Filters:
NameProjectTypeCompare
Örebro-Vivalla JUST PEPP PED Relevant Case Study Compare
Tiurberget, Kongsvinger JUST PEPP PED Relevant Case Study Compare
Texel JUST PEPP PED Relevant Case Study Compare
Hällefors, Sweden JUST PEPP PED Relevant Case Study Compare
Cerdanyola del Valles, School of Engineering, Campus Universitat Autonoma de Barcelona OPEN4CEC PED Lab Compare
Bucharest, The Bucharest University of Economic Studies (ASE) PED Lab OPEN4CEC PED Lab Compare
Pamplona OPEN4CEC PED Lab Compare
Trondheim, Svartlamon OPEN4CEC PED Lab Uncompare
Savona, The University of Genova, Savona Campus OPEN4CEC PED Lab Uncompare
Torres Vedras, Encosta de São Vicente COPPER PED Lab Uncompare
Malmö, Stadium area (Stadionområdet) PED StepWise PED Case Study Compare
Utrecht, Utrecht Science Park PED StepWise PED Relevant Case Study Compare
Vienna, Kriegerheimstätten PED StepWise PED Relevant Case Study Compare
Vienna, 16. District, Leben am Wilhelminenberg HeatCOOP PED Relevant Case Study Compare
Vienna, Laxenburgerstraße AH HeatCOOP PED Lab Compare
Tartu, Annelinn V2G-QUESTS PED Relevant Case Study Compare
Utrecht, Kanaleneiland V2G-QUESTS PED Relevant Case Study Compare
Aveiro, Aradas district V2G-QUESTS PED Relevant Case Study Compare
Győr Geothermal District Heating Project PED Relevant Case Study Compare
Jacobs Borchs Gate, Drammen PED Relevant Case Study Compare
Dietenbach, Freiburg im Breisgau PED Relevant Case Study Compare
Lecce, SmartEnCity SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study Compare
STARDUST, Trento STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study / PED Lab Compare
Klimatkontrakt Hyllie, Malmö PED Relevant Case Study Compare
EnStadt:Pfaff, Kaiserslautern PED Relevant Case Study / PED Lab Compare
mySMARTlife, Helsinki PED Relevant Case Study Compare
Firenze, Novoli-Cascine district on “le PIagge” buildings PED Relevant Case Study Compare
Sinfonia, Bolzano PED Relevant Case Study Compare
Hunziker Areal, Zürich PED Relevant Case Study Compare
Hammarby Sjöstad 2.0, PED Relevant Case Study Compare
Sharing Cities, Milano PED Relevant Case Study Compare
District Heating Pozo Barredo, Mieres PED Relevant Case Study Compare
Cityfied (demo Linero), Lund PED Relevant Case Study Compare
Smart Otaniemi, Espoo PED Relevant Case Study / PED Lab Compare
Zukunftsquartier, Vienna PED Case Study Compare
Santa Chiara Open Lab, Trento PED Case Study Compare
Barrio La Pinada, Paterna PED Case Study / PED Lab Compare
Zero Village Bergen (ZVB) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Võru +CityxChange PED Case Study Compare
NTNU Campus within the Knowledge Axis, Trondheim ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Furuset project, Oslo ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Laser Valley – Land of Lights PED Case Study Compare
Ydalir project ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
NyBy – Ny Flyplass (New City – New Airport) ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fornebu, Bærum ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Case Study Compare
Fleuraye west, Carquefou PED Case Study Compare
Smart Energy Åland PED Case Study Compare
Romania, Alba Iulia PED ASCEND – Accelerate poSitive Clean ENergy Districts PED Case Study Compare
Romania, Alba Iulia PED InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Munich, Harthof district PED Case Study Compare
Lublin MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Roubaix, MustBe0 – Résidence Philippe le Hardi – 125 Rue d’Oran CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Bærum, Eiksveien 116 CULTURAL-E – Climate and cultural-based solutions for Plus Energy Buildings PED Relevant Case Study Compare
Findhorn, the Park InterPED – INTERoperable cloud-based solution for cross-vector planning and management of Positive Energy Districts PED Case Study Compare
Amsterdam, Buiksloterham PED ATELIER – AmsTErdam BiLbao cItizen drivEn smaRt cities PED Case Study Compare
Schönbühel-Aggsbach, Schönbühel an der Donau PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Uncompare
Umeå, Ålidhem district PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Aalborg East PED Relevant Case Study / PED Lab Compare
Ankara, Çamlık District PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study / PED Relevant Case Study Compare
Trenčín MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Luxembourg, Betzdorf LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Vantaa, Aviapolis NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Vidin, Himik and Bononia MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Oslo, Verksbyen Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Uden, Loopkantstraat Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Relevant Case Study Compare
Zaragoza, Actur NEUTRALPATH – Pathway towards Climate-Neutrality through low risky and fully replicable Positive Clean Energy Districts PED Relevant Case Study Compare
Aarhus, Brabrand BIPED – Building Intelligent Positive Energy Districts PED Case Study / PED Relevant Case Study / PED Lab Compare
Riga, Ķīpsala, RTU smart student city ExPEDite – Enabling Positive Energy Districts through Digital Twins PED Case Study Compare
Izmir, District of Karşıyaka PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Case Study Compare
Istanbul, Ozyegin University Campus LEGOFIT – Adaptable technological solutions based on early design actions for the construction and renovation of Energy Positive Homes PED Relevant Case Study Compare
Espoo, Kera SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study / PED Relevant Case Study Compare
Borlänge, Rymdgatan’s Residential Portfolio PED-ACT – Auto characterization of PEDs for digital references towards iterative process optimisation PED Relevant Case Study Compare
Freiburg, Waldsee PED urban – Development of methods and tools for accounting, planning and operation of climate-neutral district PED Case Study Compare
Innsbruck, Campagne-Areal PED Relevant Case Study Uncompare
Graz, Reininghausgründe PED Case Study Uncompare
Stor-Elvdal, Campus Evenstad ZEN – Research Centre on Zero Emission Neighbourhoods in Smart Cities PED Relevant Case Study Uncompare
Oulu, Kaukovainio MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Halmstad, Fyllinge PED Relevant Case Study Compare
Lund, Brunnshög district PED Case Study Compare
Vienna, Am Kempelenpark PED Case Study Compare
Évora, Portugal POCITYF – A POsitive Energy CITY Transformation Framework PED Relevant Case Study / PED Lab Compare
Kladno, Sletiště (Sport Area), PED Winter Stadium SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study Compare
Groningen, PED South MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Groningen, PED North MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Lab Compare
Maia, Sobreiro Social Housing SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Lab Compare
Lubia (Soria), CEDER-CIEMAT PED Lab Compare
Tampere, Ilokkaanpuisto district STARDUST – Holistic and Integrated Urban Model for Smart Cities PED Relevant Case Study Compare
Leon, Former Sugar Factory district MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Istanbul, Kadikoy district, Caferaga MAKING-CITY – Energy efficient pathway for the city transformation: enabling a positive future PED Case Study Compare
Espoo, Leppävaara district, Sello center SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Espoo, Espoonlahti district, Lippulaiva block SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Salzburg, Gneis district Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Barcelona, Santa Coloma de Gramenet Syn.ikia – Sustainable Plus Energy Neighbourhoods PED Case Study Compare
Tartu, City centre area SmartEnCity – Towards Smart Zero CO2 Cities across Europe PED Relevant Case Study / PED Lab Compare
Bologna, Pilastro-Roveri district GRETA – GReen Energy Transition Actions PED Relevant Case Study Compare
Barcelona, SEILAB & Energy SmartLab PED Lab Compare
Leipzig, Baumwollspinnerei district SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Case Study Compare
Kifissia, Energy community SPARCS – Sustainable energy Positive & zero cARbon CommunitieS PED Relevant Case Study
TitleKifissia, Energy community
Stor-Elvdal, Campus Evenstad
Innsbruck, Campagne-Areal
Graz, Reininghausgründe
Schönbühel-Aggsbach, Schönbühel an der Donau
Savona, The University of Genova, Savona Campus
Torres Vedras, Encosta de São Vicente
Trondheim, Svartlamon
A1P001: Name of the PED case study / PED Lab
A1P001: Name of the PED case study / PED LabKifissia, Energy communityStor-Elvdal, Campus EvenstadInnsbruck, Campagne-ArealGraz, ReininghausgründeSchönbühel-Aggsbach, Schönbühel an der DonauSavona, The University of Genova, Savona CampusTorres Vedras, Encosta de São VicenteTrondheim, Svartlamon
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P002: Map / aerial view / photos / graphic details / leaflet
A1P003: Categorisation of the PED site
PED case studynononoyesnononono
PED relevant case studyyesyesyesnoyesnonono
PED Lab.nononononoyesyesyes
A1P004: Targets of the PED case study / PED Lab
Climate neutralitynoyesyesyesyesyesyesyes
Annual energy surplusnoyesnononononono
Energy communityyesnononoyesyesyesyes
Circularitynononononononono
Air quality and urban comfortyesnonononononono
Electrificationyesnonononononono
Net-zero energy costnonononoyesnonono
Net-zero emissionnonoyesnonononono
Self-sufficiency (energy autonomous)nononononononono
Maximise self-sufficiencynonononoyesnonono
Othernoyesnononoyesyesno
Other (A1P004)Energy-flexibilityThe case study can be representative as a small-scale district with multi-vector energy systemsUrban regeneration: Repair and retrofitting houses, greening public space, building and maintaining walking and cycling paths and access to public transport.
