways of residential multi family buildings with 1.5°C global warming target in Sweden. This study will also contribute to the achievement of the carbon neturality of whole Borlänge city by 2030.
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps,
          • Biogas,
          • Hydrogen
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas,
          • Hydrogen
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps
          A3P003: OtherNA
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesFreiburg has ambitious goals and wants to achieve climate neutrality until 2035, the PED concept could help to develop suitable strategies on district levelIn our project, we carried out a comprehensive exploration of strategies to achieve positive energy districts in a Swedish residential portfolio. The focus on urban energy transitions necessitates a holistic approach that integrates building retrofit, solar technology exploration, and heating supply optimisation. Exploration of Local Solar Sources: The analysis reveals varying solar irradiance resources throughout the year, emphasizing the importance of strategic placement. Integration of combined photovoltaic and thermal panels into building envelopes demonstrates the potential to cover a significant portion of the energy demand even in Sweden. Heating Supply Optimisation with Solar Technologies: Despite the surplus energy production from on-site solar technology, challenges arise due to temporal energy asymmetry. The introduction of heat pumps emerges as a feasible solution to balance energy gaps, utilising both rejected and free heat. Optimisation scenarios, utilising a combination of geothermal heat pumps, water source heat pumps, and PVT, showcase remarkable reductions in emissions and primary energy consumption. Urban Form and Energy Infrastructure Design: We realised the importance of returning to urban form and energy infrastructure design to optimise future residential portfolio potential. Building layout design, influenced by zoning regulations and innovative typologies, plays a crucial role in achieving district level energy efficiency. Future challenges, including demographic shifts, e-mobility, and climate change, necessitate a more holistic approach to energy infrastructure design, addressing not only heating and electricity demands but also cooling requirements.
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourEnergy efficiency by renovation measures for buildings and measures for saving electricity; electrification by installation of heat pumps and photovoltaics and switching to electric cars, additional measures not directly related to PED like sustainable diet and sharing economyWhile our investigation primarily centres on technical optimisation within Positive Energy District (PED) development, it is essential to acknowledge the broader scope encompassing social and governance dimensions. Specifically, understanding stakeholders' willingness to embrace technical recommendations upon project completion is important. Several potential influencing factors merit exploration, including economic considerations, technical optimisation-associated embodied carbon balance, the general public's technical perceptions, and operational feasibility. Evaluating these aspects holistically not only enhances the efficacy of PED initiatives but also fosters greater acceptance and participation within the communities they serve.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Demand management Living Lab,
          • Local trading,
          • Existing incentives
          • Open data business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Local trading
          • Open data business models,
          • Innovative business models,
          • Demand management Living Lab
          • Innovative business models,
          • Life Cycle Cost,
          • Circular economy models,
          • Demand management Living Lab,
          • Local trading,
          • Existing incentives
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Behavioural Change / End-users engagement,
          • Social incentives,
          • Affordability,
          • Digital Inclusion
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Behavioural Change / End-users engagement,
          • Citizen Social Research,
          • Social incentives,
          • Quality of Life,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Behavioural Change / End-users engagement,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • Building / district Certification
          • Digital twinning and visual 3D models
          • District Energy plans
          • Strategic urban planning,
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Life Cycle approach,
          • Sustainable Urban drainage systems (SUDS)
          • Energy Neutral
          • Carbon-free
          • Energy Neutral,
          • Life Cycle approach
          • Energy Neutral
          A3P009: Other
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspectsRegulatory sandbox
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionAssessment methods for this ped (and for germany) is defined in this project at the moment and will be tested at that case studyThe Rymdgatan's Residential Portfolio in Sweden presents a compelling case study for its classification as a PED-related research, given its alignment with sustainable behaviours and overarching PED development principles as follows: Inclusivity and Social Equity: The residential portfolio situated in Rymdgatan caters primarily to a low-income community. By focusing on this demographic, the project addresses critical aspects of social equity within sustainable urban development. Ensuring access to energy-efficient housing and amenities for economically disadvantaged populations not only fosters social cohesion but also mitigates energy poverty, a pressing concern in many urban contexts. Multifamily Residential Building: The inclusion of multifamily residential buildings within the portfolio underscores a commitment to density and efficient land use, both essential components of sustainable urban design. Such developments promote resource optimisation by consolidating housing units, thereby reducing per capita energy consumption and infrastructure demands. Moreover, multifamily dwellings often facilitate community engagement and shared resource management, fostering a culture of sustainability among residents. Low Carbon Retrofitting and Transition: The overarching initiative to transition the entire Jakobsgårdarna district. The included Rymdgatan portfolio, towards low carbon retrofitting, represents a significant example of decarbonization and climate resilience. By integrating energy-efficient technologies and renewable energy solutions into existing infrastructure, the project not only reduces carbon emissions but also serves as a blueprint for revitalising old urban environments sustainably. This holistic approach to retrofitting demonstrates a systemic commitment to environmental stewardship and long-term sustainability. Climate Adaptation and Renewable Energy Integration: Despite Sweden's climatic challenges, including lower solar resources during winter months, the Rymdgatan project leverages its geographical context to optimize renewable energy utilization. Sweden's greater solar resource availability during summer and geothermal potentials complement the design's emphasis on seasonal energy planning, where surplus energy generated during peak periods can be stored or redistributed efficiently. By embracing climate-responsive design strategies, the