Filters:
NameProjectTypeCompare
Tartu, Estonia V2G-QUESTS PED Relevant Case Study Compare
Utrecht, the Netherlands (District of Kanaleneiland) V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Portugal V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
SmartEnCity, Lecce SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
REPLICATE (pilot action in the Novoli-Cascine district on “le PIagge” buildings), Firenze PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Uncompare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Uncompare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Compare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Compare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Uncompare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Uncompare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Uncompare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Uncompare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Uncompare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Innsbruck, Campagne-Areal
Maia, Sobreiro Social Housing
Izmir, District of Karşıyaka
Kladno, Sletiště (Sport Area), PED Winter Stadium
Halmstad, Fyllinge
City of Espoo, Espoonlahti district, Lippulaiva block
Groningen, PED North
Istanbul, Ozyegin University Campus
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityInnsbruck, Campagne-ArealMaia, Sobreiro Social HousingIzmir, District of KarşıyakaKladno, Sletiště (Sport Area), PED Winter StadiumHalmstad, FyllingeCity of Espoo, Espoonlahti district, Lippulaiva blockGroningen, PED NorthIstanbul, Ozyegin University Campus
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesnonoyesnono
PED relevant case studyyesyesnonoyesyesnonoyes
PED Lab.nonoyesnonononoyesno
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesnonoyesyes
Annual energy surplusnononoyesyesnonoyesno
Energy communityyesnononoyesyesnoyesno
Circularitynononononononoyesno
Air quality and urban comfortyesnonoyesnonononoyes
Electrificationyesnononoyesnononoyes
Net-zero energy costnononoyesnonononono
Net-zero emissionnoyesnononononoyesno
Self-sufficiency (energy autonomous)nonononononononono
Maximise self-sufficiencynonoyesyesnonoyesnono
Othernonononononononoyes
Other (A1P004)almost nZEB district
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseCompletedPlanning PhasePlanning PhasePlanning PhasePlanning PhaseIn operationImplementation PhaseImplementation Phase
A1P006: Start Date
A1P006: Start date04/1610/2110/22202201/2106/1812/1810/24
A1P007: End Date
A1P007: End date04/2210/2410/2501/3003/2212/2310/28
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • Meteorological open data,
  • General statistical datasets,
  • GIS open datasets
  • Monitoring data available within the districts
  • Open data city platform – different dashboards,
  • General statistical datasets
  • General statistical datasets
  • General statistical datasets
  • Monitoring data available within the districts,
  • Open data city platform – different dashboards,
  • GIS open datasets
  • General statistical datasets
A1P009: OtherOther
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
        • M. Hukkalainen, F. Zarrin, K. Klobut, O. Lindholm, M. Ranta, P. Hajduk, T. Vainio-Kaila, E. Wanne, J. Tartia, H. Horn, K. Kontu, J. Juhmen, S. Santala, R. Turtiainen, J. Töyräs, T. Koljonen. (2020). Deliverable D3.1 Detailed plan of the Espoo smart city lighthouse demonstrations. Available online: https://www.sparcs.info/sites/default/files/2020-09/SPARCS_D3.1_Detailed_plan_Espoo.pdf,
        • Hukkalainen, Zarrin Fatima, Krzysztof Klobut, Kalevi Piira, Mikaela Ranta, Petr Hajduk, Tiina Vainio-Kaila , Elina Wanne, Jani Tartia, Angela Bartel, Joni Mäkinen, Mia Kaurila, Kaisa Kontu, Jaano Juhmen, Merja Ryöppy, Reetta Turtiainen, Joona Töyräs, Timo Koljonen (2021) Deliverable 3.2 Midterm report on the implemented demonstrations of solutions for energy positive blocks in Espoo. Available online: https://www.sparcs.info/sites/default/files/2022-02/SPARCS_D3.2.pdf,
        • www.lippulaiva.fi
        • TNO, Hanze, RUG,
        • Ped noord book
          A1P011: Geographic coordinates
          X Coordinate (longitude):23.81458811.424346738140256-8.37355727.11004914.0929612.9205424.65436.53512129.258300
          Y Coordinate (latitude):38.07734947.27147078672910441.13580438.49605450.1371556.6519460.149153.23484641.030600
          A1P012: Country
          A1P012: CountryGreeceAustriaPortugalTurkeyCzech RepublicSwedenFinlandNetherlandsTurkey
          A1P013: City
          A1P013: CityMunicipality of KifissiaInnsbruckMaiaİzmirKladnoHalmstadEspooGroningenIstanbul
          A1P014: Climate Zone (Köppen Geiger classification)
          A1P014: Climate Zone (Köppen Geiger classification).CsaDfbCsbCsaCfbDwbDfbCfaCfa
          A1P015: District boundary
          A1P015: District boundaryVirtualGeographicVirtualGeographicGeographicGeographicGeographicFunctionalGeographic
          OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhoodV1* (ca 8 buildings)
          A1P016: Ownership of the case study/PED Lab
          A1P016: Ownership of the case study/PED Lab:MixedPublicPrivateMixedMixedPrivateMixedPrivate
          A1P017: Ownership of the land / physical infrastructure
          A1P017: Ownership of the land / physical infrastructure:Multiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersSingle Owner
          A1P018: Number of buildings in PED
          A1P018: Number of buildings in PED4222182509715
          A1P019: Conditioned space
          A1P019: Conditioned space [m²]222771027951120001.01
          A1P020: Total ground area
          A1P020: Total ground area [m²]113513260016500017.132285.400
          A1P021: Floor area ratio: Conditioned space / total ground area
          A1P021: Floor area ratio: Conditioned space / total ground area020300100
          A1P022: Financial schemes
          A1P022a: Financing - PRIVATE - Real estatenonononoyesyesyesyesyes
          A1P022a: Add the value in EUR if available [EUR]
          A1P022b: Financing - PRIVATE - ESCO schemenonononoyesnononono
          A1P022b: Add the value in EUR if available [EUR]
          A1P022c: Financing - PRIVATE - Othernonoyesnonononoyesno
          A1P022c: Add the value in EUR if available [EUR]
          A1P022d: Financing - PUBLIC - EU structural fundingnonononoyesnononono
          A1P022d: Add the value in EUR if available [EUR]
          A1P022e: Financing - PUBLIC - National fundingnonoyesnonononoyesno
          A1P022e: Add the value in EUR if available [EUR]
          A1P022f: Financing - PUBLIC - Regional fundingnonoyesnononononono
          A1P022f: Add the value in EUR if available [EUR]
          A1P022g: Financing - PUBLIC - Municipal fundingnonononoyesnonoyesno
          A1P022g: Add the value in EUR if available [EUR]
          A1P022h: Financing - PUBLIC - Othernonononononononono
          A1P022h: Add the value in EUR if available [EUR]
          A1P022i: Financing - RESEARCH FUNDING - EUnonoyesyesyesyesyesyesyes
          A1P022i: Add the value in EUR if available [EUR]1193355308875
          A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesnoyesyesnononono
          A1P022j: Add the value in EUR if available [EUR]
          A1P022k: Financing - RESEARCH FUNDING - Local/regionalnonononononononono
          A1P022k: Add the value in EUR if available [EUR]
          A1P022l: Financing - RESEARCH FUNDING - Othernonononononononono
          A1P022l: Add the value in EUR if available [EUR]
          A1P022: Other
          A1P023: Economic Targets
          A1P023: Economic Targets
          • Job creation,
          • Other
          • Positive externalities,
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local and sustainable production
          • Job creation,
          • Positive externalities
          • Boosting local and sustainable production
          • Job creation,
          • Positive externalities,
          • Boosting local businesses
          • Boosting local businesses,
          • Boosting local and sustainable production
          • Positive externalities,
          • Boosting local and sustainable production,
          • Boosting consumption of local and sustainable products
          A1P023: OtherCreate affordable appartments for the citizens
          A1P024: More comments:
          A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2The Espoonlahti district is located on the south-western coast of Espoo. With 56,000 inhabitants, it is the second largest of the Espoo city centres. The number of inhabitants is estimated to grow to 70,000 within the next 10 years. Espoonlahti will be a future transit hub of the south-western Espoo, along the metro line, and the increasing stream of passengers provides a huge potential for retail, business and residential developments. E-mobility solutions and last-mile services have strong potential in the area when subway extension is finished and running. The extensive (re)development of the Lippulaiva blocks make a benchmark catering to the everyday needs of residents. The completely new shopping centre is a state-of-the-art cross point with 20,000 daily customers and 10,000 daily commuters (3.5 million/year). The new underground metro line and station, and feeder line bus terminal, are fully integrated. Residential housing of approximately 550 new apartments will be built on top. Lippulaiva is a large traffic hub, directly connected to public transport and right next to the Länsiväylä highway and extensive cycle paths. Lippulaiva offers diverse, mixed-use services, such as a shopping mall, public services, a day care centre, residential apartment buildings, and underground parking facilities. Lippulaiva received the LEED Gold environmental certificate and Smart Building Gold certificate. • Flagship of sustainability • Cooling and heating demand from geothermal energy system (on-site) with energy storage system, 4 MW • PV panels: roof and façade, 630 kWp • Smart control strategies for electricity and thermal energy, smart microgrid-system and battery storage • Charging capacity for 134 EVsIn addition to having the most energy efficient academic building in Turkey, the university campus also has 3 buildings with LEED NC Campus certificate and LEED BD+C Gold certificate. In addition, it aims to continuously improve the energy efficiency objectives on campus in an innovative way. For this purpose, energy management and storage systems are being installed in the Dormitory 6 building, which is used as the demo area of the LEGOFIT project, for the purpose of turning it into a PED project.
          A1P025: Estimated PED case study / PED LAB costs
          A1P025: Estimated PED case study / PED LAB costs [mil. EUR]1
          Contact person for general enquiries
          A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaGeorgios DermentzisAdelina RodriguesOzlem SenyolDavid ŠkorňaMarkus OlofsgårdElina EkelundJasper Tonen, Elisabeth KoopsCem Keskin
          A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamUniversity of InnsbruckMaia Municipality (CM Maia) – Energy and Mobility divisionKarsiyaka MunicipalityMěsto KladnoAFRYCitycon OyjMunicipality of GroningenCenter for Energy, Environment and Economy, Ozyegin University
          A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityMunicipality / Public BodiesMunicipality / Public BodiesMunicipality / Public BodiesOtherSME / IndustryMunicipality / Public BodiesResearch Center / University
          A1P028: Other
          A1P029: Emailgiavasoglou@kifissia.grGeorgios.Dermentzis@uibk.ac.atdscm.adelina@cm-maia.ptozlemkocaer2@gmail.comdavid.skorna@mestokladno.czmarkus.olofsgard@afry.comElina.ekelund@citycon.comJasper.tonen@groningen.nlcem.keskin@ozyegin.edu.tr
          Contact person for other special topics
          A1P030: NameStavros Zapantis - vice mayorCarolina Gonçalves (AdEPorto)Hasan Burak CavkaMichal KuzmičElina EkelundM. Pınar Mengüç
          A1P031: Emailstavros.zapantis@gmail.comcarolinagoncalves@adeporto.euhasancavka@iyte.edu.trmichal.kuzmic@cvut.czElina.ekelund@citycon.compinar.menguc@ozyegin.edu.tr
          Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYesYes
          A2P001: Fields of application
          A2P001: Fields of application
          • Energy production
          • Energy efficiency,
          • Energy production,
          • Indoor air quality
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • Urban comfort (pollution, heat island, noise level etc.)
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Indoor air quality
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Urban comfort (pollution, heat island, noise level etc.),
          • Waste management
          • Energy efficiency,
          • Energy flexibility,
          • Energy production,
          • E-mobility,
          • Digital technologies,
          • Waste management,
          • Indoor air quality,
          • Construction materials
          A2P001: Other
          A2P002: Tools/strategies/methods applied for each of the above-selected fields
          A2P002: Tools/strategies/methods applied for each of the above-selected fieldsThe buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.Energy production: - installation of photovoltaic systems for renewable on-site energy production; - installation of a BIPV demonstrator for the City Hall building. Energy flexibility: - implementation of an energy community through an active citizens involvement process. Digital technologies: - smart-meters installation in some dwellings in order to monitor consumption and suggest more sustainable energy behaviours. [PCP] Through https://balcaodigital.e-redes.pt/consumptions/history “Espaço Municipal” (https://www.espacomunicipal.pt/pt/) might access history of consumption up to midnight of the previous day. E-mobility: - Installation of new charging stations for electric vehicles; Urban comfort and air quality: - Monitoring units for air pollutants concentration (PM2.5, PM10, NO2) [PCP] Currently we are monitoring CO, O3, NO2, SO2, noise, PM2.5 and PM10 at a point 267 m east from the four buildings southeast of Sobreiro area:Methods involve studying the feasibility of digital PED references for the case cities about their energy, environmental, and economic performance by EnergyPlus tool. In case of insufficient energy data and the need of high resolution data, ‘Gaussian mixture model and expectation-maximization algorithm’ and ‘time-series decomposition-recombination’ method will be used to supplement data to EnergyPlus. The feasibility results will be returned to stakeholders for iterative discussion, and the iterative results will be used to update digital references. Replication plans are developed based on such a cooperation process for strategies to implement PEDs. If a PED is demonstrated during the project period, the measured data will be used to verify the feasibility model to optimize previous results (WP7– R3 & R4). In the MAKING-CITY project, the overall PED design method is developed, which will be further optimised in this project. In addition, PED-ACT will use the methods and knowledge, including how to choose a suitable PED in a city, energy balance calculation, and technologies available for PED. The RUGGEDISED project outputs the governance model into the replication plan in PED-ACT. Its ‘smart city open-data decision platform’ will illustrate an excellent example for the database in PED-ACT. The IEA EBC Annex 83 and Cost Action 19126 create the basis for data collection, developing existing PED databases, characterization of PED, and review of regulations of PED, as well as development of simulation tools. The UBEM project further enables a detailed high-resolution energy balance calculation of PED.Trnsys, PV modelling tools, CADlink based regulation of electricity gridEnergy efficiency: - eliminating waste energy utilizing smart energy system - utilizing excess heat from grocery stores Energy flexibility: - A battery energy storage system (1,5 MW/1,5MWh); Active participation in Nordpool electricity market (FCR-N) Energy production: - heating and cooling from geothermal heat pump system; 171 energy wells (over 51 km); heat capacity 4 MW - installation of new photovoltaic (PV) systems for renewable on-site energy production; Estimation of annual production is about 540 MWh (630 kWp) E-mobility - Installation of charging stations for electric vehicles (for 134 EVs) - e-bike services (warm storage room, charging cabinets for e-bikes) Digital technologies: - Building Analytics system by Schneider ElectricEnergy efficiency: - buildings energy retrofit supported by tax bonuses - replacing heat supply technologies Energy production: - installation of new (PV) systems for renewable on-site energy production; - presence of a large PV plant in the South East (2 solar parks: 12MW and 107MW) and North area (0,4 MW) Energy flexibility: - energy storage solutions, battery storage and possible hydrogen production - GRID balancing services E-mobility - Installation of new charging stations for electric vehicles; Urban Management - make use of the organizational structure Waste Management - circular use of municipal waste streamsLEED NC Campus + LEGOFIT Project Energy Efficiency: Tri- generation, Compliance with ISO 50001, ASHRAE 90.1, energy efficient appliances, HVAC and lighting Energy flexibility: Energy demand management Energy production: Solar PVs Onsite + (to be installed more) E-mobility: EV Charging stations Indoor Air Quality: Energy Management System, Compliance with ASHRAE 62.1, ASHRAE 55 Construction materials: Passive systems, LEED certified buildings, innovative materials such as PCM Waste Management: Zero waste document