A1P005: Phase of the PED case study / PED Lab
A1P005: Project Phase of your case study/PED LabPlanning PhaseIn operationCompletedImplementation PhaseImplementation PhaseIn operationImplementation PhasePlanning Phase
A1P006: Start Date
A1P006: Start date01/1304/16201902/1404/1811/24
A1P007: End Date
A1P007: End date12/2404/22202512/3303/26
A1P008: Reference Project
A1P008: Reference Project
A1P009: Data availability
A1P009: Data availability
  • Monitoring data available within the districts,
  • Meteorological open data
  • Monitoring data available within the districts
  • GIS open datasets
  • Monitoring data available within the districts
A1P009: Other
A1P010: Sources
Any publication, link to website, deliverable referring to the PED/PED Lab
    • E. Rainer, H. Schnitzer, T. Mach, T. Wieland, M. Reiter, L. Fickert, E. Schmautzer, A. Passer, H. Oblak, H. Kreiner, R. Lazar, M. Duschek, et al. (2015): Rahmenplan Energy City Graz-Reininghaus – Subprojekt 2 des Leitprojektes „ECR Energy City Graz – Reininghaus Online: Rahmenplan Energy City Graz-Reininghaus - Haus der Zukunft (nachhaltigwirtschaften.at),
    • H.Schnitzer et al. (2016): Arbeiten und Wohnen in der Smart City Reininghaus, Online: Arbeiten und Wohnen in Graz Reininghaus - Smartcities
            A1P011: Geographic coordinates
            X Coordinate (longitude):23.81458811.07877077353174611.42434673814025615.40744015.39698.452360711592826-9.26322490238905910.42
            Y Coordinate (latitude):38.07734961.4260442039911247.27147078672910447.060748.275244.2990045129586139.1026173326919563.4363
            A1P012: Country
            A1P012: CountryGreeceNorwayAustriaAustriaAustriaItalyPortugalNorway
            A1P013: City
            A1P013: CityMunicipality of KifissiaEvenstad, Stor-Elvdal municipalityInnsbruckGrazSchönbühel an der DonauSavonaTorres VedrasTrondheim
            A1P014: Climate Zone (Köppen Geiger classification)
            A1P014: Climate Zone (Köppen Geiger classification).CsaDwcDfbDfbDfbCsaCfaCfb
            A1P015: District boundary
            A1P015: District boundaryVirtualGeographicGeographicGeographicGeographicGeographicGeographicVirtual
            OtherThe energy will be produced by a PV plant installed on the terrace of a municipal building. Members of the energy community (that is under formation) will benefit from the energy produced via virtual net metering. PV instalment and the buildings (owned by the members of the community) will be within the boundaries of the Municipality but not necessary in the same area/district/neighbourhood
            A1P016: Ownership of the case study/PED Lab
            A1P016: Ownership of the case study/PED Lab:PublicMixedMixedPrivateMixedMixedPrivate
            A1P017: Ownership of the land / physical infrastructure
            A1P017: Ownership of the land / physical infrastructure:Single OwnerMultiple OwnersMultiple OwnersMultiple OwnersSingle OwnerMultiple OwnersMultiple Owners
            A1P018: Number of buildings in PED
            A1P018: Number of buildings in PED2241000
            A1P019: Conditioned space
            A1P019: Conditioned space [m²]1000022277477
            A1P020: Total ground area
            A1P020: Total ground area [m²]1135110000002450600001900003200
            A1P021: Floor area ratio: Conditioned space / total ground area
            A1P021: Floor area ratio: Conditioned space / total ground area00200000
            A1P022: Financial schemes
            A1P022a: Financing - PRIVATE - Real estatenononoyesyesnonono
            A1P022a: Add the value in EUR if available [EUR]
            A1P022b: Financing - PRIVATE - ESCO schemenononononononono
            A1P022b: Add the value in EUR if available [EUR]
            A1P022c: Financing - PRIVATE - Othernononononononono
            A1P022c: Add the value in EUR if available [EUR]
            A1P022d: Financing - PUBLIC - EU structural fundingnonononononoyesno
            A1P022d: Add the value in EUR if available [EUR]5500000
            A1P022e: Financing - PUBLIC - National fundingnoyesnoyesyesyesnoyes
            A1P022e: Add the value in EUR if available [EUR]
            A1P022f: Financing - PUBLIC - Regional fundingnonononoyesnonono
            A1P022f: Add the value in EUR if available [EUR]
            A1P022g: Financing - PUBLIC - Municipal fundingnononoyesnononono
            A1P022g: Add the value in EUR if available [EUR]
            A1P022h: Financing - PUBLIC - Othernononononononono
            A1P022h: Add the value in EUR if available [EUR]
            A1P022i: Financing - RESEARCH FUNDING - EUnonononononoyesno
            A1P022i: Add the value in EUR if available [EUR]124680
            A1P022j: Financing - RESEARCH FUNDING - Nationalnoyesyesnonononono
            A1P022j: Add the value in EUR if available [EUR]
            A1P022k: Financing - RESEARCH FUNDING - Local/regionalnononononononono
            A1P022k: Add the value in EUR if available [EUR]
            A1P022l: Financing - RESEARCH FUNDING - Othernononononononono
            A1P022l: Add the value in EUR if available [EUR]
            A1P022: Other
            A1P023: Economic Targets
            A1P023: Economic Targets
            • Boosting local businesses,
            • Boosting local and sustainable production
            • Job creation,
            • Other
            • Job creation,
            • Boosting local businesses,
            • Boosting consumption of local and sustainable products
            A1P023: OtherCreate affordable appartments for the citizens
            A1P024: More comments:
            A1P024: More comments:Owners are two local social housing companies. The complete district will consist 4 building blocks, from which only the first one with 4 building is ready built and occupied. At the end, it would be a district of ca. 1100 flats in 16 buildings with 78000 m2The “Reininghausgründe” are a new quarter near the centre of the City of Graz. In the area of a former brewery, close to more, still working industries, a new town centre is being established. It will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the city centre by bike paths, busses and a tram. Car sharing is provided as well. Some key-energy aspects: • characteristic 1: For the heat supply in the innovative Reininghaus energy model, low-temperature waste heat from a nearby steel plant is harnessed through the use of heat pumps. • characteristic 2: The district heating system operates at low temperatures. • characteristic 3: Generated heat that is not used immediately is stored in the power tower and supplied on demand. Other important aspects of the project are the following: • characteristic 1: Most houses are low-energy houses, some of the certified with the “Klima Aktiv” label • characteristic 2: There are extremely few parking possibilities for residents and visitors; this will foster the use of public transport and bikes • characteristic 3: All the necessary infrastructure for the “daily need” can be reached within walking distance The area of the project is going to be very “green” when finished. Featuring a big district parc, lots of other green spaces are in planning.