project demonstrates resilience in the face of climate variability while harnessing renewable energy potential effectively.ExPEDite aims at creating and deploying a novel digital twin, allowing for real-time monitoring, visualization and management of district-level energy flows. Cities consume 65% of the world’s energy supply and are responsible for 70% of the CO² emissions, hence sharing a lot of the responsibility for climate change. We are faced with the challenge of redesigning our existing cities to make them more sustainable, resilient, inclusive and safe. Developing Positive Energy Districts (PEDs), is a breakthrough way to deal with the issue of urban emissions and applying adaptation and mitigation strategies to climate change, while ensuring that these urban areas generate an annual surplus of renewable energy and net zero greenhouse gas emissions. PEDs must address environmental, economic and social issues, providing solutions to energy consumption, production, emissions, transport & mobility and livability. By constantly monitoring and evaluating parameters through existing and/or novel sensor systems (e.g., renewable energy production/supply, transport conditions, air quality, energy demand, meteorological conditions, etc.), unconventional techniques may be applied to provide more sustainable options for the district’s needs.Functional PEDRefurbishment of social housing. The refurbishment complies with EnergieSprong specifications. This implies a performance of E=0 over 25 years.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentCity is interested in transforming the quarter, as many buildings are old, have private owner structures and have decentralised heating systems. As the city wants to become climate neutral by 2035 action is needed now. In the research project PED urban the idea is to focus on the future energy system of the quarter and use it as a case study to develop a common assessment method for PEDs in alignment with european efforts in that regardBorlänge city has committed to become the carbon-neutral city by 2030.Expected outcome 1 Increased number of (tangible) city planning actions for positive clean energy districts using the (proto-)PED design, development and management digital twin tools (based on pre-market research learnings) using open-standards based components which can be reused elsewhere. 2 Increased integration of existing smaller scale management systems (e.g. Building management systems) with open-standards based operational city platforms using sectorial data (e.g. building data, mobility, urban planning, etc.). 3 Enhanced data gathering approaches with identification of relevant multidimensional data sets (e.g. meteorological, load profile, social, geo-spatial, etc.) high-resolution real-time data streams (e.g. renewable energy production, energy consumption), and relevant forecasting data, drawing also on the work of common European data spaces. 4 Increased number of city planning departments / approaches using common data and (replicable) elements and processes. 5 Consolidated city sensor network specifications, complemented by appropriate data gathering approaches for soft data. 6 Improved performance of AI based self-learning systems for optimization of positive clean energy districts and bottom-up complex models. 7 Enhanced innovation capacity of local/regional administrations and accelerated uptake of shared, smart and sustainable zero emission solutions.Brown field development of a former industrial neighbourhood into a low-carbon, smart Positive Energy District with mixed uses.Refurbishment of social housing
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaSuburban areaUrban areaUrban areaUrban areaUrban areaUrban areaSuburban area
          B1P004: Type of district
          B2P004: Type of district
          • Renovation
          • Renovation
          • Renovation
          • New construction
          • Renovation
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • Retrofitting Area
          • Re-use / Transformation Area,
          • Retrofitting Area
          • Retrofitting Area
          • New Development
          • Retrofitting Area
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction19901958
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential5898100
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential5898100
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential6
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential6
          B1P011: Population density before intervention
          B1P011: Population density before intervention00000000
          B1P012: Population density after intervention
          B1P012: Population density after intervention00.00119878048780490.01065862242332800000
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnoyesyesnoyesnonoyes
          B1P013 - Residential: Specify the sqm [m²]4360
          B1P013: Officenoyesnononononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynoyesnononoyesnono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnoyesnononononono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnoyesnononononono
          B1P013 - Institutional: Specify the sqm [m²]
          B1P013: Natural areasnoyesnononononono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnoyesnononononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnononononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernonoyesnonononono
          B1P013 - Other: Specify the sqm [m²]706
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnoyesyesnoyesyesnoyes
          B1P014 - Residential: Specify the sqm [m²]4360
          B1P014: Officenoyesnononoyesnono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynoyesnononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnoyesnononoyesnono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnoyesnononononono
          B1P014 - Institutional: Specify the sqm [m²]
          B1P014: Natural areasnoyesnononononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnoyesnononoyesnono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernonoyesnonononono
          B1P014 - Other: Specify the sqm [m²]706
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definition
          B2P002: Installation life time
          B2P002: Installation life time
          B2P003: Scale of action
          B2P003: Scale
          B2P004: Operator of the installation
          B2P004: Operator of the installation
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED Lab
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Other
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external people
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          B2P016: Execution of operations
          B2P016: Execution of operations
          B2P017: Capacities
          B2P017: Capacities
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholders
          B2P019: Available tools
          B2P019: Available tools
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important3 - Moderately important5 - Very important5 - Very important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
          C1P001: Storage systems and E-mobility market penetration4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P001: Decreasing costs of innovative materials4 - Important2 - Slightly important4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
          C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important2 - Slightly important5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
          C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant
          C1P001: The ability to predict the distribution of benefits and impacts2 - Slightly important4 - Important5 - Very important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
          C1P001: Social acceptance (top-down)5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important4 - Important5 - Very important1 - Unimportant2 - Slightly important4 - Important1 - Unimportant
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
          C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important3 - Moderately important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important1 - Unimportant
          C1P001: Availability of RES on site (Local RES)4 - Important5 - Very important4 - Important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important2 - Slightly important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P001: Any other UNLOCKING FACTORS (if any)
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important5 - Very important1 - Unimportant
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P002: Urban re-development of existing built environment3 - Moderately important2 - Slightly important4 - Important4 - Important1 - Unimportant5 - Very important4 - Important1 - Unimportant
          C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important2 - Slightly important1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P002: Energy autonomy/independence5 - Very important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P002: Any other DRIVING FACTOR (if any)
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
          C1P003: Lack of public participation3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Complicated and non-comprehensive public procurement4 - Important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
          C1P003: Fragmented and or complex ownership structure3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
          C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
          C1P003: Lack of internal capacities to support energy transition3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P003: Any other Administrative BARRIER (if any)
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important2 - Slightly important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important1 - Unimportant
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important2 - Slightly important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant
          C1P004: Any other Political BARRIER (if any)
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
          C1P005: Regulatory instability3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P005: Non-effective regulations4 - Important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Insufficient or insecure financial incentives4 - Important3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P005: Shortage of proven and tested solutions and examples3 - Moderately important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriers2 - Slightly important
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Deficient planning3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P007: Retrofitting work in dwellings in occupied state4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
          C1P007: Lack of well-defined process4 - Important3 - Moderately important2 - Slightly important4 - Important1 - Unimportant3 - Moderately important4 - Important1 - Unimportant
          C1P007: Inaccuracy in energy modelling and simulation4 - Important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
          C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P007: Grid congestion, grid instability4 - Important3 - Moderately important5 - Very important4 - Important1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Difficult definition of system boundaries3 - Moderately important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P007: Any other Thecnical BARRIER (if any)
          C1P008: Social and Cultural barriers
          C1P008: Inertia4 - Important4 - Important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Low acceptance of new projects and technologies5 - Very important2 - Slightly important5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P008: Difficulty of finding and engaging relevant actors5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
          C1P008: Lack of trust beyond social network4 - Important3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant
          C1P008: Rebound effect4 - Important3 - Moderately important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important1 - Unimportant
          C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P009: Lack of awareness among authorities2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Information asymmetry causing power asymmetry of established actors3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P009: High costs of design, material, construction, and installation4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs2 - Slightly important5 - Very important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P010: Insufficient external financial support and funding for project activities3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Economic crisis3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P010: Risk and uncertainty4 - Important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P010: Lack of consolidated and tested business models3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P010: Limited access to capital and cost disincentives2 - Slightly important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives2 - Slightly important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P011: Energy price distortion3 - Moderately important4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant
          C1P011: Energy market concentration, gatekeeper actors (DSOs)3 - Moderately important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading
          • Monitoring/operation/management
          • Planning/leading
          • Monitoring/operation/management
          C1P012: Research & Innovation
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • None
          • None
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          C1P012: Analyst, ICT and Big Data
          • None
          • None
          • Planning/leading,
          • Monitoring/operation/management
          • Construction/implementation
          C1P012: Business process management
          • None
          • None
          • Monitoring/operation/management
          C1P012: Urban Services providers
          • None
          • None
          • Planning/leading,
          • Monitoring/operation/management
          C1P012: Real Estate developers
          • None
          • Design/demand aggregation
          • Construction/implementation
          C1P012: Design/Construction companies
          • Construction/implementation
          • None
          • Construction/implementation
          C1P012: End‐users/Occupants/Energy Citizens
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Design/demand aggregation
          • Design/demand aggregation
          C1P012: Social/Civil Society/NGOs
          • Construction/implementation,
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Design/demand aggregation
          C1P012: Industry/SME/eCommerce
          • None
          • None
          • Construction/implementation
          • Construction/implementation
          C1P012: Other
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)