          A2P003: Application of ISO52000
          A2P003: Application of ISO52000NoNoYesNoNoYesNoYes
          A2P004: Appliances included in the calculation of the energy balance
          A2P004: Appliances included in the calculation of the energy balanceYesYesYesYesNoYesNoYes
          A2P005: Mobility included in the calculation of the energy balance
          A2P005: Mobility included in the calculation of the energy balanceNoNoNoNoYesNoNoNo
          A2P006: Description of how mobility is included (or not included) in the calculation
          A2P006: Description of how mobility is included (or not included) in the calculationMobility is not included in the calculations.Not yet included.Mobility is not included in the energy model.Mobility, till now, is not included in the energy model.Not included, the campus is a non car area except emergencies
          A2P007: Annual energy demand in buildings / Thermal demand
          A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.393.8621.45.52.3
          A2P008: Annual energy demand in buildings / Electric Demand
          A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.6551.2260.35.80.33
          A2P009: Annual energy demand for e-mobility
          A2P009: Annual energy demand for e-mobility [GWh/annum]0
          A2P010: Annual energy demand for urban infrastructure
          A2P010: Annual energy demand for urban infrastructure [GWh/annum]
          A2P011: Annual renewable electricity production on-site during target year
          A2P011: PVyesyesyesyesyesyesyesnoyes
          A2P011: PV - specify production in GWh/annum [GWh/annum]0.421.0281.10.54
          A2P011: Windnonononononononono
          A2P011: Wind - specify production in GWh/annum [GWh/annum]
          A2P011: Hydrononononononononono
          A2P011: Hydro - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_elnonononononononono
          A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]
          A2P011: Biomass_peat_elnonononononononono
          A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
          A2P011: PVT_elnonononononononono
          A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
          A2P011: Othernonononononononono
          A2P011: Other - specify production in GWh/annum [GWh/annum]
          A2P012: Annual renewable thermal production on-site during target year
          A2P012: Geothermalnononononoyesyesyesno
          A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]5
          A2P012: Solar Thermalnonoyesnonononoyesno
          A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_heatnononononononoyesno
          A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.1
          A2P012: Waste heat+HPnonononoyesnonoyesno
          A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]1.7
          A2P012: Biomass_peat_heatnonononononononono
          A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
          A2P012: PVT_thnononononononoyesno
          A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Biomass_firewood_thnonononononononono
          A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
          A2P012: Othernonononononononono
          A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
          A2P013: Renewable resources on-site - Additional notes
          A2P013: Renewable resources on-site - Additional notesWaste heat from cooling the ice rink.Geothermal heatpump systems, Waste heat from data centers
          A2P014: Annual energy use
          A2P014: Annual energy use [GWh/annum]0.965.0882.111.33.5
          A2P015: Annual energy delivered
          A2P015: Annual energy delivered [GWh/annum]-25.76
          A2P016: Annual non-renewable electricity production on-site during target year
          A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]00
          A2P017: Annual non-renewable thermal production on-site during target year
          A2P017: Gasnononoyesnonononono
          A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P017: Coalnonononononononono
          A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P017: Oilnonononononononono
          A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]0
          A2P017: Othernonononononononono
          A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
          A2P018: Annual renewable electricity imports from outside the boundary during target year
          A2P018: PVnononoyesnonononoyes
          A2P018 - PV: specify production in GWh/annum if available [GWh/annum]0.7070.00045547
          A2P018: Windnonononononononono
          A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
          A2P018: Hydrononononononononono
          A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_elnonononononononono
          A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Biomass_peat_elnonononononononono
          A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: PVT_elnonononononononono
          A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
          A2P018: Othernonononononoyesnono
          A2P018 - Other: specify production in GWh/annum if available [GWh/annum]5.26
          A2P019: Annual renewable thermal imports from outside the boundary during target year
          A2P019: Geothermalnonononononononono
          A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Solar Thermalnonononononononono
          A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_heatnonononononononono
          A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Waste heat+HPnonononononononono
          A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_peat_heatnonononononononono
          A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
          A2P019: PVT_thnonononononononono
          A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Biomass_firewood_thnonononononononono
          A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
          A2P019: Othernonononononononono
          A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
          A2P020: Share of RES on-site / RES outside the boundary
          A2P020: Share of RES on-site / RES outside the boundary0001.4540311173975001.053231939163500
          A2P021: GHG-balance calculated for the PED
          A2P021: GHG-balance calculated for the PED [tCO2/annum]-1040
          A2P022: KPIs related to the PED case study / PED Lab
          A2P022: Safety & Security
          A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
          A2P022: Education
          A2P022: Mobility
          A2P022: EnergySpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.Energy demand (heating and hot water), Energy demand (cooling), Cooling demand, Distributin losses, PV production, RES production, OER, Primafry Non-renewable energy balance, AMR, HMR, CO2 balanceOn-site energy ratio
          A2P022: Water
          A2P022: Economic developmentInvestment cost, Caputal cost, Operation cost, payback period, NPV, cummulated cash flow, savings, Life cycle, ROI, SROI
          A2P022: Housing and Community
          A2P022: Waste
          A2P022: Other
          A2P023: Technological Solutions / Innovations - Energy Generation
          A2P023: Photovoltaicsnoyesyesyesyesyesyesyesyes
          A2P023: Solar thermal collectorsnonoyesnonononoyesno
          A2P023: Wind Turbinesnonononononononoyes
          A2P023: Geothermal energy systemnonononononoyesyesno
          A2P023: Waste heat recoverynonononoyesnoyesyesno
          A2P023: Waste to energynononononononoyesno
          A2P023: Polygenerationnonononononononono
          A2P023: Co-generationnonononononononoyes
          A2P023: Heat Pumpnoyesyesyesyesnonoyesyes
          A2P023: Hydrogennonononononononono
          A2P023: Hydropower plantnonononononononono
          A2P023: Biomassnonononononononono
          A2P023: Biogasnonononononononono
          A2P023: Other
          A2P024: Technological Solutions / Innovations - Energy Flexibility
          A2P024: A2P024: Information and Communication Technologies (ICT)nonoyesnoyesyesyesyesyes
          A2P024: Energy management systemnonoyesnoyesnoyesyesyes
          A2P024: Demand-side managementnonononoyesyesnoyesyes
          A2P024: Smart electricity gridnononononoyesyesnono
          A2P024: Thermal Storagenoyesnonononoyesyesno
          A2P024: Electric Storagenonoyesnononoyesyesyes
          A2P024: District Heating and Coolingnoyesnonoyesnonoyesyes
          A2P024: Smart metering and demand-responsive control systemsnonoyesnoyesyesnoyesyes
          A2P024: P2P – buildingsnoyesnonononononono
          A2P024: Other