            A1P025: Estimated PED case study / PED LAB costs
            A1P025: Estimated PED case study / PED LAB costs [mil. EUR]5.45.620.02
            Contact person for general enquiries
            A1P026: NameArtemis Giavasoglou, Kleopatra KalampokaÅse Lekang SørensenGeorgios DermentzisKatharina SchwarzGhazal EtminanMichela RobbaMinh Thu NguyenTatiana González Grandón; Raymundo E. Torres-Olguin
            A1P027: OrganizationMunicipality of Kifissia – SPARCS local teamSINTEF / The Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart CitiesUniversity of InnsbruckStadtLABOR, Innovationen für urbane Lebensqualität GmbHGhazal.Etminan@ait.ac.atUniversity of GenovaISCTE-IULNTNU
            A1P028: AffiliationMunicipality / Public BodiesResearch Center / UniversityResearch Center / UniversitySME / IndustryResearch Center / UniversityResearch Center / UniversityResearch Center / UniversityResearch Center / University
            A1P028: Other
            A1P029: Emailgiavasoglou@kifissia.grase.sorensen@sintef.noGeorgios.Dermentzis@uibk.ac.atkatharina.schwarz@stadtlaborgraz.atGhazal.Etminan@ait.ac.atMichela.robba@unige.itMtnnu@iscte-iul.pttatiana.c.g.grandon@ntnu.no
            Contact person for other special topics
            A1P030: NameStavros Zapantis - vice mayorHans SchnitzerYassine EnnassiriRaymundo E. Torres-Olguin
            A1P031: Emailstavros.zapantis@gmail.comhans.schnitzer@stadtlaborgraz.atYassine.ennassiri@edu.unige.itraymundo.torres-olguin@sintef.no
            Pursuant to the General Data Protection RegulationYesYesYesYesYesYesYes
            A2P001: Fields of application
            A2P001: Fields of application
            • Energy production
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies,
            • Construction materials
            • Energy efficiency,
            • Energy production,
            • Indoor air quality
            • Energy efficiency,
            • Urban comfort (pollution, heat island, noise level etc.),
            • Water use,
            • Indoor air quality,
            • Other
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility
            • Energy efficiency,
            • Energy flexibility,
            • Energy production,
            • E-mobility,
            • Digital technologies
            • Energy flexibility,
            • Digital technologies
            A2P001: OtherUrban Management; Air Quality
            A2P002: Tools/strategies/methods applied for each of the above-selected fields
            A2P002: Tools/strategies/methods applied for each of the above-selected fieldsCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. The vision for Campus Evenstad is an energy-flexible Campus Evenstad in an emission-free Europe. The area consists of approx. 20 buildings managed and owned by Statsbygg; the Norwegian government’s building commissioner, property manager and developer. The oldest building is from the 1700-century and the newest is the administration centre (2017) which is a Zero Emission Building (ZEB) with the highest ambitions (ZEB-COM). Their concept has been to realize Campus Evenstad as an energy pilot, where innovative energy solutions are demonstrated, showing how local areas can become more self-sufficient in energy. The energy system at Evenstad consists of several innovative energy solutions that are new in a Norwegian and European context. They are combined in local infrastructure for electricity and heat, which has led to new knowledge and learning about how the solutions work together, and how the interaction is between the local and the national energy system. The solutions consist of solar cells (PV), solar collectors, combined heat and power plant (CHP) based on wood chips, biofuel boiler, electric boiler, grid connection, district heating, heat storage, stationary battery and bidirectional electric vehicle (EV) charging (V2G). Statsbygg has gained a lot of operational experience from Campus Evenstad - both from individual technologies and from the interaction between these, which benefits Statsbygg's 2,200 buildings and 3 million m2 around Norway. Sharing of experiences is central. Campus Evenstad is a pilot in the Research Centre on Zero Emission Neighbourhoods (ZEN) in Smart Cities were several of the solutions has been developed and studied.The buildings are designed based on Passive House standards and dynamic building and system simulations are performed to optimise the HVAC systems, that are a ground-water heat pump for space heating and district heating for domestic hot water preparation. Photovoltaic systems are installed in the available roof spaces, however, more renewable sources are required due to very large number of apartments (very high density) to reach PED, and thus, simulation studies are performed.Energy efficiency: o Several activities: Workshops, Webinars to deepen the knowledge and raise awareness renewable energies o for example rooftop Photovoltaics green & blue infrastructures o Parks, Rooftop Gardens, Quarter Parks, Water elements included in the parks rooftop farming o To produce vegetables in the quarter stormwater management mobility o less parking and less cars in the district. Solutions for boosting public transport with sponsored public transport tickets; building of better bike and pedestrian infrastructure social aspects o district management was established in the district local supply of goods of daily need o Schools within 15 minutes walking distance Supermarkets and other shops within the districtEnergy modeling
            A2P003: Application of ISO52000
            A2P003: Application of ISO52000NoNoNoNo
            A2P004: Appliances included in the calculation of the energy balance
            A2P004: Appliances included in the calculation of the energy balanceYesYesYesYes
            A2P005: Mobility included in the calculation of the energy balance
            A2P005: Mobility included in the calculation of the energy balanceYesNoYesNo
            A2P006: Description of how mobility is included (or not included) in the calculation
            A2P006: Description of how mobility is included (or not included) in the calculationAt Campus Evenstad there is infrastructure for EV charging and bidirectional charging (V2G). EV charging is included in the energy balance.- Number of cars per household - Fraction of electric cars - Number of public transport tickets (week/ annual tickets)
            A2P007: Annual energy demand in buildings / Thermal demand
            A2P007: Annual energy demand in buildings / Thermal demand [GWh/annum]0.770.390.0661.42614
            A2P008: Annual energy demand in buildings / Electric Demand
            A2P008: Annual energy demand in buildings / Electric Demand [GWh/annum]0.760.6550.0120.96290
            A2P009: Annual energy demand for e-mobility
            A2P009: Annual energy demand for e-mobility [GWh/annum]00
            A2P010: Annual energy demand for urban infrastructure
            A2P010: Annual energy demand for urban infrastructure [GWh/annum]9
            A2P011: Annual renewable electricity production on-site during target year
            A2P011: PVyesyesyesyesyesnonono
            A2P011: PV - specify production in GWh/annum [GWh/annum]0.0650.42
            A2P011: Windnononononononono
            A2P011: Wind - specify production in GWh/annum [GWh/annum]
            A2P011: Hydronononononononono
            A2P011: Hydro - specify production in GWh/annum [GWh/annum]
            A2P011: Biomass_elnoyesnononononono
            A2P011: Biomass_el - specify production in GWh/annum [GWh/annum]0.050
            A2P011: Biomass_peat_elnononononononono
            A2P011: Biomass_peat_el - specify production in GWh/annum [GWh/annum]
            A2P011: PVT_elnononononononono
            A2P011: PVT_el - specify production in GWh/annum [GWh/annum]
            A2P011: Othernononononononono
            A2P011: Other - specify production in GWh/annum [GWh/annum]
            A2P012: Annual renewable thermal production on-site during target year
            A2P012: Geothermalnononoyesnononono
            A2P012 - Geothermal: Please specify production in GWh/annum [GWh/annum]
            A2P012: Solar Thermalnoyesnoyesnononono
            A2P012 - Solar Thermal: Please specify production in GWh/annum [GWh/annum]0.045
            A2P012: Biomass_heatnoyesnononononono
            A2P012 - Biomass_heat: Please specify production in GWh/annum [GWh/annum]0.35
            A2P012: Waste heat+HPnononoyesnononono
            A2P012 - Waste heat+HP: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_peat_heatnononononononono
            A2P012 - Biomass_peat_heat: Please specify production in GWh/annum [GWh/annum]
            A2P012: PVT_thnononononononono
            A2P012 - PVT_th: Please specify production in GWh/annum [GWh/annum]
            A2P012: Biomass_firewood_thnononononononono
            A2P012 - Biomass_firewood_th: Please specify production in GWh/annum [GWh/annum]
            A2P012: Othernononononononono
            A2P012 - Other: Please specify production in GWh/annum [GWh/annum]
            A2P013: Renewable resources on-site - Additional notes
            A2P013: Renewable resources on-site - Additional notesListed values are measurements from 2018. Renewable energy share is increasing.Groundwater (used for heat pumps)
            A2P014: Annual energy use
            A2P014: Annual energy use [GWh/annum]1.5000.960.079
            A2P015: Annual energy delivered
            A2P015: Annual energy delivered [GWh/annum]1-20.0011
            A2P016: Annual non-renewable electricity production on-site during target year
            A2P016: Annual non-renewable electricity production on-site during target year [GWh/annum]
            A2P017: Annual non-renewable thermal production on-site during target year
            A2P017: Gasnononononononono
            A2P017 - Gas: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Coalnononononononono
            A2P017 - Coal: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Oilnononononononono
            A2P017 - Oil: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P017: Othernononononononono
            A2P017 - Other: Annual non-renewable thermal production on-site during target year [GWh/annum]
            A2P018: Annual renewable electricity imports from outside the boundary during target year
            A2P018: PVnononoyesyesnonono
            A2P018 - PV: specify production in GWh/annum if available [GWh/annum]
            A2P018: Windnononoyesyesnonono
            A2P018 - Wind: specify production in GWh/annum if available [GWh/annum]
            A2P018: Hydronononoyesyesnonono
            A2P018 - Hydro: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_elnonononoyesnonono
            A2P018 - Biomass_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Biomass_peat_elnononononononono
            A2P018 - Biomass_peat_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: PVT_elnononononononono
            A2P018 - PVT_el: specify production in GWh/annum if available [GWh/annum]
            A2P018: Othernononononononono
            A2P018 - Other: specify production in GWh/annum if available [GWh/annum]
            A2P019: Annual renewable thermal imports from outside the boundary during target year
            A2P019: Geothermalnononononononono
            A2P019 Geothermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Solar Thermalnononoyesnononono
            A2P019 Solar Thermal: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_heatnononoyesnononono
            A2P019 Biomass_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Waste heat+HPnononoyesnononono
            A2P019 Waste heat+HP: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_peat_heatnononononononono
            A2P019 Biomass_peat_heat: Please specify imports in GWh/annum [GWh/annum]
            A2P019: PVT_thnononononononono
            A2P019 PVT_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Biomass_firewood_thnonononoyesnonono
            A2P019 Biomass_firewood_th: Please specify imports in GWh/annum [GWh/annum]
            A2P019: Othernononononononono
            A2P019 Other: Please specify imports in GWh/annum [GWh/annum]
            A2P020: Share of RES on-site / RES outside the boundary
            A2P020: Share of RES on-site / RES outside the boundary00000000
            A2P021: GHG-balance calculated for the PED
            A2P021: GHG-balance calculated for the PED [tCO2/annum]0.0364
            A2P022: KPIs related to the PED case study / PED Lab
            A2P022: Safety & Security
            A2P022: Healthindoor air quility (indoor CO2 concentration) - measured on the extract air of the mechanical ventilation system. Relative humidity to avoid mold.
            A2P022: Education
            A2P022: Mobilityx
            A2P022: EnergySpace heating demand, thermal energy delivered by district heating, electricity of the heat pump, thermal losses of the pipes, and PV production.xCost of energy; emissions linked to energy productionYes
            A2P022: Waterx
            A2P022: Economic developmentx
            A2P022: Housing and CommunityxSpecify the associated KPIs
            A2P022: Waste
            A2P022: Other
            A2P023: Technological Solutions / Innovations - Energy Generation
            A2P023: Photovoltaicsnoyesyesyesyesyesnoyes
            A2P023: Solar thermal collectorsnoyesnononoyesnono
            A2P023: Wind Turbinesnononononononono
            A2P023: Geothermal energy systemnononononoyesnono
            A2P023: Waste heat recoverynononoyesnononono
            A2P023: Waste to energynononononononono
            A2P023: Polygenerationnononononoyesnono
            A2P023: Co-generationnoyesnononononono
            A2P023: Heat Pumpnonoyesyesyesnonono
            A2P023: Hydrogennononononoyesnono
            A2P023: Hydropower plantnononononononono
            A2P023: Biomassnoyesnononononono
            A2P023: Biogasnononononononono
            A2P023: OtherThe Co-generation is biomass based.Batteries
            A2P024: Technological Solutions / Innovations - Energy Flexibility
            A2P024: A2P024: Information and Communication Technologies (ICT)noyesnoyesnoyesnoyes
            A2P024: Energy management systemnoyesnonoyesyesnoyes
            A2P024: Demand-side managementnoyesnononononono
            A2P024: Smart electricity gridnononononoyesnono
            A2P024: Thermal Storagenoyesyesyesnoyesnono
            A2P024: Electric Storagenoyesnononoyesnono
            A2P024: District Heating and Coolingnoyesyesyesnoyesnono
            A2P024: Smart metering and demand-responsive control systemsnoyesnononoyesnono
            A2P024: P2P – buildingsnonoyesnoyesnonoyes
            A2P024: OtherBidirectional electric vehicle (EV) charging (V2G)
            A2P025: Technological Solutions / Innovations - Energy Efficiency
            A2P025: Deep Retrofittingnonononoyesnonono
            A2P025: Energy efficiency measures in historic buildingsnonononoyesnonono
            A2P025: High-performance new buildingsnoyesyesyesnoyesnono
            A2P025: Smart Public infrastructure (e.g. smart lighting)nononoyesnononoyes
            A2P025: Urban data platformsnononononononoyes
            A2P025: Mobile applications for citizensnononoyesnononono
            A2P025: Building services (HVAC & Lighting)nonoyesnonononono
            A2P025: Smart irrigationnononoyesnononono
            A2P025: Digital tracking for waste disposalnononononononono
            A2P025: Smart surveillancenononononononono
            A2P025: Other
            A2P026: Technological Solutions / Innovations - Mobility
            A2P026: Efficiency of vehicles (public and/or private)nononoyesnononono
            A2P026: Measures to reduce traffic volume (e.g. measure to support public transportation, shared mobility, measure to reduce journeys and distances)nononoyesnononono
            A2P026: e-Mobilitynoyesnoyesnoyesnono
            A2P026: Soft mobility infrastructures and last mile solutionsnononoyesnononono
            A2P026: Car-free areanononoyesnononono
            A2P026: Other
            A2P027: Mobility strategies - Additional notes
            A2P027: Mobility strategies - Additional notes- Multimodal mobility nodes - Support of public transport tickets - Mobility consulting - District management
            A2P028: Energy efficiency certificates
            A2P028: Energy efficiency certificatesYesYesYesYes
            A2P028: If yes, please specify and/or enter notesEnergy Performance Certificate - in Greece it is mandatory in order to buy or rent a house or a dwellingPassive house (2 buildings, 4 200 m2, from 2015)Two buildings are certified "Passive House new build"Energieausweis mandatory if buildings/ flats/ apartments are sold
            A2P029: Any other building / district certificates
            A2P029: Any other building / district certificatesYesNoYesNo
            A2P029: If yes, please specify and/or enter notesZero Emission Building (ZEB) with the highest ambitions (ZEB-COM) (admin building, 1 141 m2, 2016)Klimaaktiv standard  Voluntary! Certification can be for buildings and/or quarters. The different quarters are built in different standards. Ranging from bronze/silver/gold
            A3P001: Relevant city /national strategy
            A3P001: Relevant city /national strategy
            • Energy master planning (SECAP, etc.),
            • Promotion of energy communities (REC/CEC)
            • Promotion of energy communities (REC/CEC),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Smart cities strategies
            • Smart cities strategies,
            • Energy master planning (SECAP, etc.),
            • Climate change adaption plan/strategy (e.g. Climate City contract),
            • National / international city networks addressing sustainable urban development and climate neutrality
            • Promotion of energy communities (REC/CEC)
            A3P002: Quantitative targets included in the city / national strategy