          A2P025: Technological Solutions / Innovations - Energy Efficiency
          A2P025: Deep Retrofittingnonoyesyesyesnononono
          A2P025: Energy efficiency measures in historic buildingsnononononononoyesno
          A2P025: High-performance new buildingsnoyesnonononoyesyesyes
          A2P025: Smart Public infrastructure (e.g. smart lighting)nonoyesnononoyesyesno
          A2P025: Urban data platformsnonononoyesnonoyesno
          A2P025: Mobile applications for citizensnonononononononono
          A2P025: Building services (HVAC & Lighting)noyesyesyesyesnoyesnoyes
          A2P025: Smart irrigationnonononononononoyes
          A2P025: Digital tracking for waste disposalnonoyesnononononono
          A2P025: Smart surveillancenonononononononoyes
          A2P025: Other
          A2P026: Technological Solutions / Innovations - Mobility
          A2P026: Efficiency of vehicles (public and/or private)nonoyesnononononono
          A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nonononononoyesnono
          A2P026: e-Mobilitynonoyesnononoyesyesyes
          A2P026: Soft mobility infrastructures and last mile solutionsnonononononononoyes
          A2P026: Car-free areanonononononononoyes
          A2P026: OtherLocal transportation hub with direct connection to metro & bus terminal; parking spaces for 1,400 bicycles and for 1,300 cars Promoting e-Mobility: 134 charging stations, A technical reservation for expanding EV charging system 1400 bicycle racks and charging cabinets for 10 e-bicycle batteries
          A2P027: Mobility strategies - Additional notes
          A2P027: Mobility strategies - Additional notes
          A2P028: Energy efficiency certificates
          A2P028: Energy efficiency certificatesYesYesNoYesNoYesYesYes
          A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingTwo buildings are certified "Passive House new build"The Municipal Buildings have an energy certificate, according to the Portuguese legislation.National standards apply.Energy Performance Certificate => Energy efficiency class B (2018 version)Energy Performance Certificate
          A2P029: Any other building / district certificates
          A2P029: Any other building / district certificatesNoNoNoNoNoYesYes
          A2P029: If yes, please specify and/or enter notesLEED (Core & Shell, v4) GOLD certification, Smart Building certification (GOLD)LEED BD+C, LEED NC CAMPUS
          A3P001: Relevant city /national strategy
          A3P001: Relevant city /national strategy
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC)
          • Smart cities strategies
          • Urban Renewal Strategies,
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • Climate change adaption plan/strategy (e.g. Climate City contract)
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Promotion of energy communities (REC/CEC),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Promotion of energy communities (REC/CEC)
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Energy master planning (SECAP, etc.),
          • New development strategies,
          • National / international city networks addressing sustainable urban development and climate neutrality
          • Smart cities strategies,
          • Energy master planning (SECAP, etc.),
          • Climate change adaption plan/strategy (e.g. Climate City contract),
          • National / international city networks addressing sustainable urban development and climate neutrality
          A3P002: Quantitative targets included in the city / national strategy
          A3P002: Quantitative targets included in the city / national strategyKarşıyaka Municipality is the first local government in Turkey to sign the Covenant of Mayors in 2011. During this period, the greenhouse gas inventory of the district was carried out three times and reduction targets were set for 2020 and 2030. In the 2021 Sustainable Energy and Climate Action Plan prepared as of the end of 2021, Karşıyaka Municipality has targeted a 40% reduction in its emissions for 2030 compared to the base year 2018. In the 2021 Sustainable Energy and Climate Action Plan, Karşıyaka Municipality aims to reduce its greenhouse gas emissions from 3.96 tCO2e / person in 2018 to 2.37 tCO2e / person in 2030. System solutions such as the use of renewable energy sources, air, ground or water source heat pump, cogeneration and microcogeneration are analysed by designers in order to fully or partially meet the energy requirements for heating, cooling, ventilation, hot water, electricity and lighting for all buildings with a floor area of less than 20,000 square metres. If at least 50% of the building's total energy consumption costs are covered by one or more of these applications, the points are taken in the assessment table in the Building and housing estate business certification guide of 2023.Carbon neutrality 2050Relevant city strategies behind PED development in Espoo include the following: - The Espoo Story: Sustainability is heavily included within the values and goals of the current Espoo city strategy, also known as the Espoo Story, running from 2021 to 2025. For example, the strategy names being a responsible pioneer as one of the main values of the city and has chosen achieving carbon neutrality by 2030 as one of the main goals of the current council term. In addition to the Espoo story, four cross-administrative development programmes act as cooperation platforms that allow the city, together with its partners, to develop innovative solutions through experiments and pilot projects in line with the Espoo Story. The Sustainable Espoo development programme is one of the four programmes, thus putting sustainability on the forefront in city development work. - EU Mission: 100 climate-neutral and smart cities by 2030: Cities selected for the Mission commit to achieving carbon-neutrality in 2030. A key tool in the Mission is the Climate City Contract. Each selected city will prepare and implement its contracts in collaboration with local businesses as well as other stakeholders and residents. - Covenant of Mayors for Climate and Energy: Espoo is committed to the Covenant of Mayors for Climate and Energy, under which the signatories commit to supporting the European Union’s 40% greenhouse gas emission reduction goal by 2030. The Sustainable Energy and Climate Action Plan (SECAP) is a key instrument for implementing the agreement. The Action Plan outlines the key measures the city will take to achieve its carbon neutrality goal. The plan also includes a mapping of climate change risks and vulnerabilities, adaptation measures, emission calculations, emission reduction scenarios and impact estimations of measures. The SECAP of the City of Espoo is available here (only available in Finnish). - UN Sustainable development Goals: The city of Espoo has committed to becoming a forerunner and achieving the UN's Sustainable Development Goals (SDG) by 2025. The goal is to make Espoo financially, ecologically, socially, and culturally sustainable. - The Circular Cities Declaration: At the end of 2020, Espoo signed the Europe-wide circular economy commitment Circular Cities Declaration. The ten goals of the declaration promote the implementation of the city’s circular economy. - Espoo Clean Heat: Fortum and the City of Espoo are committed to producing carbon-neutral district heating in the network operating in the areas of Espoo, Kauniainen and Kirkkonummi during the 2020s. The district heating network provides heating to some 250,000 end-users in homes and offices. Coal will be completely abandoned in the production of district heating by 2025. The main targets related to PED development included in the noted city strategies are the following: - Espoo will achieve carbon neutrality by 2030. To be precise, this carbon neutrality goal is defined as an 80% emission reduction from the 1990 level by the year 2030. The remaining 20% share can be absorbed in carbon sinks or compensated by other means. - District heating in Espoo will be carbon-neutral by 2029, and coal-based production will be phased out from district heating by 2025. - Espoo aims to end the use of fossil fuels in the heating of city-owned buildings by 2025. - Quantitative goals within the Espoo SECAP report: - Espoo aims to reduce total energy consumption within the municipal sector by 7.5% by the end of 2025 in comparison to the 2015 level. The social housing company Espoon Asunnot OY aims to meet the same target. - Espoo aims to cover 10% of the energy consumption of new buildings via on-site production. - Espoo aims to raise the modal split of cycling to 15% by 2024. - Espoo aims to raise the modal split of public transport by 1.1% yearly. - Espoo aims to reduce the emissions of bus transport by 90% by the end of 2025, when compared to 2010 levels.