            A3P002: Quantitative targets included in the city / national strategyCity level targets Klimaschutzplan Graz - 2022 | Targets: - Climate neutrality until 2040 - Social justice and high quality of life - High innovation levels Mobilitätsplan Graz 2040 – under development | Targets: - Modal Split 80:20 until 2040 80% Public transport, bike, walking | 20% cars Kommunales Energiekonzept (2017) | Targets: - Increase of district heating Energiemasterplan Graz (2018) | Targets: - Energy efficiency of urban dwellings and infrastructures - District heating and solar energy - Energy efficiency of private dwellings - Climate conscious mobility National level targets Klimaschutzplan Österreich -draft, expected by 2024 | Targets: - Decarbonisation (reduction of GHG, renewable energies, - Climate neutrality until 2040 - Energy efficiency - Security of energy supply
            A3P003: Strategies towards decarbonization of the gas grid
            A3P003: Strategies towards decarbonization of the gas grid
            • Electrification of Heating System based on Heat Pumps,
            • Other
            • Electrification of Heating System based on Heat Pumps,
            • Electrification of Cooking Methods,
            • Biogas
            A3P003: OtherDistrict heating based mainly on heat pumps and renewable sources
            A3P004: Identification of needs and priorities
            A3P004: Identification of needs and prioritiesThe priority was to eliminate the CO2 emissions by optimizing the building envelope and the heating systems.Reininghaus needs green spaces and places Sector coupling of water, waste water, electricity ICT and demand side management Mobility - Reininghaus needs better infrastructure for bikes and pedestrians - Public transportation should be more affordable and Sharing should be implemented in the district Infrastructure should cover daily needs within walking distance Infrastructure for local jobs and shared offices
            A3P005: Sustainable behaviour
            A3P005: Sustainable behaviour- citizen participation and promotion of functioning neighbourhoods (e.g., through city district management) As of today, solutions for the energy transition in the residential sector have focused on the construction of energy-efficient buildings and on the energy-efficient refurbishment of existing buildings. Measures to influence user behaviour and to directly address residents and neighbourhoods as actors of the energy transition play a minor role and are also not formalized. At the same time, moving into a new apartment offers a ‘window of opportunity’ to establish new everyday practices and behaviour. In already inhabited housing developments, well-functioning neighbourhoods or existing, ‘sustainability pioneers’ are key to motivating people to adopt more resource-efficient lifestyles. In order to prepare such agents of change towards more climate protection and sustainability in the context of housing, Austria launched the BAREWO project. The aim is to develop a kit of formats, methods, and interventions for resource-efficient housing. This toolkit will be tested in six testbeds, among which quarter 12 (Q12) of Graz- Reininghaus, as soon as first residents move in (approx. 2024). Austrian TRANS-PED partner StadtLABOR, which is also a partner in the BAREWO project, will support Q12 in this process. In parallel, a monitoring system will be developed to make the (climate) effects of the kit measurable. In addition, a guideline for property managers will be developed, which will serve as an orientation for them on how their residents can be coached in matters of climate protection and sustainability in everyday (residential) life. From the very beginning, (communication) measures are implemented and relevant stakeholders are involved in the project (project advisory board) to ensure the multiplicability, financing and broad application of the toolkit. If successful, the toolkit could also be scaled up to other quarters in Reininghaus.
            A3P006: Economic strategies
            A3P006: Economic strategies
            • PPP models,
            • Local trading
            • Local trading,
            • Existing incentives
            • Demand management Living Lab
            • Local trading,
            • Existing incentives
            A3P006: Other
            A3P007: Social models
            A3P007: Social models
            • Behavioural Change / End-users engagement,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour),
            • Other
            • Co-creation / Citizen engagement strategies,
            • Social incentives,
            • Affordability,
            • Prevention of energy poverty,
            • Citizen/owner involvement in planning and maintenance
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Social incentives,
            • Quality of Life,
            • Affordability,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Strategies towards (local) community-building,
            • Co-creation / Citizen engagement strategies,
            • Behavioural Change / End-users engagement,
            • Quality of Life,
            • Citizen/owner involvement in planning and maintenance,
            • Educational activities and trainings (including capacity building towards technology literacy, energy efficient behaviour)
            • Co-creation / Citizen engagement strategies
            • Co-creation / Citizen engagement strategies
            A3P007: OtherCampus Evenstad is a small department at Inland Norway University of Applied Sciences, with 220 students. Sharing knowledge is essential: Evenstad has regular visits from Politicians, decision-makers, researchers, environmental organizations, and energy- and building companies.
            A3P008: Integrated urban strategies
            A3P008: Integrated urban strategies
            • Strategic urban planning,
            • City Vision 2050,
            • Building / district Certification
            • District Energy plans
            A3P008: Other
            A3P009: Environmental strategies
            A3P009: Environmental strategies
            • Low Emission Zone
            • Energy Neutral,
            • Low Emission Zone
            • Pollutants Reduction,
            • Greening strategies,
            • Sustainable Urban drainage systems (SUDS),
            • Nature Based Solutions (NBS)
            • Low Emission Zone,
            • Net zero carbon footprint,
            • Carbon-free
            • Low Emission Zone
            • Low Emission Zone
            A3P009: Other
            A3P010: Legal / Regulatory aspects
            A3P010: Legal / Regulatory aspectsCampus Evenstad became a prosumer in 2016, as the first with DSO Eidsiva. Evenstad is also one of the first three PV systems in Norway to receive green certificates.Mobility contracts: A mobility contract is concluded between the City of Graz and the property developers in the course of development plans and serves to reduce the motor vehicle traffic to be expected as a result of the construction project. Push & pull measures are agreed: With a lower car parking space key, which is significantly lower than today's usual requirements, offers and information for easier use of public transport, walking and cycling, as well as car sharing and e-mobility are simultaneously created by the property developers, leading to a win-win-win situation for all parties involved. Basic principles - Possibility of combining effective "push & pull" measures => control option (e.g. reduction of car parking spaces, but optimisation of accessibility to public transport and walking and cycling networks, public transport tickets, mobility information, ... etc.) - Changing mobility behaviour in favour of sustainable forms of transport from the moment the flat is handed over ("upheaval" in personal mobility behaviour when changing the residential location) - Reduction in construction and maintenance costs (underground car parks, public road infrastructure) - Easier realisation of larger construction projects in the inner city area with lower generation of vehicle demand Städtebauliche Verträge in Graz / Urban development contracts in Graz Qualitative urban (neighbourhood) development with added value for all stakeholders: urban development contracts are modern instruments in the development of cities and neighbourhoods. As one of the pioneers in this field, the City of Graz also increasingly favours this form of quality assurance. Urban development contracts are a contractual form of regulation between the City of Graz and landowners, which enables flexible control of urban (sub)development in the interests of the common interests while at the same time relieving the public authorities. The contracts make property-related stipulations in accordance with urban planning requirements (e.g. urban development concept, development concept, framework plan, zoning plan) and the specialist planning requirements in particular infrastructure, development, design and mobility. This is intended to infrastructure, services of general interest, building land quality and settlement development required for the (parts of the) city.
            B1P001: PED/PED relevant concept definition
            B1P001: PED/PED relevant concept definitionThe biggest impact is the demonstration of several new energy solutions for local communities. Statsbygg/Campus Evenstad contributes to the development of innovations, pushing technological development through purchasing and demonstration of the solutions. This is a benefit for both end users, energy service providers and society at large. Evenstad also contribute to developing the local business community. For example, local biomass chip production for CHP, development of V2G-software etc. Several key solutions have been important when aiming to achieve the goals of reduced emissions, increased self-sufficiency in energy, and an energy-flexible campus. Example Vehicle-to-grid (V2G): We realized bidirectional EV charging at Campus Evenstad in 2019, demonstrating V2G for the first time in Norway. The experiences from Evenstad provide increased knowledge and practical experience from purchasing, installing and operating the V2G solution, and can contribute to creating new solutions within the energy system. With the equipment installed, the batteries in EVs can supply power back to buildings or the power grid. Example solar cells (PV): We installed PV in 2013 when there were only a few grid-connected PV systems in Norway. The PV system was an important piece in changing the view on solar energy in Norway, where businesses, the public sector and private individuals started seeing the potential for solar energy also this far north. In 2022, the PV system was expanded with PV cells on the facade of the energy center. Example Solar collector system: Covers 100m2 of the roof surface of dormitories and supplies supplies 117 dormitories with all the hot water they need (4000m2 floor area. The solar collector system is connected to the district heating system, where the main heat source is bioenergy. Solar energy and bioenergy complement each other at different times of the year. Example battery bank: Among the 5 largest electrical batteries in Norway connected to the grid. Example CHP: First of its kind in Norway, generating heat and electricity from biomass. Already in 2010, fossil fuels were phased out by converting from oil to wood-chip heating.Extremely low building energy demand, the electric energy of the heat pump used for space heating is significantly lower compared to thermal energy for the domestic hot water preparation.Reininghaus addresses some relevant key aspects listed in the JPI UE PED Framework Definition such as: - high level of aspiration in terms of energy efficiency, energy flexibility and energy production; - integration of different systems and infrastructures; - inclusion of aspects not only related to energy sector, but also connected with social, economic and environmental sustainability.
            B1P002: Motivation behind PED/PED relevant project development
            B1P002: Motivation behind PED/PED relevant project developmentIn line with the EU's vision of "local energy communities", Campus Evenstad demonstrates energy actions that contribute to the clean energy transition. The campus has been developed over several years, demonstrating several innovative and sustainable technologies and energy solutions in a microgrid, e.g. vehicle to grid (V2G), biomass-based combined heat and power (CHP), solar energy, energy storage and zero emission buildings. It shows how to use new technology to enable zero emissions areas. Dedicated professionals, both Statsbygg's operating staff and researchers from FME ZEN have been central to the realization, together with dedicated management at the University campus, who have shown a great willingness to implement new solutions.Since it is an urban area, with high building and apartment density, the need for CO2 reduction is quite relevant and thus, in new built, the minimization of CO2 emissions is crucial.The Reininghausgründe is a new quarter near the centre of the City of Graz. On the area of a former brewery, close to more, still working industries, a new town centre is being established. The quarter will include living areas, workplaces, shops, schools and a park, so that the need for individual mobility is minimized. It is connected to the historical city centre by bike paths, busses and a tram. Car sharing is provided as well.
            B1P003: Environment of the case study area
            B2P003: Environment of the case study areaRuralUrban areaUrban areaRurban
            B1P004: Type of district
            B2P004: Type of district
            • New construction,
            • Renovation
            • New construction
            • New construction
            • Renovation
            B1P005: Case Study Context
            B1P005: Case Study Context
            • Retrofitting Area
            • Re-use / Transformation Area,
            • New Development
            • New Development
            • Retrofitting Area,
            • Preservation Area
            B1P006: Year of construction
            B1P006: Year of construction20222025
            B1P007: District population before intervention - Residential
            B1P007: District population before intervention - Residential0
            B1P008: District population after intervention - Residential
            B1P008: District population after intervention - Residential78010000
            B1P009: District population before intervention - Non-residential
            B1P009: District population before intervention - Non-residential0
            B1P010: District population after intervention - Non-residential
            B1P010: District population after intervention - Non-residential
            B1P011: Population density before intervention
            B1P011: Population density before intervention000000
            B1P012: Population density after intervention
            B1P012: Population density after intervention000.0687164126508680.0100
            B1P013: Building and Land Use before intervention
            B1P013: Residentialnonononoyesnonono
            B1P013 - Residential: Specify the sqm [m²]
            B1P013: Officenonononoyesnonono
            B1P013 - Office: Specify the sqm [m²]
            B1P013: Industry and Utilitynononoyesnononono
            B1P013 - Industry and Utility: Specify the sqm [m²]
            B1P013: Commercialnononononononono
            B1P013 - Commercial: Specify the sqm [m²]
            B1P013: Institutionalnononononononono
            B1P013 - Institutional: Specify the sqm [m²]
            B1P013: Natural areasnononoyesnononono
            B1P013 - Natural areas: Specify the sqm [m²]
            B1P013: Recreationalnononononononono
            B1P013 - Recreational: Specify the sqm [m²]
            B1P013: Dismissed areasnononononononono
            B1P013 - Dismissed areas: Specify the sqm [m²]
            B1P013: Othernononononononono
            B1P013 - Other: Specify the sqm [m²]
            B1P014: Building and Land Use after intervention
            B1P014: Residentialnonoyesyesyesnonono
            B1P014 - Residential: Specify the sqm [m²]
            B1P014: Officenononoyesyesnonono
            B1P014 - Office: Specify the sqm [m²]
            B1P014: Industry and Utilitynononononononono
            B1P014 - Industry and Utility: Specify the sqm [m²]
            B1P014: Commercialnonoyesyesnononono
            B1P014 - Commercial: Specify the sqm [m²]
            B1P014: Institutionalnonoyesyesnononono
            B1P014 - Institutional: Specify the sqm [m²]
            B1P014: Natural areasnononoyesnononono
            B1P014 - Natural areas: Specify the sqm [m²]
            B1P014: Recreationalnonoyesyesnononono
            B1P014 - Recreational: Specify the sqm [m²]
            B1P014: Dismissed areasnononononononono
            B1P014 - Dismissed areas: Specify the sqm [m²]
            B1P014: Othernononononononono
            B1P014 - Other: Specify the sqm [m²]
            B2P001: PED Lab concept definition
            B2P001: PED Lab concept definition
            B2P002: Installation life time
            B2P002: Installation life time
            B2P003: Scale of action
            B2P003: Scale
            B2P004: Operator of the installation
            B2P004: Operator of the installation
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P005: Replication framework: Applied strategy to reuse and recycling the materials
            B2P006: Circular Economy Approach
            B2P006: Do you apply any strategy to reuse and recycling the materials?