          A3P003: Strategies towards decarbonization of the gas grid
          A3P003: Strategies towards decarbonization of the gas grid
          • Electrification of Heating System based on Heat Pumps,
          • Other
          • Other
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods,
          • Biogas
          • Electrification of Heating System based on Heat Pumps,
          • Electrification of Cooking Methods
          A3P003: OtherDistrict heating based mainly on heat pumps and renewable sourcesAt a national level there are some studies regarding the decarbonization of the gas grid, but no concrete strategies so far.Boiler Automation, Energy Management System, Electric Battery Storage, Demand Management and Flexible Pricing
          A3P004: Identification of needs and priorities
          A3P004: Identification of needs and prioritiesThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.According to the model developed for the district, the electrification of heating and cooling is necessary.Therefore, there needs to be the implementation of a heat pump. The building-integrated photovoltaic panelsshould follow. Through net-metering practices, the district is expected to reach energy positivity throughthis scenario.- Citycon (developer and owner of Lippulaiva) aims to be carbon neutral in its energy use by 2030 - Lippulaiva is a unique urban centre with state-of-the-art energy concept. The centre has a smart managing system, which allows for example the temporary reduction of power used in air conditioning and charging stations when energy consumption is at its peak. In addition, a backup generator and a large electric battery will balance the operation of the electricity network. - Lippulaiva is also an important mobility hub for the people of Espoo. Espoonlahti metro station is located under the centre, and the West Metro started to operate to Espoonlahti in December 2022. Lippulaiva also has a bus terminal, which serves the metro’s feeder traffic in the Espoonlahti major district.Carbon and Energy Neutrality
          A3P005: Sustainable behaviour
          A3P005: Sustainable behaviourFor Citycon, it was important to engage local people within the Lippulaiva project. During the construction period as well as after opening of the shopping center, citizens have been engaged in multiple ways, such as informing local citizens of the progress of construction, engaging young people in the design processes of the shopping centre and long-term commitment of youngsters with Lippulaiva Buddy class initiative. Users’ engagement activities are conducted in close co-operation with SPARCS partners.In Groningen we are working with different sustainable behaviours approaches and also developed the Unified Citizen Engagement Approach (UCEA). Currently, there are two different approaches in use in the municipality of Groningen: the District energy approach (Wijkgerichte aanpak, developed by the Municipality of Groningen) and the Cooperative approach (Coöperative Aanpak, developed by Grunneger Power). Based upon those approaches and knowledge that is gained through social research executed by TNO and HUAS the new Unified Citizen Engagement Approach (UCEA) has been developed.Under LEGOFIT project, promoting sustainable behavior for better occupant experience is a targeted aim under a work package.
          A3P006: Economic strategies
          A3P006: Economic strategies
          • Innovative business models,
          • PPP models,
          • Existing incentives
          • Innovative business models,
          • PPP models,
          • Existing incentives
          • Local trading
          • Innovative business models
          • Innovative business models,
          • Blockchain
          A3P006: Other
          A3P007: Social models
          A3P007: Social models
          • Co-creation / Citizen engagement strategies,
          • Social incentives,
          • Affordability,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance
          • Co-creation / Citizen engagement strategies,
          • Prevention of energy poverty,
          • Digital Inclusion,
          • Citizen/owner involvement in planning and maintenance,
          • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Affordability
          • Strategies towards (local) community-building,
          • Affordability
          • Behavioural Change / End-users engagement,
          • Citizen/owner involvement in planning and maintenance
          • Co-creation / Citizen engagement strategies
          • Strategies towards (local) community-building,
          • Co-creation / Citizen engagement strategies,
          • Citizen Social Research,
          • Prevention of energy poverty,
          • Citizen/owner involvement in planning and maintenance
          A3P007: Other
          A3P008: Integrated urban strategies
          A3P008: Integrated urban strategies
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          • Digital twinning and visual 3D models,
          • District Energy plans,
          • SECAP Updates
          • Strategic urban planning,
          • City Vision 2050,
          • SECAP Updates
          • Strategic urban planning
          • Building / district Certification
          • Strategic urban planning,
          • District Energy plans,
          • City Vision 2050,
          • SECAP Updates
          • City Vision 2050,
          • SECAP Updates,
          • Building / district Certification
          A3P008: Other
          A3P009: Environmental strategies
          A3P009: Environmental strategies
          • Energy Neutral,
          • Low Emission Zone
          • Energy Neutral,
          • Net zero carbon footprint,
          • Pollutants Reduction
          • Energy Neutral,
          • Low Emission Zone,
          • Pollutants Reduction
          • Net zero carbon footprint
          • Energy Neutral,
          • Carbon-free
          • Other
          • Energy Neutral
          • Energy Neutral,
          • Low Emission Zone,
          • Net zero carbon footprint,
          • Greening strategies,
          • Cool Materials
          A3P009: OtherCarbon free in terms of energy
          A3P010: Legal / Regulatory aspects
          A3P010: Legal / Regulatory aspects- Energy efficiency regulations (Directive 2006/32/EC and 2009/72/EC) - EU directive 2010/31/EU on the energy performance of buildings => all new buildings should be “nearly zero-energy buildings” (nZEB) from 2021At national/regional/local level a legislation on PEDs development is not yet available in the Netherlands. There will be a new Environmental Act and Heat Act in the nearby future. We are working on a paper about the current legal barriers, which are in short for Groningen:  Lack of legal certainty and clarity with regard to the energy legislation.  Lack of coherence between policy and legislation from different ministries.  The planned revision of the Dutch Heat Law prevents Groningen from effectively realizing sustainable heat transition plans and goals.  Lack of capacity on the distribution grid for electricityISO 45001, ISO 14001, ISO 50001, Zero Waste Policy
          B1P001: PED/PED relevant concept definition
          B1P001: PED/PED relevant concept definitionExtremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.The pilot area was selected on the basis of several criteria: its location within areas prioritised by Karşıyaka Municipality for combating climate change, compliance with the building regulations set out in the Green Building-Site-Operation (2023) guide, which are in line with Municipality's energy policy, the presence of open spaces that allow various applications for renewable energy, proximity to public facilities such as schools and municipal services, the availability of data on energy consumption (e.g. electricity and natural gas bills) and architectural features, the potential for community building, the suitability for solar energy systems, considering orientation and roof structure, and the potential for future building renovations. The aim of the initiative is to explore the feasibility of transforming the district into a Positive Energy District (PED).Onsite Energy Ratio > 1Lippulaiva is a project with high level goal in terms of energy efficiency, energy flexibility and energy production.The campus should be considered a PED case study due to its exemplary commitment to sustainability and energy efficiency, as evidenced by several of its buildings achieving LEED certification. This certification underscores the campus's adherence to rigorous environmental standards and its proactive steps towards reducing carbon footprints. Also, the integration of sustainable practices across the campus aligns with the PED framework, which aims to create urban areas that produce more energy than they consume. Therefore, this campus serves as a model of how educational institutions can lead the way in fostering sustainable communities and advancing the goals of PED.