            B2P006: Other
            B2P007: Motivation for developing the PED Lab
            B2P007: Motivation for developing the PED Lab
            B2P007: Other
            B2P008: Lead partner that manages the PED Lab
            B2P008: Lead partner that manages the PED Lab
            B2P008: Other
            B2P009: Collaborative partners that participate in the PED Lab
            B2P009: Collaborative partners that participate in the PED Lab
            B2P009: Other
            B2P010: Synergies between the fields of activities
            B2P010: Synergies between the fields of activities
            B2P011: Available facilities to test urban configurations in PED Lab
            B2P011: Available facilities to test urban configurations in PED Lab
            B2P011: Other
            B2P012: Incubation capacities of PED Lab
            B2P012: Incubation capacities of PED Lab
            B2P013: Availability of the facilities for external people
            B2P013: Availability of the facilities for external people
            B2P014: Monitoring measures
            B2P014: Monitoring measures
            B2P015: Key Performance indicators
            B2P015: Key Performance indicators
            B2P016: Execution of operations
            B2P016: Execution of operations
            B2P017: Capacities
            B2P017: Capacities
            B2P018: Relations with stakeholders
            B2P018: Relations with stakeholders
            B2P019: Available tools
            B2P019: Available tools
            B2P019: Available tools
            B2P020: External accessibility
            B2P020: External accessibility
            C1P001: Unlocking Factors
            C1P001: Recent technological improvements for on-site RES production5 - Very important5 - Very important1 - Unimportant3 - Moderately important4 - Important4 - Important1 - Unimportant3 - Moderately important
            C1P001: Innovative, integrated, prefabricated packages for buildings envelope / Energy efficiency of building stock5 - Very important5 - Very important2 - Slightly important2 - Slightly important2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant
            C1P001: Energy Communities, P2P, Prosumers concepts5 - Very important5 - Very important3 - Moderately important4 - Important5 - Very important4 - Important1 - Unimportant5 - Very important
            C1P001: Storage systems and E-mobility market penetration5 - Very important2 - Slightly important2 - Slightly important4 - Important4 - Important1 - Unimportant4 - Important
            C1P001: Decreasing costs of innovative materials4 - Important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant
            C1P001: Financial mechanisms to reduce costs and maximize benefits4 - Important1 - Unimportant1 - Unimportant2 - Slightly important5 - Very important4 - Important1 - Unimportant4 - Important
            C1P001: The ability to predict Multiple Benefits1 - Unimportant3 - Moderately important4 - Important2 - Slightly important4 - Important1 - Unimportant2 - Slightly important
            C1P001: The ability to predict the distribution of benefits and impacts1 - Unimportant3 - Moderately important4 - Important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
            C1P001: Citizens improved awareness and engagement on sustainable energy issues (bottom-up)5 - Very important4 - Important2 - Slightly important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
            C1P001: Social acceptance (top-down)5 - Very important4 - Important4 - Important4 - Important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
            C1P001: Improved local and national policy frameworks (i.e. incentives, laws etc.)3 - Moderately important4 - Important3 - Moderately important5 - Very important5 - Very important1 - Unimportant1 - Unimportant5 - Very important
            C1P001: Presence of integrated urban strategies and plans3 - Moderately important1 - Unimportant4 - Important5 - Very important3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important
            C1P001: Multidisciplinary approaches available for systemic integration3 - Moderately important1 - Unimportant4 - Important5 - Very important1 - Unimportant5 - Very important1 - Unimportant2 - Slightly important
            C1P001: Availability of grants (from EC or other donors) to finance the PED Lab projects4 - Important1 - Unimportant4 - Important4 - Important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
            C1P001: Availability of RES on site (Local RES)5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
            C1P001: Ongoing or established collaboration on Public Private Partnership among key stakeholders4 - Important3 - Moderately important3 - Moderately important5 - Very important4 - Important4 - Important1 - Unimportant3 - Moderately important
            C1P001: Any other UNLOCKING FACTORS1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P001: Any other UNLOCKING FACTORS (if any)
            C1P002: Driving Factors
            C1P002: Climate Change adaptation need4 - Important3 - Moderately important5 - Very important5 - Very important5 - Very important4 - Important1 - Unimportant4 - Important
            C1P002: Climate Change mitigation need (local RES production and efficiency)5 - Very important5 - Very important4 - Important5 - Very important5 - Very important4 - Important1 - Unimportant4 - Important
            C1P002: Rapid urbanization trend and need of urban expansions1 - Unimportant1 - Unimportant5 - Very important4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
            C1P002: Urban re-development of existing built environment3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
            C1P002: Economic growth need2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
            C1P002: Improved local environmental quality (air, noise, aesthetics, etc.)3 - Moderately important1 - Unimportant3 - Moderately important5 - Very important1 - Unimportant3 - Moderately important1 - Unimportant4 - Important
            C1P002: Territorial and market attractiveness2 - Slightly important1 - Unimportant4 - Important5 - Very important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
            C1P002: Energy autonomy/independence5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant4 - Important
            C1P002: Any other DRIVING FACTOR1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P002: Any other DRIVING FACTOR (if any)
            C1P003: Administrative barriers
            C1P003: Difficulty in the coordination of high number of partners and authorities4 - Important1 - Unimportant2 - Slightly important5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important
            C1P003: Lack of good cooperation and acceptance among partners3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
            C1P003: Lack of public participation3 - Moderately important1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant4 - Important
            C1P003: Lack of institutions/mechanisms to disseminate information3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
            C1P003:Long and complex procedures for authorization of project activities5 - Very important3 - Moderately important1 - Unimportant5 - Very important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
            C1P003: Time consuming requirements by EC or other donors concerning reporting and accountancy4 - Important2 - Slightly important1 - Unimportant3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important
            C1P003: Complicated and non-comprehensive public procurement4 - Important2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
            C1P003: Fragmented and or complex ownership structure3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important5 - Very important2 - Slightly important1 - Unimportant4 - Important
            C1P003: City administration & cross-sectoral attitude/approaches (silos)3 - Moderately important1 - Unimportant1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important
            C1P003: Lack of internal capacities to support energy transition3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
            C1P003: Any other Administrative BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P003: Any other Administrative BARRIER (if any)
            C1P004: Policy barriers
            C1P004: Lack of long-term and consistent energy plans and policies4 - Important3 - Moderately important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
            C1P004: Lacking or fragmented local political commitment and support on the long term4 - Important3 - Moderately important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant4 - Important
            C1P004: Lack of Cooperation & support between national-regional-local entities3 - Moderately important3 - Moderately important1 - Unimportant3 - Moderately important4 - Important3 - Moderately important1 - Unimportant4 - Important
            C1P004: Any other Political BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P004: Any other Political BARRIER (if any)
            C1P005: Legal and Regulatory barriers
            C1P005: Inadequate regulations for new technologies4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant4 - Important
            C1P005: Regulatory instability3 - Moderately important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant1 - Unimportant
            C1P005: Non-effective regulations4 - Important3 - Moderately important1 - Unimportant3 - Moderately important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important
            C1P005: Unfavorable local regulations for innovative technologies3 - Moderately important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important2 - Slightly important1 - Unimportant3 - Moderately important
            C1P005: Building code and land-use planning hindering innovative technologies4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
            C1P005: Insufficient or insecure financial incentives4 - Important4 - Important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
            C1P005: Unresolved privacy concerns and limiting nature of privacy protection regulation4 - Important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant3 - Moderately important
            C1P005: Shortage of proven and tested solutions and examples3 - Moderately important1 - Unimportant2 - Slightly important1 - Unimportant2 - Slightly important1 - Unimportant4 - Important
            C1P005: Any other Legal and Regulatory BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P005: Any other Legal and Regulatory BARRIER (if any)
            C1P006: Environmental barriers
            C1P006: Environmental barriersUrban area very high buildings (and apartment) density and thus, less available space for renewable sources.