          B1P002: Motivation behind PED/PED relevant project development
          B1P002: Motivation behind PED/PED relevant project developmentSince it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.Strategic, economic- Citycon’s (developer and owner of Lippulaiva) target is to be carbon neutral by 2030 - Increasing sustainability requirements from the financing, tenants, cities, other stakeholdersThe purpose of implementing the PED project on this sustainable campus, where several buildings have LEED certification, is to further enhance its energy efficiency and environmental stewardship by creating a district that generates more energy than it consumes. The initiator was motivated by the need to address climate change, reduce greenhouse gas emissions, and promote renewable energy sources. Additionally, the campus's existing commitment to sustainability and the success of its LEED-certified buildings provided a strong foundation for demonstrating the feasibility and benefits of PED development, serving as a model for sustainable urban living and energy self-sufficiency.
          B1P003: Environment of the case study area
          B2P003: Environment of the case study areaUrban areaUrban areaUrban areaSuburban areaUrban areaSuburban area
          B1P004: Type of district
          B2P004: Type of district
          • New construction
          • Renovation
          • New construction,
          • Renovation
          • New construction
          • New construction
          • Renovation
          B1P005: Case Study Context
          B1P005: Case Study Context
          • Re-use / Transformation Area,
          • New Development
          • Retrofitting Area
          • New Development,
          • Retrofitting Area
          • New Development
          • Re-use / Transformation Area,
          • New Development
          • Retrofitting Area
          B1P006: Year of construction
          B1P006: Year of construction2022200520222024
          B1P007: District population before intervention - Residential
          B1P007: District population before intervention - Residential
          B1P008: District population after intervention - Residential
          B1P008: District population after intervention - Residential780
          B1P009: District population before intervention - Non-residential
          B1P009: District population before intervention - Non-residential9800
          B1P010: District population after intervention - Non-residential
          B1P010: District population after intervention - Non-residential9800
          B1P011: Population density before intervention
          B1P011: Population density before intervention0000000034
          B1P012: Population density after intervention
          B1P012: Population density after intervention00.06871641265086800000034.337771548704
          B1P013: Building and Land Use before intervention
          B1P013: Residentialnononoyesyesnononono
          B1P013 - Residential: Specify the sqm [m²]102795
          B1P013: Officenonononoyesnononono
          B1P013 - Office: Specify the sqm [m²]
          B1P013: Industry and Utilitynonononononononono
          B1P013 - Industry and Utility: Specify the sqm [m²]
          B1P013: Commercialnonononononoyesnono
          B1P013 - Commercial: Specify the sqm [m²]
          B1P013: Institutionalnonononononononoyes
          B1P013 - Institutional: Specify the sqm [m²]285.400
          B1P013: Natural areasnononononoyesyesnono
          B1P013 - Natural areas: Specify the sqm [m²]
          B1P013: Recreationalnonononoyesnononono
          B1P013 - Recreational: Specify the sqm [m²]
          B1P013: Dismissed areasnonononononononono
          B1P013 - Dismissed areas: Specify the sqm [m²]
          B1P013: Othernonononononononono
          B1P013 - Other: Specify the sqm [m²]
          B1P014: Building and Land Use after intervention
          B1P014: Residentialnoyesnoyesyesnoyesnono
          B1P014 - Residential: Specify the sqm [m²]102795
          B1P014: Officenonononoyesnononono
          B1P014 - Office: Specify the sqm [m²]
          B1P014: Industry and Utilitynonononononononono
          B1P014 - Industry and Utility: Specify the sqm [m²]
          B1P014: Commercialnoyesnonononoyesnono
          B1P014 - Commercial: Specify the sqm [m²]
          B1P014: Institutionalnoyesnonononononoyes
          B1P014 - Institutional: Specify the sqm [m²]280000
          B1P014: Natural areasnonononononononono
          B1P014 - Natural areas: Specify the sqm [m²]
          B1P014: Recreationalnoyesnonoyesnononono
          B1P014 - Recreational: Specify the sqm [m²]
          B1P014: Dismissed areasnonononononononono
          B1P014 - Dismissed areas: Specify the sqm [m²]
          B1P014: Othernonononononononono
          B1P014 - Other: Specify the sqm [m²]
          B2P001: PED Lab concept definition
          B2P001: PED Lab concept definitionGroningen was selected as Lighthouse City for the MAKING-CITY project. MAKING-CITY is a 60-month Horizon 2020 project launched in December 2018. It aims to address and demonstrate the urban energy system transformation towards smart and low-carbon cities, based on the Positive Energy District (PED) concept. The PED operational models developed in MAKING-CITY will help European and other cities around the world to adopt a long-term City Vision 2050 for energy transition and sustainable urbanisation whilst turning citizens into actors of this transformation. Groningen works with two PED districts in two completely different neighbourhoods in terms of structure and buildings. This is why we see this as a lab: to see wat works and what doesn’t. In order to be able to implement this in the rest of the city.
          B2P002: Installation life time
          B2P002: Installation life timePermanent installationThe MAKING-CITY project lasts from November 2018 – November 2023. By that time PED North and PED South East are a fact.
          B2P003: Scale of action
          B2P003: ScaleVirtualDistrict
          B2P004: Operator of the installation
          B2P004: Operator of the installationCM Maia, IPMAIA, NEW, AdEP.The Municipality of Groningen is Manager of the lab but works closely with other parties such as the university, university of applied sciences, research institute TNO and several other parties.
          B2P005: Replication framework: Applied strategy to reuse and recycling the materials
          B2P005: Replication framework: Applied strategy to reuse and recycling the materialsGroningen does not have a strategy to reuse and recyle materials
          B2P006: Circular Economy Approach
          B2P006: Do you apply any strategy to reuse and recycling the materials?NoNo
          B2P006: Other
          B2P007: Motivation for developing the PED Lab
          B2P007: Motivation for developing the PED Lab
          • Strategic
          • Civic
          B2P007: Other
          B2P008: Lead partner that manages the PED Lab
          B2P008: Lead partner that manages the PED LabMunicipalityMunicipality
          B2P008: Other
          B2P009: Collaborative partners that participate in the PED Lab
          B2P009: Collaborative partners that participate in the PED Lab
          • Academia,
          • Private,
          • Industrial,
          • Citizens, public, NGO,
          • Other
          • Academia,
          • Private,
          • Industrial,
          • Other
          B2P009: OtherEnergy Agencyresearch companies, monitoring company, ict company
          B2P010: Synergies between the fields of activities
          B2P010: Synergies between the fields of activities
          B2P011: Available facilities to test urban configurations in PED Lab
          B2P011: Available facilities to test urban configurations in PED Lab
          • Buildings,
          • Demand-side management,
          • Prosumers,
          • Renewable generation,
          • Energy storage,
          • Efficiency measures,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Ambient measures,
          • Social interactions
          • Buildings,
          • Demand-side management,
          • Energy storage,
          • Energy networks,
          • Waste management,
          • Lighting,
          • E-mobility,
          • Information and Communication Technologies (ICT),
          • Social interactions,
          • Business models
          B2P011: Other
          B2P012: Incubation capacities of PED Lab
          B2P012: Incubation capacities of PED Lab
          • Monitoring and evaluation infrastructure,
          • Tools, spaces, events for testing and validation
          • Tools for prototyping and modelling
          B2P013: Availability of the facilities for external people
          B2P013: Availability of the facilities for external peopleDepends on the building: _Tecmaia is open to the public but the buildings are for the exclusive use of companies allocated at the industrial site; _The municipal buildings have public access; _The residential buildings have an exclusive use for the residents.
          B2P014: Monitoring measures
          B2P014: Monitoring measures
          • Execution plan,
          • Available data,
          • Type of measured data
          • Execution plan,
          • Available data,
          • Type of measured data,
          • Equipment,
          • Level of access
          B2P015: Key Performance indicators
          B2P015: Key Performance indicators
          • Energy,
          • Environmental,
          • Social,
          • Economical / Financial
          • Energy,
          • Social,
          • Economical / Financial
          B2P016: Execution of operations
          B2P016: Execution of operationsCurrent PED status (WP5 SPARCS): Conceptualization and methodology definition of the (virtual) PED for Maia Municipality with real monitoring and assessment in order to replicate and scale up to a city-level PED. The financial investments were already targeted.
          B2P017: Capacities
          B2P017: Capacities_Energy production and storage, _Monitoring; _Digitization.
          B2P018: Relations with stakeholders
          B2P018: Relations with stakeholdersThe relationship with stakeholders (municipal companies, industry, citizens, etc) has been fundamental for the definition of the PED. In this sense, some sessions were organized to gather different points of view in order to trace the best path for the PED. Also, the participation of Maia Municipality in EU projects, as EHHUR and OMEGA-X, makes possible the share of knowledge between different partners.
          B2P019: Available tools
          B2P019: Available tools
          • Energy modelling,
          • Social models,
          • Business and financial models,
          • Fundraising and accessing resources,
          • Matching actors
          • Energy modelling,
          • Social models,
          • Business and financial models
          B2P019: Available tools
          B2P020: External accessibility
          B2P020: External accessibility
          C1P001: Unlocking Factors
          C1P001: Recent technological improvements for on-site RES production5 - Very important1 - Unimportant4 - Important5 - Very important4 - Important3 - Moderately important4 - Important3 - Moderately important5 - Very important
          C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important2 - Slightly important4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
          C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important4 - Important4 - Important
          C1P001: Storage systems and E-mobility market penetration2 - Slightly important4 - Important1 - Unimportant3 - Moderately important5 - Very important4 - Important4 - Important4 - Important
          C1P001: Decreasing costs of innovative materials4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant5 - Very important4 - Important
          C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important5 - Very important5 - Very important5 - Very important
          C1P001: The ability to predict Multiple Benefits3 - Moderately important4 - Important4 - Important2 - Slightly important2 - Slightly important4 - Important3 - Moderately important4 - Important
          C1P001: The ability to predict the distribution of benefits and impacts3 - Moderately important4 - Important4 - Important3 - Moderately important4 - Important4 - Important3 - Moderately important4 - Important
          C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important2 - Slightly important4 - Important2 - Slightly important3 - Moderately important4 - Important3 - Moderately important5 - Very important5 - Very important
          C1P001: Social acceptance (top-down)5 - Very important4 - Important4 - Important5 - Very important2 - Slightly important4 - Important2 - Slightly important3 - Moderately important4 - Important
          C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important3 - Moderately important4 - Important5 - Very important2 - Slightly important4 - Important2 - Slightly important4 - Important5 - Very important
          C1P001: Presence of integrated urban strategies and plans3 - Moderately important4 - Important5 - Very important5 - Very important4 - Important5 - Very important1 - Unimportant3 - Moderately important4 - Important
          C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important4 - Important4 - Important4 - Important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important4 - Important
          C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important4 - Important4 - Important5 - Very important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P001: Availability of RES on site (Local RES)3 - Moderately important4 - Important5 - Very important4 - Important5 - Very important5 - Very important4 - Important5 - Very important
          C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important3 - Moderately important4 - Important5 - Very important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important
          C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P001: Any other UNLOCKING FACTORS (if any)Collaboration with the local partners
          C1P002: Driving Factors
          C1P002: Climate Change adaptation need4 - Important5 - Very important5 - Very important5 - Very important3 - Moderately important3 - Moderately important5 - Very important2 - Slightly important5 - Very important
          C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important4 - Important4 - Important5 - Very important4 - Important3 - Moderately important4 - Important3 - Moderately important5 - Very important
          C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant5 - Very important3 - Moderately important3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
          C1P002: Urban re-development of existing built environment3 - Moderately important3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
          C1P002: Economic growth need2 - Slightly important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
          C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important3 - Moderately important4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant5 - Very important
          C1P002: Territorial and market attractiveness2 - Slightly important4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important4 - Important
          C1P002: Energy autonomy/independence5 - Very important4 - Important4 - Important5 - Very important4 - Important2 - Slightly important4 - Important2 - Slightly important5 - Very important
          C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P002: Any other DRIVING FACTOR (if any)Earthquakes due to gas extraction
          C1P003: Administrative barriers
          C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important2 - Slightly important5 - Very important4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important5 - Very important
          C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important2 - Slightly important4 - Important3 - Moderately important5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important5 - Very important
          C1P003: Lack of public participation3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important
          C1P003:Long and complex procedures for authorization of project activities5 - Very important1 - Unimportant5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important
          C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important3 - Moderately important
          C1P003: Complicated and non-comprehensive public procurement4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P003: Fragmented and or complex ownership structure3 - Moderately important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important
          C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important5 - Very important
          C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P003: Any other Administrative BARRIER (if any)Fragmented financial support; lack of experimental budget for complex projects, etc.