            C1P007: Technical barriers
            C1P007: Lack of skilled and trained personnel4 - Important3 - Moderately important2 - Slightly important2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant4 - Important
            C1P007: Deficient planning3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important4 - Important1 - Unimportant1 - Unimportant4 - Important
            C1P007: Retrofitting work in dwellings in occupied state4 - Important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
            C1P007: Lack of well-defined process4 - Important3 - Moderately important1 - Unimportant4 - Important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important
            C1P007: Inaccuracy in energy modelling and simulation4 - Important3 - Moderately important1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
            C1P007: Lack/cost of computational scalability4 - Important5 - Very important1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important
            C1P007: Grid congestion, grid instability4 - Important5 - Very important1 - Unimportant1 - Unimportant2 - Slightly important1 - Unimportant1 - Unimportant3 - Moderately important
            C1P007: Negative effects of project intervention on the natural environment3 - Moderately important1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important1 - Unimportant1 - Unimportant3 - Moderately important
            C1P007: Energy retrofitting work in dense and/or historical urban environment5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant5 - Very important1 - Unimportant1 - Unimportant3 - Moderately important
            C1P007: Difficult definition of system boundaries3 - Moderately important1 - Unimportant1 - Unimportant1 - Unimportant4 - Important1 - Unimportant1 - Unimportant3 - Moderately important
            C1P007: Any other Thecnical BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P007: Any other Thecnical BARRIER (if any)Energy management systems of different new technologies does not "talk together" (e.g. solar inverter, V2G inverter). This creates challenges.
            C1P008: Social and Cultural barriers
            C1P008: Inertia4 - Important1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important4 - Important1 - Unimportant2 - Slightly important
            C1P008: Lack of values and interest in energy optimization measurements5 - Very important3 - Moderately important1 - Unimportant4 - Important2 - Slightly important4 - Important1 - Unimportant4 - Important
            C1P008: Low acceptance of new projects and technologies5 - Very important3 - Moderately important1 - Unimportant3 - Moderately important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important
            C1P008: Difficulty of finding and engaging relevant actors5 - Very important1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important
            C1P008: Lack of trust beyond social network4 - Important1 - Unimportant1 - Unimportant3 - Moderately important4 - Important2 - Slightly important1 - Unimportant4 - Important
            C1P008: Rebound effect4 - Important1 - Unimportant1 - Unimportant2 - Slightly important2 - Slightly important1 - Unimportant1 - Unimportant4 - Important
            C1P008: Hostile or passive attitude towards environmentalism5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant5 - Very important
            C1P008: Exclusion of socially disadvantaged groups2 - Slightly important1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
            C1P008: Non-energy issues are more important and urgent for actors3 - Moderately important4 - Important1 - Unimportant4 - Important3 - Moderately important2 - Slightly important1 - Unimportant2 - Slightly important
            C1P008: Hostile or passive attitude towards energy collaboration1 - Unimportant1 - Unimportant1 - Unimportant3 - Moderately important2 - Slightly important1 - Unimportant3 - Moderately important
            C1P008: Any other Social BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P008: Any other Social BARRIER (if any)
            C1P009: Information and Awareness barriers
            C1P009: Insufficient information on the part of potential users and consumers1 - Unimportant1 - Unimportant2 - Slightly important3 - Moderately important2 - Slightly important1 - Unimportant4 - Important
            C1P009: Perception of interventions as complicated and expensive, with negative socio-economic or environmental impacts3 - Moderately important1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important
            C1P009: Lack of awareness among authorities4 - Important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant4 - Important
            C1P009: Information asymmetry causing power asymmetry of established actors1 - Unimportant1 - Unimportant4 - Important4 - Important2 - Slightly important1 - Unimportant4 - Important
            C1P009: High costs of design, material, construction, and installation5 - Very important5 - Very important4 - Important4 - Important3 - Moderately important1 - Unimportant4 - Important
            C1P009: Any other Information and Awareness BARRIER5 - Very important1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P009: Any other Information and Awareness BARRIER (if any)Different interests - Grid/energy stakeholders and building stakeholders
            C1P010: Financial barriers
            C1P010: Hidden costs5 - Very important1 - Unimportant3 - Moderately important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
            C1P010: Insufficient external financial support and funding for project activities5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
            C1P010: Economic crisis1 - Unimportant4 - Important4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
            C1P010: Risk and uncertainty5 - Very important1 - Unimportant2 - Slightly important3 - Moderately important3 - Moderately important1 - Unimportant5 - Very important
            C1P010: Lack of consolidated and tested business models5 - Very important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant4 - Important
            C1P010: Limited access to capital and cost disincentives4 - Important1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant4 - Important
            C1P010: Any other Financial BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P010: Any other Financial BARRIER (if any)
            C1P011: Market barriers
            C1P011: Split incentives1 - Unimportant1 - Unimportant2 - Slightly important4 - Important3 - Moderately important1 - Unimportant5 - Very important
            C1P011: Energy price distortion1 - Unimportant1 - Unimportant4 - Important4 - Important3 - Moderately important1 - Unimportant3 - Moderately important
            C1P011: Energy market concentration, gatekeeper actors (DSOs)1 - Unimportant1 - Unimportant4 - Important2 - Slightly important3 - Moderately important1 - Unimportant4 - Important
            C1P011: Any other Market BARRIER1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant1 - Unimportant
            C1P011: Any other Market BARRIER (if any)
            C1P012: Stakeholders involved
            C1P012: Government/Public Authorities
            • Planning/leading
            • Planning/leading
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            C1P012: Research & Innovation
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Monitoring/operation/management
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Design/demand aggregation
            C1P012: Financial/Funding
            • Construction/implementation
            • Planning/leading,
            • Construction/implementation
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading
            C1P012: Analyst, ICT and Big Data
            • Monitoring/operation/management
            • Monitoring/operation/management
            • Planning/leading,
            • Monitoring/operation/management
            • Planning/leading
            C1P012: Business process management
            • Planning/leading
            • None
            • Planning/leading
            C1P012: Urban Services providers
            • Construction/implementation
            • Planning/leading,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading
            C1P012: Real Estate developers
            • Planning/leading,
            • Monitoring/operation/management
            • Planning/leading
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading
            C1P012: Design/Construction companies
            • Construction/implementation
            • Design/demand aggregation,
            • Construction/implementation
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation
            • Planning/leading
            C1P012: End‐users/Occupants/Energy Citizens
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation
            • Design/demand aggregation
            • Monitoring/operation/management
            C1P012: Social/Civil Society/NGOs
            • None
            • Planning/leading
            • Design/demand aggregation,
            • Monitoring/operation/management
            • Construction/implementation
            C1P012: Industry/SME/eCommerce
            • Construction/implementation
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Planning/leading,
            • Design/demand aggregation,
            • Construction/implementation,
            • Monitoring/operation/management
            • Design/demand aggregation
            C1P012: Other
            • None
            C1P012: Other (if any)
            Summary

            Authors (framework concept)

            Beril Alpagut (Demir Energy); Giulia Turci (University of Bologna); Michal Kuzmic (Czech Technical University in Prague); Paolo Civiero (Università Roma Tre); Serena Pagliulia (University of Bologna); Oscar Seco (CIEMAT); Silvia Soutullo (CIEMAT); Daniele Vettorato (EURAC Research, IEA Annex 83); Bailador Ferreras M. Almudena (CIEMAT); Vicky Albert-Seifried (FHG ISE)

            Contributors (to the content)

            Laura Aelenei (LNEG), Nienke Maas (TNO), Savis Gohari (OsloMet), Andras Reith (ABUD), Ghazal Etminan (AIT), Maria-Beatrice Andreucci (Universita Sapienza), Francesco Reda (VTT, IEA Annex 83), Mari Hukkalainen (VTT), Judith-Borsboom (Locality), Gilda Massa (ENEA), Jelena Ziemele (University of Latvia), Nikola Pokorny (CVUT), Sergio Diaz de Garayo Balsategui (CENER, IEA Annex 83), Matthias Haaze (ZHAW, IEA Annex 83), Christoph Gollner (FFG, JPI UE), Silvia Bossi (ENEA, JPI UE), Christian Winzer (Zurich University of Applied Science), George Martinopoulos (Centre for Research and Technology Hellas), Maria Nuria Sánchez (CIEMAT), Angelina Tomova (Energy Agency of Plovdiv)

            Implemented by

            Boutik.pt: Filipe Martins, Jamal Khan
            Marek Suchánek (Czech Technical University in Prague)