          C1P004: Policy barriers
          C1P004: Lack of long-term and consistent energy plans and policies4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant5 - Very important
          C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important1 - Unimportant3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant1 - Unimportant5 - Very important
          C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important
          C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P004: Any other Political BARRIER (if any)Different priorities; overall problematic system od decentralization powers; non-fuctioning model of local development funding, etc.
          C1P005: Legal and Regulatory barriers
          C1P005: Inadequate regulations for new technologies4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important5 - Very important
          C1P005: Regulatory instability3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important
          C1P005: Non-effective regulations4 - Important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important
          C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant2 - Slightly important3 - Moderately important4 - Important
          C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
          C1P005: Insufficient or insecure financial incentives4 - Important1 - Unimportant4 - Important4 - Important5 - Very important3 - Moderately important2 - Slightly important3 - Moderately important5 - Very important
          C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant4 - Important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important
          C1P005: Shortage of proven and tested solutions and examples1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important4 - Important
          C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P005: Any other Legal and Regulatory BARRIER (if any)
          C1P006: Environmental barriers
          C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.- Climate Variability: 5 - Topographical Constraints: 4 - Sunlight Availability: 5 - Environmental Regulations: 3 - Zoning Restrictions: 2 - Air and Water Pollution: 2 - Natural Disasters: 1 - Water Scarcity: 1Air Quality Management Importance Level: 5 (Very Important) Energy Efficiency Importance Level: 5 (Very Important) Water Conservation Importance Level: 5 (Very Important) Waste Management Importance Level: 4 (Important) Material Selection Importance Level: 4 (Important) Renewable Energy Integration Importance Level: 5 (Very Important) Heat Island Effect Mitigation Importance Level: 4 (Important) Noise Pollution Control Importance Level: 3 (Moderately Important)
          C1P007: Technical barriers
          C1P007: Lack of skilled and trained personnel4 - Important2 - Slightly important4 - Important5 - Very important4 - Important1 - Unimportant4 - Important4 - Important5 - Very important
          C1P007: Deficient planning3 - Moderately important1 - Unimportant3 - Moderately important4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important
          C1P007: Retrofitting work in dwellings in occupied state4 - Important1 - Unimportant4 - Important5 - Very important4 - Important1 - Unimportant4 - Important2 - Slightly important3 - Moderately important
          C1P007: Lack of well-defined process4 - Important1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P007: Inaccuracy in energy modelling and simulation4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important5 - Very important2 - Slightly important4 - Important5 - Very important
          C1P007: Lack/cost of computational scalability4 - Important1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P007: Grid congestion, grid instability4 - Important1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant1 - Unimportant4 - Important5 - Very important
          C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important
          C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important
          C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
          C1P007: Any other Thecnical BARRIER1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P007: Any other Thecnical BARRIER (if any)Inadequate regulation towards energy transition
          C1P008: Social and Cultural barriers
          C1P008: Inertia4 - Important1 - Unimportant3 - Moderately important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important
          C1P008: Lack of values and interest in energy optimization measurements5 - Very important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
          C1P008: Low acceptance of new projects and technologies5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
          C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant3 - Moderately important4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important4 - Important
          C1P008: Lack of trust beyond social network4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important
          C1P008: Rebound effect4 - Important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important
          C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant5 - Very important
          C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important5 - Very important
          C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important1 - Unimportant4 - Important4 - Important5 - Very important1 - Unimportant4 - Important4 - Important4 - Important
          C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important5 - Very important
          C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P008: Any other Social BARRIER (if any)
          C1P009: Information and Awareness barriers
          C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant4 - Important3 - Moderately important3 - Moderately important5 - Very important3 - Moderately important3 - Moderately important5 - Very important
          C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant1 - Unimportant3 - Moderately important5 - Very important
          C1P009: Lack of awareness among authorities1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant2 - Slightly important5 - Very important
          C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant4 - Important4 - Important3 - Moderately important2 - Slightly important3 - Moderately important3 - Moderately important4 - Important
          C1P009: High costs of design, material, construction, and installation5 - Very important4 - Important5 - Very important5 - Very important1 - Unimportant4 - Important4 - Important4 - Important
          C1P009: Any other Information and Awareness BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P009: Any other Information and Awareness BARRIER (if any)
          C1P010: Financial barriers
          C1P010: Hidden costs1 - Unimportant4 - Important4 - Important4 - Important1 - Unimportant2 - Slightly important2 - Slightly important4 - Important
          C1P010: Insufficient external financial support and funding for project activities1 - Unimportant4 - Important3 - Moderately important4 - Important1 - Unimportant3 - Moderately important3 - Moderately important5 - Very important
          C1P010: Economic crisis4 - Important4 - Important5 - Very important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important
          C1P010: Risk and uncertainty1 - Unimportant4 - Important4 - Important4 - Important2 - Slightly important3 - Moderately important3 - Moderately important5 - Very important
          C1P010: Lack of consolidated and tested business models1 - Unimportant4 - Important4 - Important4 - Important4 - Important4 - Important3 - Moderately important4 - Important
          C1P010: Limited access to capital and cost disincentives1 - Unimportant4 - Important5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important5 - Very important
          C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P010: Any other Financial BARRIER (if any)
          C1P011: Market barriers
          C1P011: Split incentives1 - Unimportant5 - Very important5 - Very important5 - Very important1 - Unimportant3 - Moderately important5 - Very important5 - Very important
          C1P011: Energy price distortion1 - Unimportant4 - Important5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important5 - Very important
          C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant4 - Important3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important4 - Important4 - Important
          C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
          C1P011: Any other Market BARRIER (if any)
          C1P012: Stakeholders involved
          C1P012: Government/Public Authorities
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Research & Innovation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Financial/Funding
          • Planning/leading,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Analyst, ICT and Big Data
          • Monitoring/operation/management
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Business process management
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Urban Services providers
          • Construction/implementation
          • Design/demand aggregation
          • Design/demand aggregation
          • None
          • Design/demand aggregation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Real Estate developers
          • Planning/leading
          • Design/demand aggregation
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Design/Construction companies
          • Design/demand aggregation,
          • Construction/implementation
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Construction/implementation
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: End‐users/Occupants/Energy Citizens
          • Planning/leading,
          • Design/demand aggregation
          • Design/demand aggregation
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • None
          • Monitoring/operation/management
          C1P012: Social/Civil Society/NGOs
          • Planning/leading
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Industry/SME/eCommerce
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Construction/implementation
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other
          • Planning/leading,
          • Design/demand aggregation,
          • Construction/implementation,
          • Monitoring/operation/management
          C1P012: Other (if any)
          Summary

          Authors (framework concept)

          Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

          Contributors (to the content)

          Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

          Implemented by

          Boutik.pt: Filipe Martins, Jamal Khan
          Marek Suchánek (Czech Technical University in Prague)